MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 24793
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 24788 . 2 class 1
2 vf . . 3 setvar 𝑓
3 cr 10879 . . . . . 6 class
4 vg . . . . . . 7 setvar 𝑔
54cv 1538 . . . . . 6 class 𝑔
63, 3, 5wf 6433 . . . . 5 wff 𝑔:ℝ⟶ℝ
75crn 5591 . . . . . 6 class ran 𝑔
8 cfn 8742 . . . . . 6 class Fin
97, 8wcel 2107 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5589 . . . . . . . 8 class 𝑔
11 cc0 10880 . . . . . . . . . 10 class 0
1211csn 4562 . . . . . . . . 9 class {0}
133, 12cdif 3885 . . . . . . . 8 class (ℝ ∖ {0})
1410, 13cima 5593 . . . . . . 7 class (𝑔 “ (ℝ ∖ {0}))
15 cvol 24636 . . . . . . 7 class vol
1614, 15cfv 6437 . . . . . 6 class (vol‘(𝑔 “ (ℝ ∖ {0})))
1716, 3wcel 2107 . . . . 5 wff (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ
186, 9, 17w3a 1086 . . . 4 wff (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)
19 cmbf 24787 . . . 4 class MblFn
2018, 4, 19crab 3069 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
212cv 1538 . . . . . 6 class 𝑓
2221crn 5591 . . . . 5 class ran 𝑓
2322, 12cdif 3885 . . . 4 class (ran 𝑓 ∖ {0})
24 vx . . . . . 6 setvar 𝑥
2524cv 1538 . . . . 5 class 𝑥
2621ccnv 5589 . . . . . . 7 class 𝑓
2725csn 4562 . . . . . . 7 class {𝑥}
2826, 27cima 5593 . . . . . 6 class (𝑓 “ {𝑥})
2928, 15cfv 6437 . . . . 5 class (vol‘(𝑓 “ {𝑥}))
30 cmul 10885 . . . . 5 class ·
3125, 29, 30co 7284 . . . 4 class (𝑥 · (vol‘(𝑓 “ {𝑥})))
3223, 31, 24csu 15406 . . 3 class Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥})))
332, 20, 32cmpt 5158 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
341, 33wceq 1539 1 wff 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  24847  itg1val  24856
  Copyright terms: Public domain W3C validator