MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 25528
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 25523 . 2 class 1
2 vf . . 3 setvar 𝑓
3 cr 11074 . . . . . 6 class
4 vg . . . . . . 7 setvar 𝑔
54cv 1539 . . . . . 6 class 𝑔
63, 3, 5wf 6510 . . . . 5 wff 𝑔:ℝ⟶ℝ
75crn 5642 . . . . . 6 class ran 𝑔
8 cfn 8921 . . . . . 6 class Fin
97, 8wcel 2109 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5640 . . . . . . . 8 class 𝑔
11 cc0 11075 . . . . . . . . . 10 class 0
1211csn 4592 . . . . . . . . 9 class {0}
133, 12cdif 3914 . . . . . . . 8 class (ℝ ∖ {0})
1410, 13cima 5644 . . . . . . 7 class (𝑔 “ (ℝ ∖ {0}))
15 cvol 25371 . . . . . . 7 class vol
1614, 15cfv 6514 . . . . . 6 class (vol‘(𝑔 “ (ℝ ∖ {0})))
1716, 3wcel 2109 . . . . 5 wff (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ
186, 9, 17w3a 1086 . . . 4 wff (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)
19 cmbf 25522 . . . 4 class MblFn
2018, 4, 19crab 3408 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
212cv 1539 . . . . . 6 class 𝑓
2221crn 5642 . . . . 5 class ran 𝑓
2322, 12cdif 3914 . . . 4 class (ran 𝑓 ∖ {0})
24 vx . . . . . 6 setvar 𝑥
2524cv 1539 . . . . 5 class 𝑥
2621ccnv 5640 . . . . . . 7 class 𝑓
2725csn 4592 . . . . . . 7 class {𝑥}
2826, 27cima 5644 . . . . . 6 class (𝑓 “ {𝑥})
2928, 15cfv 6514 . . . . 5 class (vol‘(𝑓 “ {𝑥}))
30 cmul 11080 . . . . 5 class ·
3125, 29, 30co 7390 . . . 4 class (𝑥 · (vol‘(𝑓 “ {𝑥})))
3223, 31, 24csu 15659 . . 3 class Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥})))
332, 20, 32cmpt 5191 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
341, 33wceq 1540 1 wff 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  25582  itg1val  25591
  Copyright terms: Public domain W3C validator