MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 25568
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 25563 . 2 class 1
2 vf . . 3 setvar 𝑓
3 cr 11016 . . . . . 6 class
4 vg . . . . . . 7 setvar 𝑔
54cv 1540 . . . . . 6 class 𝑔
63, 3, 5wf 6485 . . . . 5 wff 𝑔:ℝ⟶ℝ
75crn 5622 . . . . . 6 class ran 𝑔
8 cfn 8879 . . . . . 6 class Fin
97, 8wcel 2113 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5620 . . . . . . . 8 class 𝑔
11 cc0 11017 . . . . . . . . . 10 class 0
1211csn 4577 . . . . . . . . 9 class {0}
133, 12cdif 3895 . . . . . . . 8 class (ℝ ∖ {0})
1410, 13cima 5624 . . . . . . 7 class (𝑔 “ (ℝ ∖ {0}))
15 cvol 25411 . . . . . . 7 class vol
1614, 15cfv 6489 . . . . . 6 class (vol‘(𝑔 “ (ℝ ∖ {0})))
1716, 3wcel 2113 . . . . 5 wff (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ
186, 9, 17w3a 1086 . . . 4 wff (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)
19 cmbf 25562 . . . 4 class MblFn
2018, 4, 19crab 3396 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
212cv 1540 . . . . . 6 class 𝑓
2221crn 5622 . . . . 5 class ran 𝑓
2322, 12cdif 3895 . . . 4 class (ran 𝑓 ∖ {0})
24 vx . . . . . 6 setvar 𝑥
2524cv 1540 . . . . 5 class 𝑥
2621ccnv 5620 . . . . . . 7 class 𝑓
2725csn 4577 . . . . . . 7 class {𝑥}
2826, 27cima 5624 . . . . . 6 class (𝑓 “ {𝑥})
2928, 15cfv 6489 . . . . 5 class (vol‘(𝑓 “ {𝑥}))
30 cmul 11022 . . . . 5 class ·
3125, 29, 30co 7355 . . . 4 class (𝑥 · (vol‘(𝑓 “ {𝑥})))
3223, 31, 24csu 15600 . . 3 class Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥})))
332, 20, 32cmpt 5176 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
341, 33wceq 1541 1 wff 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  25622  itg1val  25631
  Copyright terms: Public domain W3C validator