Home | Metamath
Proof Explorer Theorem List (p. 254 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cq1p 25301 | Univariate polynomial quotient. |
class quot1p | ||
Syntax | cr1p 25302 | Univariate polynomial remainder. |
class rem1p | ||
Syntax | cig1p 25303 | Univariate polynomial ideal generator. |
class idlGen1p | ||
Definition | df-mon1 25304* | Define the set of monic univariate polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ Monic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘(( deg1 ‘𝑟)‘𝑓)) = (1r‘𝑟))}) | ||
Definition | df-uc1p 25305* | Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg 25311. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘(( deg1 ‘𝑟)‘𝑓)) ∈ (Unit‘𝑟))}) | ||
Definition | df-q1p 25306* | Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 25311. We actually use the reversed version for better harmony with our divisibility df-dvdsr 19892. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ quot1p = (𝑟 ∈ V ↦ ⦋(Poly1‘𝑟) / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔)))) | ||
Definition | df-r1p 25307* | Define the remainder after dividing two univariate polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ rem1p = (𝑟 ∈ V ↦ ⦋(Base‘(Poly1‘𝑟)) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔)))) | ||
Definition | df-ig1p 25308* | Define a choice function for generators of ideals over a division ring; this is the unique monic polynomial of minimal degree in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
⊢ idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 = {(0g‘(Poly1‘𝑟))}, (0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))(( deg1 ‘𝑟)‘𝑔) = inf((( deg1 ‘𝑟) “ (𝑖 ∖ {(0g‘(Poly1‘𝑟))})), ℝ, < ))))) | ||
Theorem | ply1divmo 25309* | Uniqueness of a quotient in a polynomial division. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is not a zero divisor, there is at most one polynomial 𝑞 which satisfies 𝐹 = (𝐺 · 𝑞) + 𝑟 where the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) & ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝐸) & ⊢ 𝐸 = (RLReg‘𝑅) ⇒ ⊢ (𝜑 → ∃*𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) | ||
Theorem | ply1divex 25310* | Lemma for ply1divalg 25311: existence part. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝐾) & ⊢ (𝜑 → (((coe1‘𝐺)‘(𝐷‘𝐺)) · 𝐼) = 1 ) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) | ||
Theorem | ply1divalg 25311* | The division algorithm for univariate polynomials over a ring. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is a unit, there are unique polynomials 𝑞 and 𝑟 = 𝐹 − (𝐺 · 𝑞) such that the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) & ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝐺 ∙ 𝑞))) < (𝐷‘𝐺)) | ||
Theorem | ply1divalg2 25312* | Reverse the order of multiplication in ply1divalg 25311 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ≠ 0 ) & ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ 𝑈) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) | ||
Theorem | uc1pval 25313* | Value of the set of unitic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ 𝐶 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) ∈ 𝑈)} | ||
Theorem | isuc1p 25314 | Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈)) | ||
Theorem | mon1pval 25315* | Value of the set of monic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ 𝑀 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 )} | ||
Theorem | ismon1p 25316 | Being a monic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) | ||
Theorem | uc1pcl 25317 | Unitic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐶 → 𝐹 ∈ 𝐵) | ||
Theorem | mon1pcl 25318 | Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑀 = (Monic1p‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝑀 → 𝐹 ∈ 𝐵) | ||
Theorem | uc1pn0 25319 | Unitic polynomials are not zero. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐶 → 𝐹 ≠ 0 ) | ||
Theorem | mon1pn0 25320 | Monic polynomials are not zero. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑀 = (Monic1p‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝑀 → 𝐹 ≠ 0 ) | ||
Theorem | uc1pdeg 25321 | Unitic polynomials have nonnegative degrees. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝐶 = (Unic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐶) → (𝐷‘𝐹) ∈ ℕ0) | ||
Theorem | uc1pldg 25322 | Unitic polynomials have unit leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝐶 = (Unic1p‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐶 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝑈) | ||
Theorem | mon1pldg 25323 | Unitic polynomials have one leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝑀 → ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ) | ||
Theorem | mon1puc1p 25324 | Monic polynomials are unitic. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑀) → 𝑋 ∈ 𝐶) | ||
Theorem | uc1pmon1p 25325 | Make a unitic polynomial monic by multiplying a factor to normalize the leading coefficient. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = (.r‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐶) → ((𝐴‘(𝐼‘((coe1‘𝑋)‘(𝐷‘𝑋)))) · 𝑋) ∈ 𝑀) | ||
Theorem | deg1submon1p 25326 | The difference of two monic polynomials of the same degree is a polynomial of lesser degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑂 = (Monic1p‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝑂) & ⊢ (𝜑 → (𝐷‘𝐹) = 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝑂) & ⊢ (𝜑 → (𝐷‘𝐺) = 𝑋) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝑋) | ||
Theorem | q1pval 25327* | Value of the univariate polynomial quotient function. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑄 = (quot1p‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ · = (.r‘𝑃) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝑄𝐺) = (℩𝑞 ∈ 𝐵 (𝐷‘(𝐹 − (𝑞 · 𝐺))) < (𝐷‘𝐺))) | ||
Theorem | q1peqb 25328 | Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑄 = (quot1p‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑋 ∈ 𝐵 ∧ (𝐷‘(𝐹 − (𝑋 · 𝐺))) < (𝐷‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋)) | ||
Theorem | q1pcl 25329 | Closure of the quotient by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑄 = (quot1p‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) ∈ 𝐵) | ||
Theorem | r1pval 25330 | Value of the polynomial remainder function. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝐸 = (rem1p‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑄 = (quot1p‘𝑅) & ⊢ · = (.r‘𝑃) & ⊢ − = (-g‘𝑃) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝐸𝐺) = (𝐹 − ((𝐹𝑄𝐺) · 𝐺))) | ||
Theorem | r1pcl 25331 | Closure of remainder following division by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝐸 = (rem1p‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) ∈ 𝐵) | ||
Theorem | r1pdeglt 25332 | The remainder has a degree smaller than the divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝐸 = (rem1p‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐷‘(𝐹𝐸𝐺)) < (𝐷‘𝐺)) | ||
Theorem | r1pid 25333 | Express the original polynomial 𝐹 as 𝐹 = (𝑞 · 𝐺) + 𝑟 using the quotient and remainder functions for 𝑞 and 𝑟. (Contributed by Mario Carneiro, 5-Jun-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ 𝑄 = (quot1p‘𝑅) & ⊢ 𝐸 = (rem1p‘𝑅) & ⊢ · = (.r‘𝑃) & ⊢ + = (+g‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 = (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺))) | ||
Theorem | dvdsq1p 25334 | Divisibility in a polynomial ring is witnessed by the quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ ∥ = (∥r‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ · = (.r‘𝑃) & ⊢ 𝑄 = (quot1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐺 ∥ 𝐹 ↔ 𝐹 = ((𝐹𝑄𝐺) · 𝐺))) | ||
Theorem | dvdsr1p 25335 | Divisibility in a polynomial ring in terms of the remainder. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ ∥ = (∥r‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐸 = (rem1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐺 ∥ 𝐹 ↔ (𝐹𝐸𝐺) = 0 )) | ||
Theorem | ply1remlem 25336 | A term of the form 𝑥 − 𝑁 is linear, monic, and has exactly one zero. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘𝑁)) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ 𝐾) & ⊢ 𝑈 = (Monic1p‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝑈 ∧ (𝐷‘𝐺) = 1 ∧ (◡(𝑂‘𝐺) “ { 0 }) = {𝑁})) | ||
Theorem | ply1rem 25337 | The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 16260). If a polynomial 𝐹 is divided by the linear factor 𝑥 − 𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘𝑁)) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 𝐸 = (rem1p‘𝑅) ⇒ ⊢ (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂‘𝐹)‘𝑁))) | ||
Theorem | facth1 25338 | The factor theorem and its converse. A polynomial 𝐹 has a root at 𝐴 iff 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘𝑁)) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ NzRing) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ ∥ = (∥r‘𝑃) ⇒ ⊢ (𝜑 → (𝐺 ∥ 𝐹 ↔ ((𝑂‘𝐹)‘𝑁) = 0 )) | ||
Theorem | fta1glem1 25339 | Lemma for fta1g 25341. (Contributed by Mario Carneiro, 7-Jun-2016.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘𝑇)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) = (𝑁 + 1)) & ⊢ (𝜑 → 𝑇 ∈ (◡(𝑂‘𝐹) “ {𝑊})) ⇒ ⊢ (𝜑 → (𝐷‘(𝐹(quot1p‘𝑅)𝐺)) = 𝑁) | ||
Theorem | fta1glem2 25340* | Lemma for fta1g 25341. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘𝑇)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝐷‘𝐹) = (𝑁 + 1)) & ⊢ (𝜑 → 𝑇 ∈ (◡(𝑂‘𝐹) “ {𝑊})) & ⊢ (𝜑 → ∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑁 → (♯‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔))) ⇒ ⊢ (𝜑 → (♯‘(◡(𝑂‘𝐹) “ {𝑊})) ≤ (𝐷‘𝐹)) | ||
Theorem | fta1g 25341 | The one-sided fundamental theorem of algebra. A polynomial of degree 𝑛 has at most 𝑛 roots. Unlike the real fundamental theorem fta 26238, which is only true in ℂ and other algebraically closed fields, this is true in any integral domain. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ≠ 0 ) ⇒ ⊢ (𝜑 → (♯‘(◡(𝑂‘𝐹) “ {𝑊})) ≤ (𝐷‘𝐹)) | ||
Theorem | fta1blem 25342 | Lemma for fta1b 25343. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑀 ∈ 𝐾) & ⊢ (𝜑 → 𝑁 ∈ 𝐾) & ⊢ (𝜑 → (𝑀 × 𝑁) = 𝑊) & ⊢ (𝜑 → 𝑀 ≠ 𝑊) & ⊢ (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋)))) ⇒ ⊢ (𝜑 → 𝑁 = 𝑊) | ||
Theorem | fta1b 25343* | The assumption that 𝑅 be a domain in fta1g 25341 is necessary. Here we show that the statement is strong enough to prove that 𝑅 is a domain. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑊 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) | ||
Theorem | drnguc1p 25344 | Over a division ring, all nonzero polynomials are unitic. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐶) | ||
Theorem | ig1peu 25345* | There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑀 = (Monic1p‘𝑅) & ⊢ 𝐷 = ( deg1 ‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) | ||
Theorem | ig1pval 25346* | Substitutions for the polynomial ideal generator function. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))) | ||
Theorem | ig1pval2 25347 | Generator of the zero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐺‘{ 0 }) = 0 ) | ||
Theorem | ig1pval3 25348 | Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝐷 = ( deg1 ‘𝑅) & ⊢ 𝑀 = (Monic1p‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) | ||
Theorem | ig1pcl 25349 | The monic generator of an ideal is always in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) ∈ 𝐼) | ||
Theorem | ig1pdvds 25350 | The monic generator of an ideal divides all elements of the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ ∥ = (∥r‘𝑃) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝐺‘𝐼) ∥ 𝑋) | ||
Theorem | ig1prsp 25351 | Any ideal of polynomials over a division ring is generated by the ideal's canonical generator. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (idlGen1p‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝐾 = (RSpan‘𝑃) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → 𝐼 = (𝐾‘{(𝐺‘𝐼)})) | ||
Theorem | ply1lpir 25352 | The ring of polynomials over a division ring has the principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ LPIR) | ||
Theorem | ply1pid 25353 | The polynomials over a field are a PID. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Field → 𝑃 ∈ PID) | ||
Syntax | cply 25354 | Extend class notation to include the set of complex polynomials. |
class Poly | ||
Syntax | cidp 25355 | Extend class notation to include the identity polynomial. |
class Xp | ||
Syntax | ccoe 25356 | Extend class notation to include the coefficient function on polynomials. |
class coeff | ||
Syntax | cdgr 25357 | Extend class notation to include the degree function on polynomials. |
class deg | ||
Definition | df-ply 25358* | Define the set of polynomials on the complex numbers with coefficients in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | ||
Definition | df-idp 25359 | Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ Xp = ( I ↾ ℂ) | ||
Definition | df-coe 25360* | Define the coefficient function for a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ coeff = (𝑓 ∈ (Poly‘ℂ) ↦ (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | ||
Definition | df-dgr 25361 | Define the degree of a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < )) | ||
Theorem | plyco0 25362* | Two ways to say that a function on the nonnegative integers has finite support. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) | ||
Theorem | plyval 25363* | Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) | ||
Theorem | plybss 25364 | Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | ||
Theorem | elply 25365* | Definition of a polynomial with coefficients in 𝑆. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | ||
Theorem | elply2 25366* | The coefficient function can be assumed to have zeroes outside 0...𝑛. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | ||
Theorem | plyun0 25367 | The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | ||
Theorem | plyf 25368 | The polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | ||
Theorem | plyss 25369 | The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇)) | ||
Theorem | plyssc 25370 | Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | ||
Theorem | elplyr 25371* | Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) | ||
Theorem | elplyd 25372* | Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) | ||
Theorem | ply1termlem 25373* | Lemma for ply1term 25374. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) | ||
Theorem | ply1term 25374* | A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) | ||
Theorem | plypow 25375* | A power is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑁)) ∈ (Poly‘𝑆)) | ||
Theorem | plyconst 25376 | A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆)) | ||
Theorem | ne0p 25377 | A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐹‘𝐴) ≠ 0) → 𝐹 ≠ 0𝑝) | ||
Theorem | ply0 25378 | The zero function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆)) | ||
Theorem | plyid 25379 | The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
⊢ ((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp ∈ (Poly‘𝑆)) | ||
Theorem | plyeq0lem 25380* | Lemma for plyeq0 25381. If 𝐴 is the coefficient function for a nonzero polynomial such that 𝑃(𝑧) = Σ𝑘 ∈ ℕ0𝐴(𝑘) · 𝑧↑𝑘 = 0 for every 𝑧 ∈ ℂ and 𝐴(𝑀) is the nonzero leading coefficient, then the function 𝐹(𝑧) = 𝑃(𝑧) / 𝑧↑𝑀 is a sum of powers of 1 / 𝑧, and so the limit of this function as 𝑧 ⇝ +∞ is the constant term, 𝐴(𝑀). But 𝐹(𝑧) = 0 everywhere, so this limit is also equal to zero so that 𝐴(𝑀) = 0, a contradiction. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ 𝑀 = sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, < ) & ⊢ (𝜑 → (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | plyeq0 25381* | If a polynomial is zero at every point (or even just zero at the positive integers), then all the coefficients must be zero. This is the basis for the method of equating coefficients of equal polynomials, and ensures that df-coe 25360 is well-defined. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → 𝐴 = (ℕ0 × {0})) | ||
Theorem | plypf1 25382 | Write the set of complex polynomials in a subring in terms of the abstract polynomial construction. (Contributed by Mario Carneiro, 3-Jul-2015.) (Proof shortened by AV, 29-Sep-2019.) |
⊢ 𝑅 = (ℂfld ↾s 𝑆) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝐸 = (eval1‘ℂfld) ⇒ ⊢ (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸 “ 𝐴)) | ||
Theorem | plyaddlem1 25383* | Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘f + 𝐵)‘𝑘) · (𝑧↑𝑘)))) | ||
Theorem | plymullem1 25384* | Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) | ||
Theorem | plyaddlem 25385* | Lemma for plyadd 25387. (Contributed by Mario Carneiro, 21-Jul-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (Poly‘𝑆)) | ||
Theorem | plymullem 25386* | Lemma for plymul 25388. (Contributed by Mario Carneiro, 21-Jul-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆)) | ||
Theorem | plyadd 25387* | The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (Poly‘𝑆)) | ||
Theorem | plymul 25388* | The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (Poly‘𝑆)) | ||
Theorem | plysub 25389* | The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹 ∘f − 𝐺) ∈ (Poly‘𝑆)) | ||
Theorem | plyaddcl 25390 | The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f + 𝐺) ∈ (Poly‘ℂ)) | ||
Theorem | plymulcl 25391 | The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f · 𝐺) ∈ (Poly‘ℂ)) | ||
Theorem | plysubcl 25392 | The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f − 𝐺) ∈ (Poly‘ℂ)) | ||
Theorem | coeval 25393* | Value of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | ||
Theorem | coeeulem 25394* | Lemma for coeeu 25395. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ (ℂ ↑m ℕ0)) & ⊢ (𝜑 → 𝐵 ∈ (ℂ ↑m ℕ0)) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) & ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | coeeu 25395* | Uniqueness of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | ||
Theorem | coelem 25396* | Lemma for properties of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) ∈ (ℂ ↑m ℕ0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) | ||
Theorem | coeeq 25397* | If 𝐴 satisfies the properties of the coefficient function, it must be equal to the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (coeff‘𝐹) = 𝐴) | ||
Theorem | dgrval 25398 | Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) | ||
Theorem | dgrlem 25399* | Lemma for dgrcl 25403 and similar theorems. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (◡𝐴 “ (ℂ ∖ {0}))𝑥 ≤ 𝑛)) | ||
Theorem | coef 25400 | The domain and range of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |