MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 25369
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)} ↦ Ξ£π‘₯ ∈ (ran 𝑓 βˆ– {0})(π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯}))))
Distinct variable group:   𝑓,𝑔,π‘₯

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 25364 . 2 class ∫1
2 vf . . 3 setvar 𝑓
3 cr 11111 . . . . . 6 class ℝ
4 vg . . . . . . 7 setvar 𝑔
54cv 1538 . . . . . 6 class 𝑔
63, 3, 5wf 6538 . . . . 5 wff 𝑔:β„βŸΆβ„
75crn 5676 . . . . . 6 class ran 𝑔
8 cfn 8941 . . . . . 6 class Fin
97, 8wcel 2104 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5674 . . . . . . . 8 class ◑𝑔
11 cc0 11112 . . . . . . . . . 10 class 0
1211csn 4627 . . . . . . . . 9 class {0}
133, 12cdif 3944 . . . . . . . 8 class (ℝ βˆ– {0})
1410, 13cima 5678 . . . . . . 7 class (◑𝑔 β€œ (ℝ βˆ– {0}))
15 cvol 25212 . . . . . . 7 class vol
1614, 15cfv 6542 . . . . . 6 class (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0})))
1716, 3wcel 2104 . . . . 5 wff (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ
186, 9, 17w3a 1085 . . . 4 wff (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)
19 cmbf 25363 . . . 4 class MblFn
2018, 4, 19crab 3430 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)}
212cv 1538 . . . . . 6 class 𝑓
2221crn 5676 . . . . 5 class ran 𝑓
2322, 12cdif 3944 . . . 4 class (ran 𝑓 βˆ– {0})
24 vx . . . . . 6 setvar π‘₯
2524cv 1538 . . . . 5 class π‘₯
2621ccnv 5674 . . . . . . 7 class ◑𝑓
2725csn 4627 . . . . . . 7 class {π‘₯}
2826, 27cima 5678 . . . . . 6 class (◑𝑓 β€œ {π‘₯})
2928, 15cfv 6542 . . . . 5 class (volβ€˜(◑𝑓 β€œ {π‘₯}))
30 cmul 11117 . . . . 5 class Β·
3125, 29, 30co 7411 . . . 4 class (π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯})))
3223, 31, 24csu 15636 . . 3 class Ξ£π‘₯ ∈ (ran 𝑓 βˆ– {0})(π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯})))
332, 20, 32cmpt 5230 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)} ↦ Ξ£π‘₯ ∈ (ran 𝑓 βˆ– {0})(π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯}))))
341, 33wceq 1539 1 wff ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)} ↦ Ξ£π‘₯ ∈ (ran 𝑓 βˆ– {0})(π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  25423  itg1val  25432
  Copyright terms: Public domain W3C validator