MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 25543
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 25538 . 2 class 1
2 vf . . 3 setvar 𝑓
3 cr 11000 . . . . . 6 class
4 vg . . . . . . 7 setvar 𝑔
54cv 1540 . . . . . 6 class 𝑔
63, 3, 5wf 6472 . . . . 5 wff 𝑔:ℝ⟶ℝ
75crn 5612 . . . . . 6 class ran 𝑔
8 cfn 8864 . . . . . 6 class Fin
97, 8wcel 2111 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5610 . . . . . . . 8 class 𝑔
11 cc0 11001 . . . . . . . . . 10 class 0
1211csn 4571 . . . . . . . . 9 class {0}
133, 12cdif 3894 . . . . . . . 8 class (ℝ ∖ {0})
1410, 13cima 5614 . . . . . . 7 class (𝑔 “ (ℝ ∖ {0}))
15 cvol 25386 . . . . . . 7 class vol
1614, 15cfv 6476 . . . . . 6 class (vol‘(𝑔 “ (ℝ ∖ {0})))
1716, 3wcel 2111 . . . . 5 wff (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ
186, 9, 17w3a 1086 . . . 4 wff (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)
19 cmbf 25537 . . . 4 class MblFn
2018, 4, 19crab 3395 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
212cv 1540 . . . . . 6 class 𝑓
2221crn 5612 . . . . 5 class ran 𝑓
2322, 12cdif 3894 . . . 4 class (ran 𝑓 ∖ {0})
24 vx . . . . . 6 setvar 𝑥
2524cv 1540 . . . . 5 class 𝑥
2621ccnv 5610 . . . . . . 7 class 𝑓
2725csn 4571 . . . . . . 7 class {𝑥}
2826, 27cima 5614 . . . . . 6 class (𝑓 “ {𝑥})
2928, 15cfv 6476 . . . . 5 class (vol‘(𝑓 “ {𝑥}))
30 cmul 11006 . . . . 5 class ·
3125, 29, 30co 7341 . . . 4 class (𝑥 · (vol‘(𝑓 “ {𝑥})))
3223, 31, 24csu 15588 . . 3 class Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥})))
332, 20, 32cmpt 5167 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
341, 33wceq 1541 1 wff 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  25597  itg1val  25606
  Copyright terms: Public domain W3C validator