MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 24891
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 24886 . 2 class 1
2 vf . . 3 setvar 𝑓
3 cr 10972 . . . . . 6 class
4 vg . . . . . . 7 setvar 𝑔
54cv 1539 . . . . . 6 class 𝑔
63, 3, 5wf 6476 . . . . 5 wff 𝑔:ℝ⟶ℝ
75crn 5622 . . . . . 6 class ran 𝑔
8 cfn 8805 . . . . . 6 class Fin
97, 8wcel 2105 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5620 . . . . . . . 8 class 𝑔
11 cc0 10973 . . . . . . . . . 10 class 0
1211csn 4574 . . . . . . . . 9 class {0}
133, 12cdif 3895 . . . . . . . 8 class (ℝ ∖ {0})
1410, 13cima 5624 . . . . . . 7 class (𝑔 “ (ℝ ∖ {0}))
15 cvol 24734 . . . . . . 7 class vol
1614, 15cfv 6480 . . . . . 6 class (vol‘(𝑔 “ (ℝ ∖ {0})))
1716, 3wcel 2105 . . . . 5 wff (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ
186, 9, 17w3a 1086 . . . 4 wff (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)
19 cmbf 24885 . . . 4 class MblFn
2018, 4, 19crab 3403 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
212cv 1539 . . . . . 6 class 𝑓
2221crn 5622 . . . . 5 class ran 𝑓
2322, 12cdif 3895 . . . 4 class (ran 𝑓 ∖ {0})
24 vx . . . . . 6 setvar 𝑥
2524cv 1539 . . . . 5 class 𝑥
2621ccnv 5620 . . . . . . 7 class 𝑓
2725csn 4574 . . . . . . 7 class {𝑥}
2826, 27cima 5624 . . . . . 6 class (𝑓 “ {𝑥})
2928, 15cfv 6480 . . . . 5 class (vol‘(𝑓 “ {𝑥}))
30 cmul 10978 . . . . 5 class ·
3125, 29, 30co 7338 . . . 4 class (𝑥 · (vol‘(𝑓 “ {𝑥})))
3223, 31, 24csu 15497 . . 3 class Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥})))
332, 20, 32cmpt 5176 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
341, 33wceq 1540 1 wff 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  24945  itg1val  24954
  Copyright terms: Public domain W3C validator