MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 25537
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 25532 . 2 class 1
2 vf . . 3 setvar 𝑓
3 cr 11027 . . . . . 6 class
4 vg . . . . . . 7 setvar 𝑔
54cv 1539 . . . . . 6 class 𝑔
63, 3, 5wf 6482 . . . . 5 wff 𝑔:ℝ⟶ℝ
75crn 5624 . . . . . 6 class ran 𝑔
8 cfn 8879 . . . . . 6 class Fin
97, 8wcel 2109 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5622 . . . . . . . 8 class 𝑔
11 cc0 11028 . . . . . . . . . 10 class 0
1211csn 4579 . . . . . . . . 9 class {0}
133, 12cdif 3902 . . . . . . . 8 class (ℝ ∖ {0})
1410, 13cima 5626 . . . . . . 7 class (𝑔 “ (ℝ ∖ {0}))
15 cvol 25380 . . . . . . 7 class vol
1614, 15cfv 6486 . . . . . 6 class (vol‘(𝑔 “ (ℝ ∖ {0})))
1716, 3wcel 2109 . . . . 5 wff (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ
186, 9, 17w3a 1086 . . . 4 wff (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)
19 cmbf 25531 . . . 4 class MblFn
2018, 4, 19crab 3396 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
212cv 1539 . . . . . 6 class 𝑓
2221crn 5624 . . . . 5 class ran 𝑓
2322, 12cdif 3902 . . . 4 class (ran 𝑓 ∖ {0})
24 vx . . . . . 6 setvar 𝑥
2524cv 1539 . . . . 5 class 𝑥
2621ccnv 5622 . . . . . . 7 class 𝑓
2725csn 4579 . . . . . . 7 class {𝑥}
2826, 27cima 5626 . . . . . 6 class (𝑓 “ {𝑥})
2928, 15cfv 6486 . . . . 5 class (vol‘(𝑓 “ {𝑥}))
30 cmul 11033 . . . . 5 class ·
3125, 29, 30co 7353 . . . 4 class (𝑥 · (vol‘(𝑓 “ {𝑥})))
3223, 31, 24csu 15611 . . 3 class Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥})))
332, 20, 32cmpt 5176 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
341, 33wceq 1540 1 wff 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  25591  itg1val  25600
  Copyright terms: Public domain W3C validator