![]() |
Metamath
Proof Explorer Theorem List (p. 254 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | srabn 25301 | The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015.) |
β’ π΄ = ((subringAlg βπ)βπ) & β’ π½ = (TopOpenβπ) β β’ ((π β NrmRing β§ π β CMetSp β§ π β (SubRingβπ)) β (π΄ β Ban β (π β (Clsdβπ½) β§ (π βΎs π) β DivRing))) | ||
Theorem | rlmbn 25302 | The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β (ringLModβπ ) β Ban) | ||
Theorem | ishl 25303 | The predicate "is a subcomplex Hilbert space". A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
β’ (π β βHil β (π β Ban β§ π β βPreHil)) | ||
Theorem | hlbn 25304 | Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) |
β’ (π β βHil β π β Ban) | ||
Theorem | hlcph 25305 | Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
β’ (π β βHil β π β βPreHil) | ||
Theorem | hlphl 25306 | Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
β’ (π β βHil β π β PreHil) | ||
Theorem | hlcms 25307 | Every subcomplex Hilbert space is a complete metric space. (Contributed by Mario Carneiro, 17-Oct-2015.) |
β’ (π β βHil β π β CMetSp) | ||
Theorem | hlprlem 25308 | Lemma for hlpr 25310. (Contributed by Mario Carneiro, 15-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ πΎ = (BaseβπΉ) β β’ (π β βHil β (πΎ β (SubRingββfld) β§ (βfld βΎs πΎ) β DivRing β§ (βfld βΎs πΎ) β CMetSp)) | ||
Theorem | hlress 25309 | The scalar field of a subcomplex Hilbert space contains β. (Contributed by Mario Carneiro, 8-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ πΎ = (BaseβπΉ) β β’ (π β βHil β β β πΎ) | ||
Theorem | hlpr 25310 | The scalar field of a subcomplex Hilbert space is either β or β. (Contributed by Mario Carneiro, 15-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ πΎ = (BaseβπΉ) β β’ (π β βHil β πΎ β {β, β}) | ||
Theorem | ishl2 25311 | A Hilbert space is a complete subcomplex pre-Hilbert space over β or β. (Contributed by Mario Carneiro, 15-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ πΎ = (BaseβπΉ) β β’ (π β βHil β (π β CMetSp β§ π β βPreHil β§ πΎ β {β, β})) | ||
Theorem | cphssphl 25312 | A Banach subspace of a subcomplex pre-Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 11-Apr-2008.) (Revised by AV, 25-Sep-2022.) |
β’ π = (π βΎs π) & β’ π = (LSubSpβπ) β β’ ((π β βPreHil β§ π β π β§ π β Ban) β π β βHil) | ||
Theorem | cmslssbn 25313 | A complete linear subspace of a normed vector space is a Banach space. We furthermore have to assume that the field of scalars is complete since this is a requirement in the current definition of Banach spaces df-bn 25277. (Contributed by AV, 8-Oct-2022.) |
β’ π = (π βΎs π) & β’ π = (LSubSpβπ) β β’ (((π β NrmVec β§ (Scalarβπ) β CMetSp) β§ (π β CMetSp β§ π β π)) β π β Ban) | ||
Theorem | cmscsscms 25314 | A closed subspace of a complete metric space which is also a subcomplex pre-Hilbert space is a complete metric space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized to arbitrary topological spaces (or at least topological modules), this assumption could be omitted. (Contributed by AV, 8-Oct-2022.) |
β’ π = (π βΎs π) & β’ π = (ClSubSpβπ) β β’ (((π β CMetSp β§ π β βPreHil) β§ π β π) β π β CMetSp) | ||
Theorem | bncssbn 25315 | A closed subspace of a Banach space which is also a subcomplex pre-Hilbert space is a Banach space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized for arbitrary topological spaces, this assuption could be omitted. (Contributed by AV, 8-Oct-2022.) |
β’ π = (π βΎs π) & β’ π = (ClSubSpβπ) β β’ (((π β Ban β§ π β βPreHil) β§ π β π) β π β Ban) | ||
Theorem | cssbn 25316 | A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition Cβ (df-ch 31070) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn 25313. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.) |
β’ π = (π βΎs π) & β’ π = (LSubSpβπ) & β’ π· = ((distβπ) βΎ (π Γ π)) β β’ (((π β NrmVec β§ (Scalarβπ) β CMetSp β§ π β π) β§ (Cauβπ·) β dom (βπ‘β(MetOpenβπ·))) β π β Ban) | ||
Theorem | csschl 25317 | A complete subspace of a complex pre-Hilbert space is a complex Hilbert space. Remarks: (a) In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition Cβ (df-ch 31070) of closed subspaces of a Hilbert space. (b) This theorem does not hold for arbitrary subcomplex (pre-)Hilbert spaces, because the scalar field as restriction of the field of the complex numbers need not be closed. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.) |
β’ π = (π βΎs π) & β’ π = (LSubSpβπ) & β’ π· = ((distβπ) βΎ (π Γ π)) & β’ (Scalarβπ) = βfld β β’ ((π β βPreHil β§ π β π β§ (Cauβπ·) β dom (βπ‘β(MetOpenβπ·))) β (π β βHil β§ (Scalarβπ) = βfld)) | ||
Theorem | cmslsschl 25318 | A complete linear subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by AV, 8-Oct-2022.) |
β’ π = (π βΎs π) & β’ π = (LSubSpβπ) β β’ ((π β βHil β§ π β CMetSp β§ π β π) β π β βHil) | ||
Theorem | chlcsschl 25319 | A closed subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 8-Oct-2022.) |
β’ π = (π βΎs π) & β’ π = (ClSubSpβπ) β β’ ((π β βHil β§ π β π) β π β βHil) | ||
Theorem | retopn 25320 | The topology of the real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
β’ (topGenβran (,)) = (TopOpenββfld) | ||
Theorem | recms 25321 | The real numbers form a complete metric space. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
β’ βfld β CMetSp | ||
Theorem | reust 25322 | The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
β’ (UnifStββfld) = (metUnifβ((distββfld) βΎ (β Γ β))) | ||
Theorem | recusp 25323 | The real numbers form a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
β’ βfld β CUnifSp | ||
Syntax | crrx 25324 | Extend class notation with generalized real Euclidean spaces. |
class β^ | ||
Syntax | cehl 25325 | Extend class notation with real Euclidean spaces. |
class πΌhil | ||
Definition | df-rrx 25326 | Define the function associating with a set the free real vector space on that set, equipped with the natural inner product and norm. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.) |
β’ β^ = (π β V β¦ (toβPreHilβ(βfld freeLMod π))) | ||
Definition | df-ehl 25327 | Define a function generating the real Euclidean spaces of finite dimension. The case π = 0 corresponds to a space of dimension 0, that is, limited to a neutral element (see ehl0 25358). Members of this family of spaces are Hilbert spaces, as shown in - ehlhl . (Contributed by Thierry Arnoux, 16-Jun-2019.) |
β’ πΌhil = (π β β0 β¦ (β^β(1...π))) | ||
Theorem | rrxval 25328 | Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
β’ π» = (β^βπΌ) β β’ (πΌ β π β π» = (toβPreHilβ(βfld freeLMod πΌ))) | ||
Theorem | rrxbase 25329* | The base of the generalized real Euclidean space is the set of functions with finite support. (Contributed by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.) |
β’ π» = (β^βπΌ) & β’ π΅ = (Baseβπ») β β’ (πΌ β π β π΅ = {π β (β βm πΌ) β£ π finSupp 0}) | ||
Theorem | rrxprds 25330 | Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
β’ π» = (β^βπΌ) & β’ π΅ = (Baseβπ») β β’ (πΌ β π β π» = (toβPreHilβ((βfldXs(πΌ Γ {((subringAlg ββfld)ββ)})) βΎs π΅))) | ||
Theorem | rrxip 25331* | The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
β’ π» = (β^βπΌ) & β’ π΅ = (Baseβπ») β β’ (πΌ β π β (π β (β βm πΌ), π β (β βm πΌ) β¦ (βfld Ξ£g (π₯ β πΌ β¦ ((πβπ₯) Β· (πβπ₯))))) = (Β·πβπ»)) | ||
Theorem | rrxnm 25332* | The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
β’ π» = (β^βπΌ) & β’ π΅ = (Baseβπ») β β’ (πΌ β π β (π β π΅ β¦ (ββ(βfld Ξ£g (π₯ β πΌ β¦ ((πβπ₯)β2))))) = (normβπ»)) | ||
Theorem | rrxcph 25333 | Generalized Euclidean real spaces are subcomplex pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.) |
β’ π» = (β^βπΌ) & β’ π΅ = (Baseβπ») β β’ (πΌ β π β π» β βPreHil) | ||
Theorem | rrxds 25334* | The distance over generalized Euclidean spaces. Compare with df-rrn 37352. (Contributed by Thierry Arnoux, 20-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.) |
β’ π» = (β^βπΌ) & β’ π΅ = (Baseβπ») β β’ (πΌ β π β (π β π΅, π β π΅ β¦ (ββ(βfld Ξ£g (π₯ β πΌ β¦ (((πβπ₯) β (πβπ₯))β2))))) = (distβπ»)) | ||
Theorem | rrxvsca 25335 | The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023.) |
β’ π» = (β^βπΌ) & β’ π΅ = (Baseβπ») & β’ β = ( Β·π βπ») & β’ (π β πΌ β π) & β’ (π β π½ β πΌ) & β’ (π β π΄ β β) & β’ (π β π β (Baseβπ»)) β β’ (π β ((π΄ β π)βπ½) = (π΄ Β· (πβπ½))) | ||
Theorem | rrxplusgvscavalb 25336* | The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.) |
β’ π» = (β^βπΌ) & β’ π΅ = (Baseβπ») & β’ β = ( Β·π βπ») & β’ (π β πΌ β π) & β’ (π β π΄ β β) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ β = (+gβπ») & β’ (π β πΆ β β) β β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) | ||
Theorem | rrxsca 25337 | The field of real numbers is the scalar field of the generalized real Euclidean space. (Contributed by AV, 15-Jan-2023.) |
β’ π» = (β^βπΌ) β β’ (πΌ β π β (Scalarβπ») = βfld) | ||
Theorem | rrx0 25338 | The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023.) |
β’ π» = (β^βπΌ) & β’ 0 = (πΌ Γ {0}) β β’ (πΌ β π β (0gβπ») = 0 ) | ||
Theorem | rrx0el 25339 | The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.) |
β’ 0 = (πΌ Γ {0}) & β’ π = (β βm πΌ) β β’ (πΌ β π β 0 β π) | ||
Theorem | csbren 25340* | Cauchy-Schwarz-Bunjakovsky inequality for R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.) |
β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π΅ β β) & β’ ((π β§ π β π΄) β πΆ β β) β β’ (π β (Ξ£π β π΄ (π΅ Β· πΆ)β2) β€ (Ξ£π β π΄ (π΅β2) Β· Ξ£π β π΄ (πΆβ2))) | ||
Theorem | trirn 25341* | Triangle inequality in R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.) |
β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π΅ β β) & β’ ((π β§ π β π΄) β πΆ β β) β β’ (π β (ββΞ£π β π΄ ((π΅ + πΆ)β2)) β€ ((ββΞ£π β π΄ (π΅β2)) + (ββΞ£π β π΄ (πΆβ2)))) | ||
Theorem | rrxf 25342* | Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
β’ π = {β β (β βm πΌ) β£ β finSupp 0} & β’ (π β πΉ β π) β β’ (π β πΉ:πΌβΆβ) | ||
Theorem | rrxfsupp 25343* | Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
β’ π = {β β (β βm πΌ) β£ β finSupp 0} & β’ (π β πΉ β π) β β’ (π β (πΉ supp 0) β Fin) | ||
Theorem | rrxsuppss 25344* | Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
β’ π = {β β (β βm πΌ) β£ β finSupp 0} & β’ (π β πΉ β π) β β’ (π β (πΉ supp 0) β πΌ) | ||
Theorem | rrxmvallem 25345* | Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019.) |
β’ π = {β β (β βm πΌ) β£ β finSupp 0} β β’ ((πΌ β π β§ πΉ β π β§ πΊ β π) β ((π β πΌ β¦ (((πΉβπ) β (πΊβπ))β2)) supp 0) β ((πΉ supp 0) βͺ (πΊ supp 0))) | ||
Theorem | rrxmval 25346* | The value of the Euclidean metric. Compare with rrnmval 37354. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
β’ π = {β β (β βm πΌ) β£ β finSupp 0} & β’ π· = (distβ(β^βπΌ)) β β’ ((πΌ β π β§ πΉ β π β§ πΊ β π) β (πΉπ·πΊ) = (ββΞ£π β ((πΉ supp 0) βͺ (πΊ supp 0))(((πΉβπ) β (πΊβπ))β2))) | ||
Theorem | rrxmfval 25347* | The value of the Euclidean metric. Compare with rrnval 37353. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
β’ π = {β β (β βm πΌ) β£ β finSupp 0} & β’ π· = (distβ(β^βπΌ)) β β’ (πΌ β π β π· = (π β π, π β π β¦ (ββΞ£π β ((π supp 0) βͺ (π supp 0))(((πβπ) β (πβπ))β2)))) | ||
Theorem | rrxmetlem 25348* | Lemma for rrxmet 25349. (Contributed by Thierry Arnoux, 5-Jul-2019.) |
β’ π = {β β (β βm πΌ) β£ β finSupp 0} & β’ π· = (distβ(β^βπΌ)) & β’ (π β πΌ β π) & β’ (π β πΉ β π) & β’ (π β πΊ β π) & β’ (π β π΄ β πΌ) & β’ (π β π΄ β Fin) & β’ (π β ((πΉ supp 0) βͺ (πΊ supp 0)) β π΄) β β’ (π β Ξ£π β ((πΉ supp 0) βͺ (πΊ supp 0))(((πΉβπ) β (πΊβπ))β2) = Ξ£π β π΄ (((πΉβπ) β (πΊβπ))β2)) | ||
Theorem | rrxmet 25349* | Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
β’ π = {β β (β βm πΌ) β£ β finSupp 0} & β’ π· = (distβ(β^βπΌ)) β β’ (πΌ β π β π· β (Metβπ)) | ||
Theorem | rrxdstprj1 25350* | The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 7-Jul-2019.) |
β’ π = {β β (β βm πΌ) β£ β finSupp 0} & β’ π· = (distβ(β^βπΌ)) & β’ π = ((abs β β ) βΎ (β Γ β)) β β’ (((πΌ β π β§ π΄ β πΌ) β§ (πΉ β π β§ πΊ β π)) β ((πΉβπ΄)π(πΊβπ΄)) β€ (πΉπ·πΊ)) | ||
Theorem | rrxbasefi 25351 | The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (β βm π) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ (π β π β Fin) & β’ π» = (β^βπ) & β’ π΅ = (Baseβπ») β β’ (π β π΅ = (β βm π)) | ||
Theorem | rrxdsfi 25352* | The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ π» = (β^βπΌ) & β’ π΅ = (β βm πΌ) β β’ (πΌ β Fin β (distβπ») = (π β π΅, π β π΅ β¦ (ββΞ£π β πΌ (((πβπ) β (πβπ))β2)))) | ||
Theorem | rrxmetfi 25353 | Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
β’ π· = (distβ(β^βπΌ)) β β’ (πΌ β Fin β π· β (Metβ(β βm πΌ))) | ||
Theorem | rrxdsfival 25354* | The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
β’ π = (β βm πΌ) & β’ π· = (distβ(β^βπΌ)) β β’ ((πΌ β Fin β§ πΉ β π β§ πΊ β π) β (πΉπ·πΊ) = (ββΞ£π β πΌ (((πΉβπ) β (πΊβπ))β2))) | ||
Theorem | ehlval 25355 | Value of the Euclidean space of dimension π. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
β’ πΈ = (πΌhilβπ) β β’ (π β β0 β πΈ = (β^β(1...π))) | ||
Theorem | ehlbase 25356 | The base of the Euclidean space is the set of n-tuples of real numbers. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
β’ πΈ = (πΌhilβπ) β β’ (π β β0 β (β βm (1...π)) = (BaseβπΈ)) | ||
Theorem | ehl0base 25357 | The base of the Euclidean space of dimension 0 consists only of one element, the empty set. (Contributed by AV, 12-Feb-2023.) |
β’ πΈ = (πΌhilβ0) β β’ (BaseβπΈ) = {β } | ||
Theorem | ehl0 25358 | The Euclidean space of dimension 0 consists of the neutral element only. (Contributed by AV, 12-Feb-2023.) |
β’ πΈ = (πΌhilβ0) & β’ 0 = (0gβπΈ) β β’ (BaseβπΈ) = { 0 } | ||
Theorem | ehleudis 25359* | The Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
β’ πΌ = (1...π) & β’ πΈ = (πΌhilβπ) & β’ π = (β βm πΌ) & β’ π· = (distβπΈ) β β’ (π β β0 β π· = (π β π, π β π β¦ (ββΞ£π β πΌ (((πβπ) β (πβπ))β2)))) | ||
Theorem | ehleudisval 25360* | The value of the Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
β’ πΌ = (1...π) & β’ πΈ = (πΌhilβπ) & β’ π = (β βm πΌ) & β’ π· = (distβπΈ) β β’ ((π β β0 β§ πΉ β π β§ πΊ β π) β (πΉπ·πΊ) = (ββΞ£π β πΌ (((πΉβπ) β (πΊβπ))β2))) | ||
Theorem | ehl1eudis 25361* | The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.) |
β’ πΈ = (πΌhilβ1) & β’ π = (β βm {1}) & β’ π· = (distβπΈ) β β’ π· = (π β π, π β π β¦ (absβ((πβ1) β (πβ1)))) | ||
Theorem | ehl1eudisval 25362 | The value of the Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.) |
β’ πΈ = (πΌhilβ1) & β’ π = (β βm {1}) & β’ π· = (distβπΈ) β β’ ((πΉ β π β§ πΊ β π) β (πΉπ·πΊ) = (absβ((πΉβ1) β (πΊβ1)))) | ||
Theorem | ehl2eudis 25363* | The Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.) |
β’ πΈ = (πΌhilβ2) & β’ π = (β βm {1, 2}) & β’ π· = (distβπΈ) β β’ π· = (π β π, π β π β¦ (ββ((((πβ1) β (πβ1))β2) + (((πβ2) β (πβ2))β2)))) | ||
Theorem | ehl2eudisval 25364 | The value of the Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.) |
β’ πΈ = (πΌhilβ2) & β’ π = (β βm {1, 2}) & β’ π· = (distβπΈ) β β’ ((πΉ β π β§ πΊ β π) β (πΉπ·πΊ) = (ββ((((πΉβ1) β (πΊβ1))β2) + (((πΉβ2) β (πΊβ2))β2)))) | ||
Theorem | minveclem1 25365* | Lemma for minvec 25377. The set of all distances from points of π to π΄ are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) β β’ (π β (π β β β§ π β β β§ βπ€ β π 0 β€ π€)) | ||
Theorem | minveclem4c 25366* | Lemma for minvec 25377. The infimum of the distances to π΄ is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) & β’ π = inf(π , β, < ) β β’ (π β π β β) | ||
Theorem | minveclem2 25367* | Lemma for minvec 25377. Any two points πΎ and πΏ in π are close to each other if they are close to the infimum of distance to π΄. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) & β’ π = inf(π , β, < ) & β’ π· = ((distβπ) βΎ (π Γ π)) & β’ (π β π΅ β β) & β’ (π β 0 β€ π΅) & β’ (π β πΎ β π) & β’ (π β πΏ β π) & β’ (π β ((π΄π·πΎ)β2) β€ ((πβ2) + π΅)) & β’ (π β ((π΄π·πΏ)β2) β€ ((πβ2) + π΅)) β β’ (π β ((πΎπ·πΏ)β2) β€ (4 Β· π΅)) | ||
Theorem | minveclem3a 25368* | Lemma for minvec 25377. π· is a complete metric when restricted to π. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) & β’ π = inf(π , β, < ) & β’ π· = ((distβπ) βΎ (π Γ π)) β β’ (π β (π· βΎ (π Γ π)) β (CMetβπ)) | ||
Theorem | minveclem3b 25369* | Lemma for minvec 25377. The set of vectors within a fixed distance of the infimum forms a filter base. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) & β’ π = inf(π , β, < ) & β’ π· = ((distβπ) βΎ (π Γ π)) & β’ πΉ = ran (π β β+ β¦ {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) β β’ (π β πΉ β (fBasβπ)) | ||
Theorem | minveclem3 25370* | Lemma for minvec 25377. The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) & β’ π = inf(π , β, < ) & β’ π· = ((distβπ) βΎ (π Γ π)) & β’ πΉ = ran (π β β+ β¦ {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) β β’ (π β (πfilGenπΉ) β (CauFilβ(π· βΎ (π Γ π)))) | ||
Theorem | minveclem4a 25371* | Lemma for minvec 25377. πΉ converges to a point π in π. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) & β’ π = inf(π , β, < ) & β’ π· = ((distβπ) βΎ (π Γ π)) & β’ πΉ = ran (π β β+ β¦ {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) & β’ π = βͺ (π½ fLim (πfilGenπΉ)) β β’ (π β π β ((π½ fLim (πfilGenπΉ)) β© π)) | ||
Theorem | minveclem4b 25372* | Lemma for minvec 25377. The convergent point of the Cauchy sequence πΉ is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) & β’ π = inf(π , β, < ) & β’ π· = ((distβπ) βΎ (π Γ π)) & β’ πΉ = ran (π β β+ β¦ {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) & β’ π = βͺ (π½ fLim (πfilGenπΉ)) β β’ (π β π β π) | ||
Theorem | minveclem4 25373* | Lemma for minvec 25377. The convergent point of the Cauchy sequence πΉ attains the minimum distance, and so is closer to π΄ than any other point in π. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) & β’ π = inf(π , β, < ) & β’ π· = ((distβπ) βΎ (π Γ π)) & β’ πΉ = ran (π β β+ β¦ {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) & β’ π = βͺ (π½ fLim (πfilGenπΉ)) & β’ π = (((((π΄π·π) + π) / 2)β2) β (πβ2)) β β’ (π β βπ₯ β π βπ¦ β π (πβ(π΄ β π₯)) β€ (πβ(π΄ β π¦))) | ||
Theorem | minveclem5 25374* | Lemma for minvec 25377. Discharge the assumptions in minveclem4 25373. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) & β’ π = inf(π , β, < ) & β’ π· = ((distβπ) βΎ (π Γ π)) β β’ (π β βπ₯ β π βπ¦ β π (πβ(π΄ β π₯)) β€ (πβ(π΄ β π¦))) | ||
Theorem | minveclem6 25375* | Lemma for minvec 25377. Any minimal point is less than π away from π΄. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) & β’ π = inf(π , β, < ) & β’ π· = ((distβπ) βΎ (π Γ π)) β β’ ((π β§ π₯ β π) β (((π΄π·π₯)β2) β€ ((πβ2) + 0) β βπ¦ β π (πβ(π΄ β π₯)) β€ (πβ(π΄ β π¦)))) | ||
Theorem | minveclem7 25376* | Lemma for minvec 25377. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) & β’ π = inf(π , β, < ) & β’ π· = ((distβπ) βΎ (π Γ π)) β β’ (π β β!π₯ β π βπ¦ β π (πβ(π΄ β π₯)) β€ (πβ(π΄ β π¦))) | ||
Theorem | minvec 25377* | Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace π that minimizes the distance to an arbitrary vector π΄ in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Proof shortened by AV, 3-Oct-2020.) |
β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (normβπ) & β’ (π β π β βPreHil) & β’ (π β π β (LSubSpβπ)) & β’ (π β (π βΎs π) β CMetSp) & β’ (π β π΄ β π) β β’ (π β β!π₯ β π βπ¦ β π (πβ(π΄ β π₯)) β€ (πβ(π΄ β π¦))) | ||
Theorem | pjthlem1 25378* | Lemma for pjth 25380. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 17-Oct-2015.) (Proof shortened by AV, 10-Jul-2022.) |
β’ π = (Baseβπ) & β’ π = (normβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ , = (Β·πβπ) & β’ πΏ = (LSubSpβπ) & β’ (π β π β βHil) & β’ (π β π β πΏ) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β βπ₯ β π (πβπ΄) β€ (πβ(π΄ β π₯))) & β’ π = ((π΄ , π΅) / ((π΅ , π΅) + 1)) β β’ (π β (π΄ , π΅) = 0) | ||
Theorem | pjthlem2 25379 | Lemma for pjth 25380. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) |
β’ π = (Baseβπ) & β’ π = (normβπ) & β’ + = (+gβπ) & β’ β = (-gβπ) & β’ , = (Β·πβπ) & β’ πΏ = (LSubSpβπ) & β’ (π β π β βHil) & β’ (π β π β πΏ) & β’ (π β π΄ β π) & β’ π½ = (TopOpenβπ) & β’ β = (LSSumβπ) & β’ π = (ocvβπ) & β’ (π β π β (Clsdβπ½)) β β’ (π β π΄ β (π β (πβπ))) | ||
Theorem | pjth 25380 | Projection Theorem: Any Hilbert space vector π΄ can be decomposed uniquely into a member π₯ of a closed subspace π» and a member π¦ of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) |
β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (ocvβπ) & β’ π½ = (TopOpenβπ) & β’ πΏ = (LSubSpβπ) β β’ ((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β (π β (πβπ)) = π) | ||
Theorem | pjth2 25381 | Projection Theorem with abbreviations: A topologically closed subspace is a projection subspace. (Contributed by Mario Carneiro, 17-Oct-2015.) |
β’ π½ = (TopOpenβπ) & β’ πΏ = (LSubSpβπ) & β’ πΎ = (projβπ) β β’ ((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β π β dom πΎ) | ||
Theorem | cldcss 25382 | Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015.) |
β’ π = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ πΏ = (LSubSpβπ) & β’ πΆ = (ClSubSpβπ) β β’ (π β βHil β (π β πΆ β (π β πΏ β§ π β (Clsdβπ½)))) | ||
Theorem | cldcss2 25383 | Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015.) |
β’ π = (Baseβπ) & β’ π½ = (TopOpenβπ) & β’ πΏ = (LSubSpβπ) & β’ πΆ = (ClSubSpβπ) β β’ (π β βHil β πΆ = (πΏ β© (Clsdβπ½))) | ||
Theorem | hlhil 25384 | Corollary of the Projection Theorem: A subcomplex Hilbert space is a Hilbert space (in the algebraic sense, meaning that all algebraically closed subspaces have a projection decomposition). (Contributed by Mario Carneiro, 17-Oct-2015.) |
β’ (π β βHil β π β Hil) | ||
Theorem | addcncf 25385* | The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β (π₯ β π β¦ π΄) β (πβcnββ)) & β’ (π β (π₯ β π β¦ π΅) β (πβcnββ)) β β’ (π β (π₯ β π β¦ (π΄ + π΅)) β (πβcnββ)) | ||
Theorem | subcncf 25386* | The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β (π₯ β π β¦ π΄) β (πβcnββ)) & β’ (π β (π₯ β π β¦ π΅) β (πβcnββ)) β β’ (π β (π₯ β π β¦ (π΄ β π΅)) β (πβcnββ)) | ||
Theorem | mulcncf 25387* | The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) Avoid ax-mulf 11213. (Revised by GG, 16-Mar-2025.) |
β’ (π β (π₯ β π β¦ π΄) β (πβcnββ)) & β’ (π β (π₯ β π β¦ π΅) β (πβcnββ)) β β’ (π β (π₯ β π β¦ (π΄ Β· π΅)) β (πβcnββ)) | ||
Theorem | mulcncfOLD 25388* | Obsolete version of mulcncf 25387 as of 9-Apr-2025. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β (π₯ β π β¦ π΄) β (πβcnββ)) & β’ (π β (π₯ β π β¦ π΅) β (πβcnββ)) β β’ (π β (π₯ β π β¦ (π΄ Β· π΅)) β (πβcnββ)) | ||
Theorem | divcncf 25389* | The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β (π₯ β π β¦ π΄) β (πβcnββ)) & β’ (π β (π₯ β π β¦ π΅) β (πβcnβ(β β {0}))) β β’ (π β (π₯ β π β¦ (π΄ / π΅)) β (πβcnββ)) | ||
Theorem | pmltpclem1 25390* | Lemma for pmltpc 25392. (Contributed by Mario Carneiro, 1-Jul-2014.) |
β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π΄ < π΅) & β’ (π β π΅ < πΆ) & β’ (π β (((πΉβπ΄) < (πΉβπ΅) β§ (πΉβπΆ) < (πΉβπ΅)) β¨ ((πΉβπ΅) < (πΉβπ΄) β§ (πΉβπ΅) < (πΉβπΆ)))) β β’ (π β βπ β π βπ β π βπ β π (π < π β§ π < π β§ (((πΉβπ) < (πΉβπ) β§ (πΉβπ) < (πΉβπ)) β¨ ((πΉβπ) < (πΉβπ) β§ (πΉβπ) < (πΉβπ))))) | ||
Theorem | pmltpclem2 25391* | Lemma for pmltpc 25392. (Contributed by Mario Carneiro, 1-Jul-2014.) |
β’ (π β πΉ β (β βpm β)) & β’ (π β π΄ β dom πΉ) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β€ π) & β’ (π β π β€ π) & β’ (π β Β¬ (πΉβπ) β€ (πΉβπ)) & β’ (π β Β¬ (πΉβπ) β€ (πΉβπ)) β β’ (π β βπ β π΄ βπ β π΄ βπ β π΄ (π < π β§ π < π β§ (((πΉβπ) < (πΉβπ) β§ (πΉβπ) < (πΉβπ)) β¨ ((πΉβπ) < (πΉβπ) β§ (πΉβπ) < (πΉβπ))))) | ||
Theorem | pmltpc 25392* | Any function on the reals is either increasing, decreasing, or has a triple of points in a vee formation. (This theorem was created on demand by Mario Carneiro for the 6PCM conference in Bialystok, 1-Jul-2014.) (Contributed by Mario Carneiro, 1-Jul-2014.) |
β’ ((πΉ β (β βpm β) β§ π΄ β dom πΉ) β (βπ₯ β π΄ βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ₯) β€ (πΉβπ¦)) β¨ βπ₯ β π΄ βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ¦) β€ (πΉβπ₯)) β¨ βπ β π΄ βπ β π΄ βπ β π΄ (π < π β§ π < π β§ (((πΉβπ) < (πΉβπ) β§ (πΉβπ) < (πΉβπ)) β¨ ((πΉβπ) < (πΉβπ) β§ (πΉβπ) < (πΉβπ)))))) | ||
Theorem | ivthlem1 25393* | Lemma for ivth 25396. The set π of all π₯ values with (πΉβπ₯) less than π is lower bounded by π΄ and upper bounded by π΅. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅) & β’ (π β (π΄[,]π΅) β π·) & β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΄) < π β§ π < (πΉβπ΅))) & β’ π = {π₯ β (π΄[,]π΅) β£ (πΉβπ₯) β€ π} β β’ (π β (π΄ β π β§ βπ§ β π π§ β€ π΅)) | ||
Theorem | ivthlem2 25394* | Lemma for ivth 25396. Show that the supremum of π cannot be less than π. If it was, continuity of πΉ implies that there are points just above the supremum that are also less than π, a contradiction. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅) & β’ (π β (π΄[,]π΅) β π·) & β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΄) < π β§ π < (πΉβπ΅))) & β’ π = {π₯ β (π΄[,]π΅) β£ (πΉβπ₯) β€ π} & β’ πΆ = sup(π, β, < ) β β’ (π β Β¬ (πΉβπΆ) < π) | ||
Theorem | ivthlem3 25395* | Lemma for ivth 25396, the intermediate value theorem. Show that (πΉβπΆ) cannot be greater than π, and so establish the existence of a root of the function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 17-Jun-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅) & β’ (π β (π΄[,]π΅) β π·) & β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΄) < π β§ π < (πΉβπ΅))) & β’ π = {π₯ β (π΄[,]π΅) β£ (πΉβπ₯) β€ π} & β’ πΆ = sup(π, β, < ) β β’ (π β (πΆ β (π΄(,)π΅) β§ (πΉβπΆ) = π)) | ||
Theorem | ivth 25396* | The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008.) (Proof shortened by Mario Carneiro, 30-Apr-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅) & β’ (π β (π΄[,]π΅) β π·) & β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΄) < π β§ π < (πΉβπ΅))) β β’ (π β βπ β (π΄(,)π΅)(πΉβπ) = π) | ||
Theorem | ivth2 25397* | The intermediate value theorem, decreasing case. (Contributed by Paul Chapman, 22-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅) & β’ (π β (π΄[,]π΅) β π·) & β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΅) < π β§ π < (πΉβπ΄))) β β’ (π β βπ β (π΄(,)π΅)(πΉβπ) = π) | ||
Theorem | ivthle 25398* | The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅) & β’ (π β (π΄[,]π΅) β π·) & β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΄) β€ π β§ π β€ (πΉβπ΅))) β β’ (π β βπ β (π΄[,]π΅)(πΉβπ) = π) | ||
Theorem | ivthle2 25399* | The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β β) & β’ (π β π΄ < π΅) & β’ (π β (π΄[,]π΅) β π·) & β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) & β’ (π β ((πΉβπ΅) β€ π β§ π β€ (πΉβπ΄))) β β’ (π β βπ β (π΄[,]π΅)(πΉβπ) = π) | ||
Theorem | ivthicc 25400* | The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π β (π΄[,]π΅)) & β’ (π β π β (π΄[,]π΅)) & β’ (π β (π΄[,]π΅) β π·) & β’ (π β πΉ β (π·βcnββ)) & β’ ((π β§ π₯ β (π΄[,]π΅)) β (πΉβπ₯) β β) β β’ (π β ((πΉβπ)[,](πΉβπ)) β ran πΉ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |