MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 25571
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 25566 . 2 class 1
2 vf . . 3 setvar 𝑓
3 cr 11126 . . . . . 6 class
4 vg . . . . . . 7 setvar 𝑔
54cv 1539 . . . . . 6 class 𝑔
63, 3, 5wf 6526 . . . . 5 wff 𝑔:ℝ⟶ℝ
75crn 5655 . . . . . 6 class ran 𝑔
8 cfn 8957 . . . . . 6 class Fin
97, 8wcel 2108 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5653 . . . . . . . 8 class 𝑔
11 cc0 11127 . . . . . . . . . 10 class 0
1211csn 4601 . . . . . . . . 9 class {0}
133, 12cdif 3923 . . . . . . . 8 class (ℝ ∖ {0})
1410, 13cima 5657 . . . . . . 7 class (𝑔 “ (ℝ ∖ {0}))
15 cvol 25414 . . . . . . 7 class vol
1614, 15cfv 6530 . . . . . 6 class (vol‘(𝑔 “ (ℝ ∖ {0})))
1716, 3wcel 2108 . . . . 5 wff (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ
186, 9, 17w3a 1086 . . . 4 wff (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)
19 cmbf 25565 . . . 4 class MblFn
2018, 4, 19crab 3415 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
212cv 1539 . . . . . 6 class 𝑓
2221crn 5655 . . . . 5 class ran 𝑓
2322, 12cdif 3923 . . . 4 class (ran 𝑓 ∖ {0})
24 vx . . . . . 6 setvar 𝑥
2524cv 1539 . . . . 5 class 𝑥
2621ccnv 5653 . . . . . . 7 class 𝑓
2725csn 4601 . . . . . . 7 class {𝑥}
2826, 27cima 5657 . . . . . 6 class (𝑓 “ {𝑥})
2928, 15cfv 6530 . . . . 5 class (vol‘(𝑓 “ {𝑥}))
30 cmul 11132 . . . . 5 class ·
3125, 29, 30co 7403 . . . 4 class (𝑥 · (vol‘(𝑓 “ {𝑥})))
3223, 31, 24csu 15700 . . 3 class Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥})))
332, 20, 32cmpt 5201 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
341, 33wceq 1540 1 wff 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  25625  itg1val  25634
  Copyright terms: Public domain W3C validator