MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 25668
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 25663 . 2 class 1
2 vf . . 3 setvar 𝑓
3 cr 11151 . . . . . 6 class
4 vg . . . . . . 7 setvar 𝑔
54cv 1535 . . . . . 6 class 𝑔
63, 3, 5wf 6558 . . . . 5 wff 𝑔:ℝ⟶ℝ
75crn 5689 . . . . . 6 class ran 𝑔
8 cfn 8983 . . . . . 6 class Fin
97, 8wcel 2105 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5687 . . . . . . . 8 class 𝑔
11 cc0 11152 . . . . . . . . . 10 class 0
1211csn 4630 . . . . . . . . 9 class {0}
133, 12cdif 3959 . . . . . . . 8 class (ℝ ∖ {0})
1410, 13cima 5691 . . . . . . 7 class (𝑔 “ (ℝ ∖ {0}))
15 cvol 25511 . . . . . . 7 class vol
1614, 15cfv 6562 . . . . . 6 class (vol‘(𝑔 “ (ℝ ∖ {0})))
1716, 3wcel 2105 . . . . 5 wff (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ
186, 9, 17w3a 1086 . . . 4 wff (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)
19 cmbf 25662 . . . 4 class MblFn
2018, 4, 19crab 3432 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
212cv 1535 . . . . . 6 class 𝑓
2221crn 5689 . . . . 5 class ran 𝑓
2322, 12cdif 3959 . . . 4 class (ran 𝑓 ∖ {0})
24 vx . . . . . 6 setvar 𝑥
2524cv 1535 . . . . 5 class 𝑥
2621ccnv 5687 . . . . . . 7 class 𝑓
2725csn 4630 . . . . . . 7 class {𝑥}
2826, 27cima 5691 . . . . . 6 class (𝑓 “ {𝑥})
2928, 15cfv 6562 . . . . 5 class (vol‘(𝑓 “ {𝑥}))
30 cmul 11157 . . . . 5 class ·
3125, 29, 30co 7430 . . . 4 class (𝑥 · (vol‘(𝑓 “ {𝑥})))
3223, 31, 24csu 15718 . . 3 class Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥})))
332, 20, 32cmpt 5230 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
341, 33wceq 1536 1 wff 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  25722  itg1val  25731
  Copyright terms: Public domain W3C validator