Detailed syntax breakdown of Definition df-ibl
| Step | Hyp | Ref
| Expression |
| 1 | | cibl 25652 |
. 2
class
𝐿1 |
| 2 | | vx |
. . . . . . 7
setvar 𝑥 |
| 3 | | cr 11154 |
. . . . . . 7
class
ℝ |
| 4 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 5 | 2 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 6 | | vf |
. . . . . . . . . . . 12
setvar 𝑓 |
| 7 | 6 | cv 1539 |
. . . . . . . . . . 11
class 𝑓 |
| 8 | 5, 7 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘𝑥) |
| 9 | | ci 11157 |
. . . . . . . . . . 11
class
i |
| 10 | | vk |
. . . . . . . . . . . 12
setvar 𝑘 |
| 11 | 10 | cv 1539 |
. . . . . . . . . . 11
class 𝑘 |
| 12 | | cexp 14102 |
. . . . . . . . . . 11
class
↑ |
| 13 | 9, 11, 12 | co 7431 |
. . . . . . . . . 10
class
(i↑𝑘) |
| 14 | | cdiv 11920 |
. . . . . . . . . 10
class
/ |
| 15 | 8, 13, 14 | co 7431 |
. . . . . . . . 9
class ((𝑓‘𝑥) / (i↑𝑘)) |
| 16 | | cre 15136 |
. . . . . . . . 9
class
ℜ |
| 17 | 15, 16 | cfv 6561 |
. . . . . . . 8
class
(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) |
| 18 | 7 | cdm 5685 |
. . . . . . . . . . 11
class dom 𝑓 |
| 19 | 5, 18 | wcel 2108 |
. . . . . . . . . 10
wff 𝑥 ∈ dom 𝑓 |
| 20 | | cc0 11155 |
. . . . . . . . . . 11
class
0 |
| 21 | 4 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 22 | | cle 11296 |
. . . . . . . . . . 11
class
≤ |
| 23 | 20, 21, 22 | wbr 5143 |
. . . . . . . . . 10
wff 0 ≤
𝑦 |
| 24 | 19, 23 | wa 395 |
. . . . . . . . 9
wff (𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦) |
| 25 | 24, 21, 20 | cif 4525 |
. . . . . . . 8
class if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) |
| 26 | 4, 17, 25 | csb 3899 |
. . . . . . 7
class
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) |
| 27 | 2, 3, 26 | cmpt 5225 |
. . . . . 6
class (𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
| 28 | | citg2 25651 |
. . . . . 6
class
∫2 |
| 29 | 27, 28 | cfv 6561 |
. . . . 5
class
(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) |
| 30 | 29, 3 | wcel 2108 |
. . . 4
wff
(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ |
| 31 | | c3 12322 |
. . . . 5
class
3 |
| 32 | | cfz 13547 |
. . . . 5
class
... |
| 33 | 20, 31, 32 | co 7431 |
. . . 4
class
(0...3) |
| 34 | 30, 10, 33 | wral 3061 |
. . 3
wff
∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ |
| 35 | | cmbf 25649 |
. . 3
class
MblFn |
| 36 | 34, 6, 35 | crab 3436 |
. 2
class {𝑓 ∈ MblFn ∣
∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} |
| 37 | 1, 36 | wceq 1540 |
1
wff
𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} |