MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 25674
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 25669 . 2 class 1
2 vf . . 3 setvar 𝑓
3 cr 11183 . . . . . 6 class
4 vg . . . . . . 7 setvar 𝑔
54cv 1536 . . . . . 6 class 𝑔
63, 3, 5wf 6569 . . . . 5 wff 𝑔:ℝ⟶ℝ
75crn 5701 . . . . . 6 class ran 𝑔
8 cfn 9003 . . . . . 6 class Fin
97, 8wcel 2108 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5699 . . . . . . . 8 class 𝑔
11 cc0 11184 . . . . . . . . . 10 class 0
1211csn 4648 . . . . . . . . 9 class {0}
133, 12cdif 3973 . . . . . . . 8 class (ℝ ∖ {0})
1410, 13cima 5703 . . . . . . 7 class (𝑔 “ (ℝ ∖ {0}))
15 cvol 25517 . . . . . . 7 class vol
1614, 15cfv 6573 . . . . . 6 class (vol‘(𝑔 “ (ℝ ∖ {0})))
1716, 3wcel 2108 . . . . 5 wff (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ
186, 9, 17w3a 1087 . . . 4 wff (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)
19 cmbf 25668 . . . 4 class MblFn
2018, 4, 19crab 3443 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)}
212cv 1536 . . . . . 6 class 𝑓
2221crn 5701 . . . . 5 class ran 𝑓
2322, 12cdif 3973 . . . 4 class (ran 𝑓 ∖ {0})
24 vx . . . . . 6 setvar 𝑥
2524cv 1536 . . . . 5 class 𝑥
2621ccnv 5699 . . . . . . 7 class 𝑓
2725csn 4648 . . . . . . 7 class {𝑥}
2826, 27cima 5703 . . . . . 6 class (𝑓 “ {𝑥})
2928, 15cfv 6573 . . . . 5 class (vol‘(𝑓 “ {𝑥}))
30 cmul 11189 . . . . 5 class ·
3125, 29, 30co 7448 . . . 4 class (𝑥 · (vol‘(𝑓 “ {𝑥})))
3223, 31, 24csu 15734 . . 3 class Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥})))
332, 20, 32cmpt 5249 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
341, 33wceq 1537 1 wff 1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  25728  itg1val  25737
  Copyright terms: Public domain W3C validator