MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 24689
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 24684 . 2 class 1
2 vf . . 3 setvar 𝑓
3 cr 10801 . . . . . 6 class
4 vg . . . . . . 7 setvar 𝑔
54cv 1538 . . . . . 6 class 𝑔
63, 3, 5wf 6414 . . . . 5 wff 𝑔:ℝ⟶ℝ
75crn 5581 . . . . . 6 class ran 𝑔
8 cfn 8691 . . . . . 6 class Fin
97, 8wcel 2108 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5579 . . . . . . . 8 class 𝑔
11 cc0 10802 . . . . . . . . . 10 class 0
1211csn 4558 . . . . . . . . 9 class {0}
133, 12cdif 3880 . . . . . . . 8 class (ℝ ∖ {0})
1410, 13cima 5583 . . . . . . 7 class (𝑔 “ (ℝ ∖ {0}))
15 cvol 24532 . . . . . . 7 class vol
1614, 15cfv 6418 . . . . . 6 class (vol‘(𝑔 “ (ℝ ∖ {0})))
1716, 3wcel 2108 . . . . 5 wff (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ
186, 9, 17w3a 1085 . . . 4 wff (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)
19 cmbf 24683 . . . 4 class MblFn
2018, 4, 19crab 3067 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
212cv 1538 . . . . . 6 class 𝑓
2221crn 5581 . . . . 5 class ran 𝑓
2322, 12cdif 3880 . . . 4 class (ran 𝑓 ∖ {0})
24 vx . . . . . 6 setvar 𝑥
2524cv 1538 . . . . 5 class 𝑥
2621ccnv 5579 . . . . . . 7 class 𝑓
2725csn 4558 . . . . . . 7 class {𝑥}
2826, 27cima 5583 . . . . . 6 class (𝑓 “ {𝑥})
2928, 15cfv 6418 . . . . 5 class (vol‘(𝑓 “ {𝑥}))
30 cmul 10807 . . . . 5 class ·
3125, 29, 30co 7255 . . . 4 class (𝑥 · (vol‘(𝑓 “ {𝑥})))
3223, 31, 24csu 15325 . . 3 class Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥})))
332, 20, 32cmpt 5153 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
341, 33wceq 1539 1 wff 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  24743  itg1val  24752
  Copyright terms: Public domain W3C validator