MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 25497
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 25492 . 2 class 1
2 vf . . 3 setvar 𝑓
3 cr 11043 . . . . . 6 class
4 vg . . . . . . 7 setvar 𝑔
54cv 1539 . . . . . 6 class 𝑔
63, 3, 5wf 6495 . . . . 5 wff 𝑔:ℝ⟶ℝ
75crn 5632 . . . . . 6 class ran 𝑔
8 cfn 8895 . . . . . 6 class Fin
97, 8wcel 2109 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5630 . . . . . . . 8 class 𝑔
11 cc0 11044 . . . . . . . . . 10 class 0
1211csn 4585 . . . . . . . . 9 class {0}
133, 12cdif 3908 . . . . . . . 8 class (ℝ ∖ {0})
1410, 13cima 5634 . . . . . . 7 class (𝑔 “ (ℝ ∖ {0}))
15 cvol 25340 . . . . . . 7 class vol
1614, 15cfv 6499 . . . . . 6 class (vol‘(𝑔 “ (ℝ ∖ {0})))
1716, 3wcel 2109 . . . . 5 wff (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ
186, 9, 17w3a 1086 . . . 4 wff (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)
19 cmbf 25491 . . . 4 class MblFn
2018, 4, 19crab 3402 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
212cv 1539 . . . . . 6 class 𝑓
2221crn 5632 . . . . 5 class ran 𝑓
2322, 12cdif 3908 . . . 4 class (ran 𝑓 ∖ {0})
24 vx . . . . . 6 setvar 𝑥
2524cv 1539 . . . . 5 class 𝑥
2621ccnv 5630 . . . . . . 7 class 𝑓
2725csn 4585 . . . . . . 7 class {𝑥}
2826, 27cima 5634 . . . . . 6 class (𝑓 “ {𝑥})
2928, 15cfv 6499 . . . . 5 class (vol‘(𝑓 “ {𝑥}))
30 cmul 11049 . . . . 5 class ·
3125, 29, 30co 7369 . . . 4 class (𝑥 · (vol‘(𝑓 “ {𝑥})))
3223, 31, 24csu 15628 . . 3 class Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥})))
332, 20, 32cmpt 5183 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
341, 33wceq 1540 1 wff 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  25551  itg1val  25560
  Copyright terms: Public domain W3C validator