Detailed syntax breakdown of Definition df-ibl
Step | Hyp | Ref
| Expression |
1 | | cibl 24686 |
. 2
class
𝐿1 |
2 | | vx |
. . . . . . 7
setvar 𝑥 |
3 | | cr 10801 |
. . . . . . 7
class
ℝ |
4 | | vy |
. . . . . . . 8
setvar 𝑦 |
5 | 2 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
6 | | vf |
. . . . . . . . . . . 12
setvar 𝑓 |
7 | 6 | cv 1538 |
. . . . . . . . . . 11
class 𝑓 |
8 | 5, 7 | cfv 6418 |
. . . . . . . . . 10
class (𝑓‘𝑥) |
9 | | ci 10804 |
. . . . . . . . . . 11
class
i |
10 | | vk |
. . . . . . . . . . . 12
setvar 𝑘 |
11 | 10 | cv 1538 |
. . . . . . . . . . 11
class 𝑘 |
12 | | cexp 13710 |
. . . . . . . . . . 11
class
↑ |
13 | 9, 11, 12 | co 7255 |
. . . . . . . . . 10
class
(i↑𝑘) |
14 | | cdiv 11562 |
. . . . . . . . . 10
class
/ |
15 | 8, 13, 14 | co 7255 |
. . . . . . . . 9
class ((𝑓‘𝑥) / (i↑𝑘)) |
16 | | cre 14736 |
. . . . . . . . 9
class
ℜ |
17 | 15, 16 | cfv 6418 |
. . . . . . . 8
class
(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) |
18 | 7 | cdm 5580 |
. . . . . . . . . . 11
class dom 𝑓 |
19 | 5, 18 | wcel 2108 |
. . . . . . . . . 10
wff 𝑥 ∈ dom 𝑓 |
20 | | cc0 10802 |
. . . . . . . . . . 11
class
0 |
21 | 4 | cv 1538 |
. . . . . . . . . . 11
class 𝑦 |
22 | | cle 10941 |
. . . . . . . . . . 11
class
≤ |
23 | 20, 21, 22 | wbr 5070 |
. . . . . . . . . 10
wff 0 ≤
𝑦 |
24 | 19, 23 | wa 395 |
. . . . . . . . 9
wff (𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦) |
25 | 24, 21, 20 | cif 4456 |
. . . . . . . 8
class if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) |
26 | 4, 17, 25 | csb 3828 |
. . . . . . 7
class
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0) |
27 | 2, 3, 26 | cmpt 5153 |
. . . . . 6
class (𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
28 | | citg2 24685 |
. . . . . 6
class
∫2 |
29 | 27, 28 | cfv 6418 |
. . . . 5
class
(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) |
30 | 29, 3 | wcel 2108 |
. . . 4
wff
(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ |
31 | | c3 11959 |
. . . . 5
class
3 |
32 | | cfz 13168 |
. . . . 5
class
... |
33 | 20, 31, 32 | co 7255 |
. . . 4
class
(0...3) |
34 | 30, 10, 33 | wral 3063 |
. . 3
wff
∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ |
35 | | cmbf 24683 |
. . 3
class
MblFn |
36 | 34, 6, 35 | crab 3067 |
. 2
class {𝑓 ∈ MblFn ∣
∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} |
37 | 1, 36 | wceq 1539 |
1
wff
𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} |