MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg1 Structured version   Visualization version   GIF version

Definition df-itg1 25136
Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
df-itg1 ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)} ↦ Ξ£π‘₯ ∈ (ran 𝑓 βˆ– {0})(π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯}))))
Distinct variable group:   𝑓,𝑔,π‘₯

Detailed syntax breakdown of Definition df-itg1
StepHypRef Expression
1 citg1 25131 . 2 class ∫1
2 vf . . 3 setvar 𝑓
3 cr 11108 . . . . . 6 class ℝ
4 vg . . . . . . 7 setvar 𝑔
54cv 1540 . . . . . 6 class 𝑔
63, 3, 5wf 6539 . . . . 5 wff 𝑔:β„βŸΆβ„
75crn 5677 . . . . . 6 class ran 𝑔
8 cfn 8938 . . . . . 6 class Fin
97, 8wcel 2106 . . . . 5 wff ran 𝑔 ∈ Fin
105ccnv 5675 . . . . . . . 8 class ◑𝑔
11 cc0 11109 . . . . . . . . . 10 class 0
1211csn 4628 . . . . . . . . 9 class {0}
133, 12cdif 3945 . . . . . . . 8 class (ℝ βˆ– {0})
1410, 13cima 5679 . . . . . . 7 class (◑𝑔 β€œ (ℝ βˆ– {0}))
15 cvol 24979 . . . . . . 7 class vol
1614, 15cfv 6543 . . . . . 6 class (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0})))
1716, 3wcel 2106 . . . . 5 wff (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ
186, 9, 17w3a 1087 . . . 4 wff (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)
19 cmbf 25130 . . . 4 class MblFn
2018, 4, 19crab 3432 . . 3 class {𝑔 ∈ MblFn ∣ (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)}
212cv 1540 . . . . . 6 class 𝑓
2221crn 5677 . . . . 5 class ran 𝑓
2322, 12cdif 3945 . . . 4 class (ran 𝑓 βˆ– {0})
24 vx . . . . . 6 setvar π‘₯
2524cv 1540 . . . . 5 class π‘₯
2621ccnv 5675 . . . . . . 7 class ◑𝑓
2725csn 4628 . . . . . . 7 class {π‘₯}
2826, 27cima 5679 . . . . . 6 class (◑𝑓 β€œ {π‘₯})
2928, 15cfv 6543 . . . . 5 class (volβ€˜(◑𝑓 β€œ {π‘₯}))
30 cmul 11114 . . . . 5 class Β·
3125, 29, 30co 7408 . . . 4 class (π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯})))
3223, 31, 24csu 15631 . . 3 class Ξ£π‘₯ ∈ (ran 𝑓 βˆ– {0})(π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯})))
332, 20, 32cmpt 5231 . 2 class (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)} ↦ Ξ£π‘₯ ∈ (ran 𝑓 βˆ– {0})(π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯}))))
341, 33wceq 1541 1 wff ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:β„βŸΆβ„ ∧ ran 𝑔 ∈ Fin ∧ (volβ€˜(◑𝑔 β€œ (ℝ βˆ– {0}))) ∈ ℝ)} ↦ Ξ£π‘₯ ∈ (ran 𝑓 βˆ– {0})(π‘₯ Β· (volβ€˜(◑𝑓 β€œ {π‘₯}))))
Colors of variables: wff setvar class
This definition is referenced by:  isi1f  25190  itg1val  25199
  Copyright terms: Public domain W3C validator