MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ibl Structured version   Visualization version   GIF version

Definition df-ibl 25139
Description: Define the class of integrable functions on the reals. A function is integrable if it is measurable and the integrals of the pieces of the function are all finite. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
df-ibl šæ1 = {š‘“ āˆˆ MblFn āˆ£ āˆ€š‘˜ āˆˆ (0...3)(āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ ā¦‹(ā„œā€˜((š‘“ā€˜š‘„) / (iā†‘š‘˜))) / š‘¦ā¦Œif((š‘„ āˆˆ dom š‘“ āˆ§ 0 ā‰¤ š‘¦), š‘¦, 0))) āˆˆ ā„}
Distinct variable group:   š‘¦,š‘˜,š‘“,š‘„

Detailed syntax breakdown of Definition df-ibl
StepHypRef Expression
1 cibl 25134 . 2 class šæ1
2 vx . . . . . . 7 setvar š‘„
3 cr 11109 . . . . . . 7 class ā„
4 vy . . . . . . . 8 setvar š‘¦
52cv 1541 . . . . . . . . . . 11 class š‘„
6 vf . . . . . . . . . . . 12 setvar š‘“
76cv 1541 . . . . . . . . . . 11 class š‘“
85, 7cfv 6544 . . . . . . . . . 10 class (š‘“ā€˜š‘„)
9 ci 11112 . . . . . . . . . . 11 class i
10 vk . . . . . . . . . . . 12 setvar š‘˜
1110cv 1541 . . . . . . . . . . 11 class š‘˜
12 cexp 14027 . . . . . . . . . . 11 class ā†‘
139, 11, 12co 7409 . . . . . . . . . 10 class (iā†‘š‘˜)
14 cdiv 11871 . . . . . . . . . 10 class /
158, 13, 14co 7409 . . . . . . . . 9 class ((š‘“ā€˜š‘„) / (iā†‘š‘˜))
16 cre 15044 . . . . . . . . 9 class ā„œ
1715, 16cfv 6544 . . . . . . . 8 class (ā„œā€˜((š‘“ā€˜š‘„) / (iā†‘š‘˜)))
187cdm 5677 . . . . . . . . . . 11 class dom š‘“
195, 18wcel 2107 . . . . . . . . . 10 wff š‘„ āˆˆ dom š‘“
20 cc0 11110 . . . . . . . . . . 11 class 0
214cv 1541 . . . . . . . . . . 11 class š‘¦
22 cle 11249 . . . . . . . . . . 11 class ā‰¤
2320, 21, 22wbr 5149 . . . . . . . . . 10 wff 0 ā‰¤ š‘¦
2419, 23wa 397 . . . . . . . . 9 wff (š‘„ āˆˆ dom š‘“ āˆ§ 0 ā‰¤ š‘¦)
2524, 21, 20cif 4529 . . . . . . . 8 class if((š‘„ āˆˆ dom š‘“ āˆ§ 0 ā‰¤ š‘¦), š‘¦, 0)
264, 17, 25csb 3894 . . . . . . 7 class ā¦‹(ā„œā€˜((š‘“ā€˜š‘„) / (iā†‘š‘˜))) / š‘¦ā¦Œif((š‘„ āˆˆ dom š‘“ āˆ§ 0 ā‰¤ š‘¦), š‘¦, 0)
272, 3, 26cmpt 5232 . . . . . 6 class (š‘„ āˆˆ ā„ ā†¦ ā¦‹(ā„œā€˜((š‘“ā€˜š‘„) / (iā†‘š‘˜))) / š‘¦ā¦Œif((š‘„ āˆˆ dom š‘“ āˆ§ 0 ā‰¤ š‘¦), š‘¦, 0))
28 citg2 25133 . . . . . 6 class āˆ«2
2927, 28cfv 6544 . . . . 5 class (āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ ā¦‹(ā„œā€˜((š‘“ā€˜š‘„) / (iā†‘š‘˜))) / š‘¦ā¦Œif((š‘„ āˆˆ dom š‘“ āˆ§ 0 ā‰¤ š‘¦), š‘¦, 0)))
3029, 3wcel 2107 . . . 4 wff (āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ ā¦‹(ā„œā€˜((š‘“ā€˜š‘„) / (iā†‘š‘˜))) / š‘¦ā¦Œif((š‘„ āˆˆ dom š‘“ āˆ§ 0 ā‰¤ š‘¦), š‘¦, 0))) āˆˆ ā„
31 c3 12268 . . . . 5 class 3
32 cfz 13484 . . . . 5 class ...
3320, 31, 32co 7409 . . . 4 class (0...3)
3430, 10, 33wral 3062 . . 3 wff āˆ€š‘˜ āˆˆ (0...3)(āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ ā¦‹(ā„œā€˜((š‘“ā€˜š‘„) / (iā†‘š‘˜))) / š‘¦ā¦Œif((š‘„ āˆˆ dom š‘“ āˆ§ 0 ā‰¤ š‘¦), š‘¦, 0))) āˆˆ ā„
35 cmbf 25131 . . 3 class MblFn
3634, 6, 35crab 3433 . 2 class {š‘“ āˆˆ MblFn āˆ£ āˆ€š‘˜ āˆˆ (0...3)(āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ ā¦‹(ā„œā€˜((š‘“ā€˜š‘„) / (iā†‘š‘˜))) / š‘¦ā¦Œif((š‘„ āˆˆ dom š‘“ āˆ§ 0 ā‰¤ š‘¦), š‘¦, 0))) āˆˆ ā„}
371, 36wceq 1542 1 wff šæ1 = {š‘“ āˆˆ MblFn āˆ£ āˆ€š‘˜ āˆˆ (0...3)(āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ ā¦‹(ā„œā€˜((š‘“ā€˜š‘„) / (iā†‘š‘˜))) / š‘¦ā¦Œif((š‘„ āˆˆ dom š‘“ āˆ§ 0 ā‰¤ š‘¦), š‘¦, 0))) āˆˆ ā„}
Colors of variables: wff setvar class
This definition is referenced by:  isibl  25283  iblmbf  25285
  Copyright terms: Public domain W3C validator