| Metamath
Proof Explorer Theorem List (p. 254 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-rrx 25301 | Define the function associating with a set the free real vector space on that set, equipped with the natural inner product and norm. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) | ||
| Definition | df-ehl 25302 | Define a function generating the real Euclidean spaces of finite dimension. The case 𝑛 = 0 corresponds to a space of dimension 0, that is, limited to a neutral element (see ehl0 25333). Members of this family of spaces are Hilbert spaces, as shown in - ehlhl . (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛))) | ||
| Theorem | rrxval 25303 | Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐻 = (ℝ^‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) | ||
| Theorem | rrxbase 25304* | The base of the generalized real Euclidean space is the set of functions with finite support. (Contributed by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.) |
| ⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0}) | ||
| Theorem | rrxprds 25305 | Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) | ||
| Theorem | rrxip 25306* | The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) = (·𝑖‘𝐻)) | ||
| Theorem | rrxnm 25307* | The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ 𝐵 ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)↑2))))) = (norm‘𝐻)) | ||
| Theorem | rrxcph 25308 | Generalized Euclidean real spaces are subcomplex pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.) |
| ⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐻 ∈ ℂPreHil) | ||
| Theorem | rrxds 25309* | The distance over generalized Euclidean spaces. Compare with df-rrn 37805. (Contributed by Thierry Arnoux, 20-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.) |
| ⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (dist‘𝐻)) | ||
| Theorem | rrxvsca 25310 | The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023.) |
| ⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ ∙ = ( ·𝑠 ‘𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) ⇒ ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) | ||
| Theorem | rrxplusgvscavalb 25311* | The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.) |
| ⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ ∙ = ( ·𝑠 ‘𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ ✚ = (+g‘𝐻) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) | ||
| Theorem | rrxsca 25312 | The field of real numbers is the scalar field of the generalized real Euclidean space. (Contributed by AV, 15-Jan-2023.) |
| ⊢ 𝐻 = (ℝ^‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → (Scalar‘𝐻) = ℝfld) | ||
| Theorem | rrx0 25313 | The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023.) |
| ⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 0 = (𝐼 × {0}) ⇒ ⊢ (𝐼 ∈ 𝑉 → (0g‘𝐻) = 0 ) | ||
| Theorem | rrx0el 25314 | The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.) |
| ⊢ 0 = (𝐼 × {0}) & ⊢ 𝑃 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) | ||
| Theorem | csbren 25315* | Cauchy-Schwarz-Bunjakovsky inequality for R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘 ∈ 𝐴 (𝐵↑2) · Σ𝑘 ∈ 𝐴 (𝐶↑2))) | ||
| Theorem | trirn 25316* | Triangle inequality in R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (√‘Σ𝑘 ∈ 𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘 ∈ 𝐴 (𝐵↑2)) + (√‘Σ𝑘 ∈ 𝐴 (𝐶↑2)))) | ||
| Theorem | rrxf 25317* | Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
| ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) | ||
| Theorem | rrxfsupp 25318* | Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
| ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 supp 0) ∈ Fin) | ||
| Theorem | rrxsuppss 25319* | Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
| ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 supp 0) ⊆ 𝐼) | ||
| Theorem | rrxmvallem 25320* | Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) | ||
| Theorem | rrxmval 25321* | The value of the Euclidean metric. Compare with rrnmval 37807. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | ||
| Theorem | rrxmfval 25322* | The value of the Euclidean metric. Compare with rrnval 37806. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) | ||
| Theorem | rrxmetlem 25323* | Lemma for rrxmet 25324. (Contributed by Thierry Arnoux, 5-Jul-2019.) |
| ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ⊆ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) | ||
| Theorem | rrxmet 25324* | Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐷 ∈ (Met‘𝑋)) | ||
| Theorem | rrxdstprj1 25325* | The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 7-Jul-2019.) |
| ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹𝐷𝐺)) | ||
| Theorem | rrxbasefi 25326 | The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑m 𝑋) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐻 = (ℝ^‘𝑋) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝜑 → 𝐵 = (ℝ ↑m 𝑋)) | ||
| Theorem | rrxdsfi 25327* | The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) | ||
| Theorem | rrxmetfi 25328 | Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) | ||
| Theorem | rrxdsfival 25329* | The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
| ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | ||
| Theorem | ehlval 25330 | Value of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐸 = (𝔼hil‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) | ||
| Theorem | ehlbase 25331 | The base of the Euclidean space is the set of n-tuples of real numbers. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐸 = (𝔼hil‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (ℝ ↑m (1...𝑁)) = (Base‘𝐸)) | ||
| Theorem | ehl0base 25332 | The base of the Euclidean space of dimension 0 consists only of one element, the empty set. (Contributed by AV, 12-Feb-2023.) |
| ⊢ 𝐸 = (𝔼hil‘0) ⇒ ⊢ (Base‘𝐸) = {∅} | ||
| Theorem | ehl0 25333 | The Euclidean space of dimension 0 consists of the neutral element only. (Contributed by AV, 12-Feb-2023.) |
| ⊢ 𝐸 = (𝔼hil‘0) & ⊢ 0 = (0g‘𝐸) ⇒ ⊢ (Base‘𝐸) = { 0 } | ||
| Theorem | ehleudis 25334* | The Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
| ⊢ 𝐼 = (1...𝑁) & ⊢ 𝐸 = (𝔼hil‘𝑁) & ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) | ||
| Theorem | ehleudisval 25335* | The value of the Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
| ⊢ 𝐼 = (1...𝑁) & ⊢ 𝐸 = (𝔼hil‘𝑁) & ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | ||
| Theorem | ehl1eudis 25336* | The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.) |
| ⊢ 𝐸 = (𝔼hil‘1) & ⊢ 𝑋 = (ℝ ↑m {1}) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1)))) | ||
| Theorem | ehl1eudisval 25337 | The value of the Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.) |
| ⊢ 𝐸 = (𝔼hil‘1) & ⊢ 𝑋 = (ℝ ↑m {1}) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (abs‘((𝐹‘1) − (𝐺‘1)))) | ||
| Theorem | ehl2eudis 25338* | The Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.) |
| ⊢ 𝐸 = (𝔼hil‘2) & ⊢ 𝑋 = (ℝ ↑m {1, 2}) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) | ||
| Theorem | ehl2eudisval 25339 | The value of the Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.) |
| ⊢ 𝐸 = (𝔼hil‘2) & ⊢ 𝑋 = (ℝ ↑m {1, 2}) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) | ||
| Theorem | minveclem1 25340* | Lemma for minvec 25352. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) ⇒ ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) | ||
| Theorem | minveclem4c 25341* | Lemma for minvec 25352. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) ⇒ ⊢ (𝜑 → 𝑆 ∈ ℝ) | ||
| Theorem | minveclem2 25342* | Lemma for minvec 25352. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ 𝑌) & ⊢ (𝜑 → 𝐿 ∈ 𝑌) & ⊢ (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵)) & ⊢ (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵)) ⇒ ⊢ (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵)) | ||
| Theorem | minveclem3a 25343* | Lemma for minvec 25352. 𝐷 is a complete metric when restricted to 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) | ||
| Theorem | minveclem3b 25344* | Lemma for minvec 25352. The set of vectors within a fixed distance of the infimum forms a filter base. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ⇒ ⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑌)) | ||
| Theorem | minveclem3 25345* | Lemma for minvec 25352. The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ⇒ ⊢ (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) | ||
| Theorem | minveclem4a 25346* | Lemma for minvec 25352. 𝐹 converges to a point 𝑃 in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) & ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) | ||
| Theorem | minveclem4b 25347* | Lemma for minvec 25352. The convergent point of the Cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) & ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) ⇒ ⊢ (𝜑 → 𝑃 ∈ 𝑋) | ||
| Theorem | minveclem4 25348* | Lemma for minvec 25352. The convergent point of the Cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) & ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) & ⊢ 𝑇 = (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) | ||
| Theorem | minveclem5 25349* | Lemma for minvec 25352. Discharge the assumptions in minveclem4 25348. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) | ||
| Theorem | minveclem6 25350* | Lemma for minvec 25352. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦)))) | ||
| Theorem | minveclem7 25351* | Lemma for minvec 25352. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) | ||
| Theorem | minvec 25352* | Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Proof shortened by AV, 3-Oct-2020.) |
| ⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) | ||
| Theorem | pjthlem1 25353* | Lemma for pjth 25355. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 17-Oct-2015.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂHil) & ⊢ (𝜑 → 𝑈 ∈ 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 (𝑁‘𝐴) ≤ (𝑁‘(𝐴 − 𝑥))) & ⊢ 𝑇 = ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ⇒ ⊢ (𝜑 → (𝐴 , 𝐵) = 0) | ||
| Theorem | pjthlem2 25354 | Lemma for pjth 25355. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂHil) & ⊢ (𝜑 → 𝑈 ∈ 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑂 = (ocv‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝑈 ⊕ (𝑂‘𝑈))) | ||
| Theorem | pjth 25355 | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑂 = (ocv‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑈 ⊕ (𝑂‘𝑈)) = 𝑉) | ||
| Theorem | pjth2 25356 | Projection Theorem with abbreviations: A topologically closed subspace is a projection subspace. (Contributed by Mario Carneiro, 17-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ 𝐾 = (proj‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ∈ dom 𝐾) | ||
| Theorem | cldcss 25357 | Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂHil → (𝑈 ∈ 𝐶 ↔ (𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)))) | ||
| Theorem | cldcss2 25358 | Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂHil → 𝐶 = (𝐿 ∩ (Clsd‘𝐽))) | ||
| Theorem | hlhil 25359 | Corollary of the Projection Theorem: A subcomplex Hilbert space is a Hilbert space (in the algebraic sense, meaning that all algebraically closed subspaces have a projection decomposition). (Contributed by Mario Carneiro, 17-Oct-2015.) |
| ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ Hil) | ||
| Theorem | addcncf 25360* | The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | subcncf 25361* | The subtraction of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 − 𝐵)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | mulcncf 25362* | The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) Avoid ax-mulf 11108. (Revised by GG, 16-Mar-2025.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | mulcncfOLD 25363* | Obsolete version of mulcncf 25362 as of 9-Apr-2025. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | divcncf 25364* | The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→(ℂ ∖ {0}))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | pmltpclem1 25365* | Lemma for pmltpc 25367. (Contributed by Mario Carneiro, 1-Jul-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → (((𝐹‘𝐴) < (𝐹‘𝐵) ∧ (𝐹‘𝐶) < (𝐹‘𝐵)) ∨ ((𝐹‘𝐵) < (𝐹‘𝐴) ∧ (𝐹‘𝐵) < (𝐹‘𝐶)))) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 ∃𝑐 ∈ 𝑆 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) | ||
| Theorem | pmltpclem2 25366* | Lemma for pmltpc 25367. (Contributed by Mario Carneiro, 1-Jul-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (ℝ ↑pm ℝ)) & ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) & ⊢ (𝜑 → 𝑉 ∈ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑈 ≤ 𝑉) & ⊢ (𝜑 → 𝑊 ≤ 𝑋) & ⊢ (𝜑 → ¬ (𝐹‘𝑈) ≤ (𝐹‘𝑉)) & ⊢ (𝜑 → ¬ (𝐹‘𝑋) ≤ (𝐹‘𝑊)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐))))) | ||
| Theorem | pmltpc 25367* | Any function on the reals is either increasing, decreasing, or has a triple of points in a vee formation. (This theorem was created on demand by Mario Carneiro for the 6PCM conference in Bialystok, 1-Jul-2014.) (Contributed by Mario Carneiro, 1-Jul-2014.) |
| ⊢ ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ∨ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝐹‘𝑥)) ∨ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐴 ∃𝑐 ∈ 𝐴 (𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ (((𝐹‘𝑎) < (𝐹‘𝑏) ∧ (𝐹‘𝑐) < (𝐹‘𝑏)) ∨ ((𝐹‘𝑏) < (𝐹‘𝑎) ∧ (𝐹‘𝑏) < (𝐹‘𝑐)))))) | ||
| Theorem | ivthlem1 25368* | Lemma for ivth 25371. The set 𝑆 of all 𝑥 values with (𝐹‘𝑥) less than 𝑈 is lower bounded by 𝐴 and upper bounded by 𝐵. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝐵)) | ||
| Theorem | ivthlem2 25369* | Lemma for ivth 25371. Show that the supremum of 𝑆 cannot be less than 𝑈. If it was, continuity of 𝐹 implies that there are points just above the supremum that are also less than 𝑈, a contradiction. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} & ⊢ 𝐶 = sup(𝑆, ℝ, < ) ⇒ ⊢ (𝜑 → ¬ (𝐹‘𝐶) < 𝑈) | ||
| Theorem | ivthlem3 25370* | Lemma for ivth 25371, the intermediate value theorem. Show that (𝐹‘𝐶) cannot be greater than 𝑈, and so establish the existence of a root of the function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 17-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑥) ≤ 𝑈} & ⊢ 𝐶 = sup(𝑆, ℝ, < ) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ∧ (𝐹‘𝐶) = 𝑈)) | ||
| Theorem | ivth 25371* | The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008.) (Proof shortened by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) | ||
| Theorem | ivth2 25372* | The intermediate value theorem, decreasing case. (Contributed by Paul Chapman, 22-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) | ||
| Theorem | ivthle 25373* | The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐵))) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) | ||
| Theorem | ivthle2 25374* | The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐵) ≤ 𝑈 ∧ 𝑈 ≤ (𝐹‘𝐴))) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (𝐴[,]𝐵)(𝐹‘𝑐) = 𝑈) | ||
| Theorem | ivthicc 25375* | The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑁 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐹‘𝑀)[,](𝐹‘𝑁)) ⊆ ran 𝐹) | ||
| Theorem | evthicc 25376* | Specialization of the Extreme Value Theorem to a closed interval of ℝ. (Contributed by Mario Carneiro, 12-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑥) ∧ ∃𝑧 ∈ (𝐴[,]𝐵)∀𝑤 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑤))) | ||
| Theorem | evthicc2 25377* | Combine ivthicc 25375 with evthicc 25376 to exactly describe the image of a closed interval. (Contributed by Mario Carneiro, 19-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)) | ||
| Theorem | cniccbdd 25378* | A continuous function on a closed interval is bounded. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) | ||
| Syntax | covol 25379 | Extend class notation with the outer Lebesgue measure. |
| class vol* | ||
| Syntax | cvol 25380 | Extend class notation with the Lebesgue measure. |
| class vol | ||
| Definition | df-ovol 25381* | Define the outer Lebesgue measure for subsets of the reals. Here 𝑓 is a function from the positive integers to pairs 〈𝑎, 𝑏〉 with 𝑎 ≤ 𝑏, and the outer volume of the set 𝑥 is the infimum over all such functions such that the union of the open intervals (𝑎, 𝑏) covers 𝑥 of the sum of 𝑏 − 𝑎. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 17-Sep-2020.) |
| ⊢ vol* = (𝑥 ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < )) | ||
| Definition | df-vol 25382* | Define the Lebesgue measure, which is just the outer measure with a peculiar domain of definition. The property of being Lebesgue-measurable can be expressed as 𝐴 ∈ dom vol. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ vol = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) | ||
| Theorem | ovolfcl 25383 | Closure for the interval endpoint function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → ((1st ‘(𝐹‘𝑁)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑁)) ∈ ℝ ∧ (1st ‘(𝐹‘𝑁)) ≤ (2nd ‘(𝐹‘𝑁)))) | ||
| Theorem | ovolfioo 25384* | Unpack the interval covering property of the outer measure definition. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ⊆ ∪ ran ((,) ∘ 𝐹) ↔ ∀𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st ‘(𝐹‘𝑛)) < 𝑧 ∧ 𝑧 < (2nd ‘(𝐹‘𝑛))))) | ||
| Theorem | ovolficc 25385* | Unpack the interval covering property using closed intervals. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ⊆ ∪ ran ([,] ∘ 𝐹) ↔ ∀𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st ‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛))))) | ||
| Theorem | ovolficcss 25386 | Any (closed) interval covering is a subset of the reals. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) | ||
| Theorem | ovolfsval 25387 | The value of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) ⇒ ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑁 ∈ ℕ) → (𝐺‘𝑁) = ((2nd ‘(𝐹‘𝑁)) − (1st ‘(𝐹‘𝑁)))) | ||
| Theorem | ovolfsf 25388 | Closure for the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) ⇒ ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺:ℕ⟶(0[,)+∞)) | ||
| Theorem | ovolsf 25389 | Closure for the partial sums of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) & ⊢ 𝑆 = seq1( + , 𝐺) ⇒ ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) | ||
| Theorem | ovolval 25390* | The value of the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 17-Sep-2020.) |
| ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) | ||
| Theorem | elovolmlem 25391 | Lemma for elovolm 25392 and related theorems. (Contributed by BJ, 23-Jul-2022.) |
| ⊢ (𝐹 ∈ ((𝐴 ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶(𝐴 ∩ (ℝ × ℝ))) | ||
| Theorem | elovolm 25392* | Elementhood in the set 𝑀 of approximations to the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ (𝐵 ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) | ||
| Theorem | elovolmr 25393* | Sufficient condition for elementhood in the set 𝑀. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀) | ||
| Theorem | ovolmge0 25394* | The set 𝑀 is composed of nonnegative extended real numbers. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ (𝐵 ∈ 𝑀 → 0 ≤ 𝐵) | ||
| Theorem | ovolcl 25395 | The volume of a set is an extended real number. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*) | ||
| Theorem | ovollb 25396 | The outer volume is a lower bound on the sum of all interval coverings of 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | ovolgelb 25397* | The outer volume is the greatest lower bound on the sum of all interval coverings of 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑔)) ⇒ ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵))) | ||
| Theorem | ovolge0 25398 | The volume of a set is always nonnegative. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ (𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝐴)) | ||
| Theorem | ovolf 25399 | The domain and codomain of the outer volume function. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
| ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) | ||
| Theorem | ovollecl 25400 | If an outer volume is bounded above, then it is real. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (vol*‘𝐴) ≤ 𝐵) → (vol*‘𝐴) ∈ ℝ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |