HomeHome Metamath Proof Explorer
Theorem List (p. 254 of 450)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28695)
  Hilbert Space Explorer  Hilbert Space Explorer
(28696-30218)
  Users' Mathboxes  Users' Mathboxes
(30219-44955)
 

Theorem List for Metamath Proof Explorer - 25301-25400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcxpsubd 25301 Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴𝑐(𝐵𝐶)) = ((𝐴𝑐𝐵) / (𝐴𝑐𝐶)))
 
Theoremcxpltd 25302 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐵) < (𝐴𝑐𝐶)))
 
Theoremcxpled 25303 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵𝐶 ↔ (𝐴𝑐𝐵) ≤ (𝐴𝑐𝐶)))
 
Theoremcxplead 25304 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵𝐶)       (𝜑 → (𝐴𝑐𝐵) ≤ (𝐴𝑐𝐶))
 
Theoremdivcxpd 25305 Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) / (𝐵𝑐𝐶)))
 
Theoremrecxpcld 25306 Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝑐𝐵) ∈ ℝ)
 
Theoremcxpge0d 25307 Nonnegative exponentiation with a real exponent is nonnegative. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → 0 ≤ (𝐴𝑐𝐵))
 
Theoremcxple2ad 25308 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐶)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))
 
Theoremcxplt2d 25309 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐴𝑐𝐶) < (𝐵𝑐𝐶)))
 
Theoremcxple2d 25310 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
 
Theoremmulcxpd 25311 Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))
 
Theoremcxpsqrtth 25312 Square root theorem over the complex numbers for the complex power function. Theorem I.35 of [Apostol] p. 29. Compare with sqrtth 14724. (Contributed by AV, 23-Dec-2022.)
(𝐴 ∈ ℂ → ((√‘𝐴)↑𝑐2) = 𝐴)
 
Theorem2irrexpq 25313* There exist irrational numbers 𝑎 and 𝑏 such that (𝑎𝑐𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "classical proof" for theorem 1.2 of [Bauer], p. 483. This proof is not acceptable in intuitionistic logic, since it is based on the law of excluded middle: Either ((√‘2)↑𝑐(√‘2)) is rational, in which case (√‘2), being irrational (see sqrt2irr 15602), can be chosen for both 𝑎 and 𝑏, or ((√‘2)↑𝑐(√‘2)) is irrational, in which case ((√‘2)↑𝑐(√‘2)) can be chosen for 𝑎 and (√‘2) for 𝑏, since (((√‘2)↑𝑐(√‘2))↑𝑐(√‘2)) = 2 is rational. For an alternate proof, which can be used in intuitionistic logic, see 2irrexpqALT 25378. (Contributed by AV, 23-Dec-2022.)
𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ
 
Theoremcxprecd 25314 Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴𝑐𝐵)))
 
Theoremrpcxpcld 25315 Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝑐𝐵) ∈ ℝ+)
 
Theoremlogcxpd 25316 Logarithm of a complex power. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (log‘(𝐴𝑐𝐵)) = (𝐵 · (log‘𝐴)))
 
Theoremcxplt3d 25317 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐶) < (𝐴𝑐𝐵)))
 
Theoremcxple3d 25318 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵𝐶 ↔ (𝐴𝑐𝐶) ≤ (𝐴𝑐𝐵)))
 
Theoremcxpmuld 25319 Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝑐𝐶))
 
Theoremcxpcom 25320 Commutative law for real exponentiation. (Contributed by AV, 29-Dec-2022.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝑐𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶)↑𝑐𝐵))
 
Theoremdvcxp1 25321* The derivative of a complex power with respect to the first argument. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴))) = (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
 
Theoremdvcxp2 25322* The derivative of a complex power with respect to the second argument. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝐴 ∈ ℝ+ → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴𝑐𝑥))) = (𝑥 ∈ ℂ ↦ ((log‘𝐴) · (𝐴𝑐𝑥))))
 
Theoremdvsqrt 25323 The derivative of the real square root function. (Contributed by Mario Carneiro, 1-May-2016.)
(ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥))))
 
Theoremdvcncxp1 25324* Derivative of complex power with respect to first argument on the complex plane. (Contributed by Brendan Leahy, 18-Dec-2018.)
𝐷 = (ℂ ∖ (-∞(,]0))       (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
 
Theoremdvcnsqrt 25325* Derivative of square root function. (Contributed by Brendan Leahy, 18-Dec-2018.)
𝐷 = (ℂ ∖ (-∞(,]0))       (ℂ D (𝑥𝐷 ↦ (√‘𝑥))) = (𝑥𝐷 ↦ (1 / (2 · (√‘𝑥))))
 
Theoremcxpcn 25326* Domain of continuity of the complex power function. (Contributed by Mario Carneiro, 1-May-2016.)
𝐷 = (ℂ ∖ (-∞(,]0))    &   𝐽 = (TopOpen‘ℂfld)    &   𝐾 = (𝐽t 𝐷)       (𝑥𝐷, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
 
Theoremcxpcn2 25327* Continuity of the complex power function, when the base is real. (Contributed by Mario Carneiro, 1-May-2016.)
𝐽 = (TopOpen‘ℂfld)    &   𝐾 = (𝐽t+)       (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)
 
Theoremcxpcn3lem 25328* Lemma for cxpcn3 25329. (Contributed by Mario Carneiro, 2-May-2016.)
𝐷 = (ℜ “ ℝ+)    &   𝐽 = (TopOpen‘ℂfld)    &   𝐾 = (𝐽t (0[,)+∞))    &   𝐿 = (𝐽t 𝐷)    &   𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2)    &   𝑇 = if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈)))       ((𝐴𝐷𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
 
Theoremcxpcn3 25329* Extend continuity of the complex power function to a base of zero, as long as the exponent has strictly positive real part. (Contributed by Mario Carneiro, 2-May-2016.)
𝐷 = (ℜ “ ℝ+)    &   𝐽 = (TopOpen‘ℂfld)    &   𝐾 = (𝐽t (0[,)+∞))    &   𝐿 = (𝐽t 𝐷)       (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)
 
Theoremresqrtcn 25330 Continuity of the real square root function. (Contributed by Mario Carneiro, 2-May-2016.)
(√ ↾ (0[,)+∞)) ∈ ((0[,)+∞)–cn→ℝ)
 
Theoremsqrtcn 25331 Continuity of the square root function. (Contributed by Mario Carneiro, 2-May-2016.)
𝐷 = (ℂ ∖ (-∞(,]0))       (√ ↾ 𝐷) ∈ (𝐷cn→ℂ)
 
Theoremcxpaddlelem 25332 Lemma for cxpaddle 25333. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴 ≤ 1)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐵 ≤ 1)       (𝜑𝐴 ≤ (𝐴𝑐𝐵))
 
Theoremcxpaddle 25333 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐶 ≤ 1)       (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
 
Theoremabscxpbnd 25334 Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → 0 ≤ (ℜ‘𝐵))    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → (abs‘𝐴) ≤ 𝑀)       (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
 
Theoremroot1id 25335 Property of an 𝑁-th root of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
(𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁))↑𝑁) = 1)
 
Theoremroot1eq1 25336 The only powers of an 𝑁-th root of unity that equal 1 are the multiples of 𝑁. In other words, -1↑𝑐(2 / 𝑁) has order 𝑁 in the multiplicative group of nonzero complex numbers. (In fact, these and their powers are the only elements of finite order in the complex numbers.) (Contributed by Mario Carneiro, 28-Apr-2016.)
((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ 𝑁𝐾))
 
Theoremroot1cj 25337 Within the 𝑁-th roots of unity, the conjugate of the 𝐾-th root is the 𝑁𝐾-th root. (Contributed by Mario Carneiro, 23-Apr-2015.)
((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (∗‘((-1↑𝑐(2 / 𝑁))↑𝐾)) = ((-1↑𝑐(2 / 𝑁))↑(𝑁𝐾)))
 
Theoremcxpeq 25338* Solve an equation involving an 𝑁-th power. The expression -1↑𝑐(2 / 𝑁) = exp(2πi / 𝑁) is a way to write the primitive 𝑁-th root of unity with the smallest positive argument. (Contributed by Mario Carneiro, 23-Apr-2015.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑁) = 𝐵 ↔ ∃𝑛 ∈ (0...(𝑁 − 1))𝐴 = ((𝐵𝑐(1 / 𝑁)) · ((-1↑𝑐(2 / 𝑁))↑𝑛))))
 
Theoremloglesqrt 25339 An upper bound on the logarithm. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by AV, 2-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(𝐴 + 1)) ≤ (√‘𝐴))
 
Theoremlogreclem 25340 Symmetry of the natural logarithm range by negation. Lemma for logrec 25341. (Contributed by Saveliy Skresanov, 27-Dec-2016.)
((𝐴 ∈ ran log ∧ ¬ (ℑ‘𝐴) = π) → -𝐴 ∈ ran log)
 
Theoremlogrec 25341 Logarithm of a reciprocal changes sign. (Contributed by Saveliy Skresanov, 28-Dec-2016.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) = -(log‘(1 / 𝐴)))
 
14.3.5  Logarithms to an arbitrary base

Define "log using an arbitrary base" function and then prove some of its properties. Note that logb is generalized to an arbitrary base and arbitrary parameter in , but it doesn't accept infinities as arguments, unlike log.

Metamath doesn't care what letters are used to represent classes. Usually classes begin with the letter "A", but here we use "B" and "X" to more clearly distinguish between "base" and "other parameter of log".

There are different ways this could be defined in Metamath. The approach used here is intentionally similar to existing 2-parameter Metamath functions (operations): (𝐵 logb 𝑋) where 𝐵 is the base and 𝑋 is the argument of the logarithm function. An alternative would be to support the notational form (( logb𝐵)‘𝑋); that looks a little more like traditional notation. Such a function ( logb𝐵) for a fixed base can be obtained in Metamath (without the need for a new definition) by the curry function: (curry logb𝐵), see logbmpt 25366, logbf 25367 and logbfval 25368.

 
Syntaxclogb 25342 Extend class notation to include the logarithm generalized to an arbitrary base.
class logb
 
Definitiondf-logb 25343* Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as (𝐵 logb 𝑋) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition is according to Wikipedia "Complex logarithm": https://en.wikipedia.org/wiki/Complex_logarithm#Logarithms_to_other_bases (10-Jun-2020). (Contributed by David A. Wheeler, 21-Jan-2017.)
logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
 
Theoremlogbval 25344 Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by David A. Wheeler, 16-Jul-2017.)
((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
 
Theoremlogbcl 25345 General logarithm closure. (Contributed by David A. Wheeler, 17-Jul-2017.)
((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) ∈ ℂ)
 
Theoremlogbid1 25346 General logarithm is 1 when base and arg match. Property 1(a) of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by David A. Wheeler, 22-Jul-2017.)
((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 logb 𝐴) = 1)
 
Theoremlogb1 25347 The logarithm of 1 to an arbitrary base 𝐵 is 0. Property 1(b) of [Cohen4] p. 361. See log1 25169. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝐵 logb 1) = 0)
 
Theoremelogb 25348 The general logarithm of a number to the base being Euler's constant is the natural logarithm of the number. Put another way, using e as the base in logb is the same as log. Definition in [Cohen4] p. 352. (Contributed by David A. Wheeler, 17-Oct-2017.) (Revised by David A. Wheeler and AV, 16-Jun-2020.)
(𝐴 ∈ (ℂ ∖ {0}) → (e logb 𝐴) = (log‘𝐴))
 
Theoremlogbchbase 25349 Change of base for logarithms. Property in [Cohen4] p. 367. (Contributed by AV, 11-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐴 logb 𝑋) = ((𝐵 logb 𝑋) / (𝐵 logb 𝐴)))
 
Theoremrelogbval 25350 Value of the general logarithm with integer base. (Contributed by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
 
Theoremrelogbcl 25351 Closure of the general logarithm with a positive real base on positive reals. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ ℝ+𝑋 ∈ ℝ+𝐵 ≠ 1) → (𝐵 logb 𝑋) ∈ ℝ)
 
Theoremrelogbzcl 25352 Closure of the general logarithm with integer base on positive reals. (Contributed by Thierry Arnoux, 27-Sep-2017.) (Proof shortened by AV, 9-Jun-2020.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ)
 
Theoremrelogbreexp 25353 Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.)
((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb (𝐶𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶)))
 
Theoremrelogbzexp 25354 Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.)
((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+𝑁 ∈ ℤ) → (𝐵 logb (𝐶𝑁)) = (𝑁 · (𝐵 logb 𝐶)))
 
Theoremrelogbmul 25355 The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 29-May-2020.)
((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶)))
 
Theoremrelogbmulexp 25356 The logarithm of the product of a positive real and a positive real number to the power of a real number is the sum of the logarithm of the first real number and the scaled logarithm of the second real number. (Contributed by AV, 29-May-2020.)
((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+𝐸 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐶𝑐𝐸))) = ((𝐵 logb 𝐴) + (𝐸 · (𝐵 logb 𝐶))))
 
Theoremrelogbdiv 25357 The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.)
((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)))
 
Theoremrelogbexp 25358 Identity law for general logarithm: the logarithm of a power to the base is the exponent. Property 6 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.)
((𝐵 ∈ ℝ+𝐵 ≠ 1 ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵𝑀)) = 𝑀)
 
Theoremnnlogbexp 25359 Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵𝑀)) = 𝑀)
 
Theoremlogbrec 25360 Logarithm of a reciprocal changes sign. See logrec 25341. Particular case of Property 3 of [Cohen4] p. 361. (Contributed by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (𝐵 logb (1 / 𝐴)) = -(𝐵 logb 𝐴))
 
Theoremlogbleb 25361 The general logarithm function is monotone/increasing. See logleb 25186. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by AV, 31-May-2020.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (𝑋𝑌 ↔ (𝐵 logb 𝑋) ≤ (𝐵 logb 𝑌)))
 
Theoremlogblt 25362 The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 25183. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌)))
 
Theoremrelogbcxp 25363 Identity law for the general logarithm for real numbers. (Contributed by AV, 22-May-2020.)
((𝐵 ∈ (ℝ+ ∖ {1}) ∧ 𝑋 ∈ ℝ) → (𝐵 logb (𝐵𝑐𝑋)) = 𝑋)
 
Theoremcxplogb 25364 Identity law for the general logarithm. (Contributed by AV, 22-May-2020.)
((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
 
Theoremrelogbcxpb 25365 The logarithm is the inverse of the exponentiation. Observation in [Cohen4] p. 348. (Contributed by AV, 11-Jun-2020.)
(((𝐵 ∈ ℝ+𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐵 logb 𝑋) = 𝑌 ↔ (𝐵𝑐𝑌) = 𝑋))
 
Theoremlogbmpt 25366* The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020.)
((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵))))
 
Theoremlogbf 25367 The general logarithm to a fixed base regarded as function. (Contributed by AV, 11-Jun-2020.)
((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb𝐵):(ℂ ∖ {0})⟶ℂ)
 
Theoremlogbfval 25368 The general logarithm of a complex number to a fixed base. (Contributed by AV, 11-Jun-2020.)
(((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ((curry logb𝐵)‘𝑋) = (𝐵 logb 𝑋))
 
Theoremrelogbf 25369 The general logarithm to a real base greater than 1 regarded as function restricted to the positive integers. Property in [Cohen4] p. 349. (Contributed by AV, 12-Jun-2020.)
((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ((curry logb𝐵) ↾ ℝ+):ℝ+⟶ℝ)
 
Theoremlogblog 25370 The general logarithm to the base being Euler's constant regarded as function is the natural logarithm. (Contributed by AV, 12-Jun-2020.)
(curry logb ‘e) = log
 
Theoremlogbgt0b 25371 The logarithm of a positive real number to a real base greater than 1 is positive iff the number is greater than 1. (Contributed by AV, 29-Dec-2022.)
((𝐴 ∈ ℝ+ ∧ (𝐵 ∈ ℝ+ ∧ 1 < 𝐵)) → (0 < (𝐵 logb 𝐴) ↔ 1 < 𝐴))
 
Theoremlogbgcd1irr 25372 The logarithm of an integer greater than 1 to an integer base greater than 1 is an irrational number if the argument and the base are relatively prime. For example, (2 logb 9) ∈ (ℝ ∖ ℚ) (see 2logb9irr 25373). (Contributed by AV, 29-Dec-2022.)
((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))
 
Theorem2logb9irr 25373 Example for logbgcd1irr 25372. The logarithm of nine to base two is irrational. (Contributed by AV, 29-Dec-2022.)
(2 logb 9) ∈ (ℝ ∖ ℚ)
 
Theoremlogbprmirr 25374 The logarithm of a prime to a different prime base is an irrational number. For example, (2 logb 3) ∈ (ℝ ∖ ℚ) (see 2logb3irr 25375). (Contributed by AV, 31-Dec-2022.)
((𝑋 ∈ ℙ ∧ 𝐵 ∈ ℙ ∧ 𝑋𝐵) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))
 
Theorem2logb3irr 25375 Example for logbprmirr 25374. The logarithm of three to base two is irrational. (Contributed by AV, 31-Dec-2022.)
(2 logb 3) ∈ (ℝ ∖ ℚ)
 
Theorem2logb9irrALT 25376 Alternate proof of 2logb9irr 25373: The logarithm of nine to base two is irrational. (Contributed by AV, 31-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(2 logb 9) ∈ (ℝ ∖ ℚ)
 
Theoremsqrt2cxp2logb9e3 25377 The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are irrational numbers (see sqrt2irr0 15604 resp. 2logb9irr 25373), satisfying the statement in 2irrexpqALT 25378. (Contributed by AV, 29-Dec-2022.)
((√‘2)↑𝑐(2 logb 9)) = 3
 
Theorem2irrexpqALT 25378* Alternate proof of 2irrexpq 25313: There exist irrational numbers 𝑎 and 𝑏 such that (𝑎𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. In contrast to 2irrexpq 25313, this is a constructive proof because it is based on two explicitly named irrational numbers (√‘2) and (2 logb 9), see sqrt2irr0 15604, 2logb9irr 25373 and sqrt2cxp2logb9e3 25377. Therefore, this proof is also acceptable/usable in intuitionistic logic. (Contributed by AV, 23-Dec-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ
 
14.3.6  Theorems of Pythagoras, isosceles triangles, and intersecting chords
 
Theoremangval 25379* Define the angle function, which takes two complex numbers, treated as vectors from the origin, and returns the angle between them, in the range ( − π, π]. To convert from the geometry notation, 𝑚𝐴𝐵𝐶, the measure of the angle with legs 𝐴𝐵, 𝐶𝐵 where 𝐶 is more counterclockwise for positive angles, is represented by ((𝐶𝐵)𝐹(𝐴𝐵)). (Contributed by Mario Carneiro, 23-Sep-2014.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))       (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴𝐹𝐵) = (ℑ‘(log‘(𝐵 / 𝐴))))
 
Theoremangcan 25380* Cancel a constant multiplier in the angle function. (Contributed by Mario Carneiro, 23-Sep-2014.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))       (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴)𝐹(𝐶 · 𝐵)) = (𝐴𝐹𝐵))
 
Theoremangneg 25381* Cancel a negative sign in the angle function. (Contributed by Mario Carneiro, 23-Sep-2014.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))       (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (-𝐴𝐹-𝐵) = (𝐴𝐹𝐵))
 
Theoremangvald 25382* The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 25379. (Contributed by David Moews, 28-Feb-2017.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑋 ≠ 0)    &   (𝜑𝑌 ∈ ℂ)    &   (𝜑𝑌 ≠ 0)       (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋))))
 
Theoremangcld 25383* The (signed) angle between two vectors is in (-π(,]π). Deduction form. (Contributed by David Moews, 28-Feb-2017.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑋 ≠ 0)    &   (𝜑𝑌 ∈ ℂ)    &   (𝜑𝑌 ≠ 0)       (𝜑 → (𝑋𝐹𝑌) ∈ (-π(,]π))
 
Theoremangrteqvd 25384* Two vectors are at a right angle iff their quotient is purely imaginary. (Contributed by David Moews, 28-Feb-2017.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑋 ≠ 0)    &   (𝜑𝑌 ∈ ℂ)    &   (𝜑𝑌 ≠ 0)       (𝜑 → ((𝑋𝐹𝑌) ∈ {(π / 2), -(π / 2)} ↔ (ℜ‘(𝑌 / 𝑋)) = 0))
 
Theoremcosangneg2d 25385* The cosine of the angle between 𝑋 and -𝑌 is the negative of that between 𝑋 and 𝑌. If A, B and C are collinear points, this implies that the cosines of DBA and DBC sum to zero, i.e., that DBA and DBC are supplementary. (Contributed by David Moews, 28-Feb-2017.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑋 ≠ 0)    &   (𝜑𝑌 ∈ ℂ)    &   (𝜑𝑌 ≠ 0)       (𝜑 → (cos‘(𝑋𝐹-𝑌)) = -(cos‘(𝑋𝐹𝑌)))
 
Theoremangrtmuld 25386* Perpendicularity of two vectors does not change under rescaling the second. (Contributed by David Moews, 28-Feb-2017.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   (𝜑𝑋 ∈ ℂ)    &   (𝜑𝑌 ∈ ℂ)    &   (𝜑𝑍 ∈ ℂ)    &   (𝜑𝑋 ≠ 0)    &   (𝜑𝑌 ≠ 0)    &   (𝜑𝑍 ≠ 0)    &   (𝜑 → (𝑍 / 𝑌) ∈ ℝ)       (𝜑 → ((𝑋𝐹𝑌) ∈ {(π / 2), -(π / 2)} ↔ (𝑋𝐹𝑍) ∈ {(π / 2), -(π / 2)}))
 
Theoremang180lem1 25387* Lemma for ang180 25392. Show that the "revolution number" 𝑁 is an integer, using efeq1 25113 to show that since the product of the three arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 is -1, the sum of the logarithms must be an integer multiple of 2πi away from πi = log(-1). (Contributed by Mario Carneiro, 23-Sep-2014.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))    &   𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))       ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
 
Theoremang180lem2 25388* Lemma for ang180 25392. Show that the revolution number 𝑁 is strictly between -2 and 1. Both bounds are established by iterating using the bounds on the imaginary part of the logarithm, logimcl 25153, but the resulting bound gives only 𝑁 ≤ 1 for the upper bound. The case 𝑁 = 1 is not ruled out here, but it is in some sense an "edge case" that can only happen under very specific conditions; in particular we show that all the angle arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 must lie on the negative real axis, which is a contradiction because clearly if 𝐴 is negative then the other two are positive real. (Contributed by Mario Carneiro, 23-Sep-2014.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))    &   𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))       ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
 
Theoremang180lem3 25389* Lemma for ang180 25392. Since ang180lem1 25387 shows that 𝑁 is an integer and ang180lem2 25388 shows that 𝑁 is strictly between -2 and 1, it follows that 𝑁 ∈ {-1, 0}, and these two cases correspond to the two possible values for 𝑇. (Contributed by Mario Carneiro, 23-Sep-2014.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))    &   𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))       ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ {-(i · π), (i · π)})
 
Theoremang180lem4 25390* Lemma for ang180 25392. Reduce the statement to one variable. (Contributed by Mario Carneiro, 23-Sep-2014.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))       ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((1 − 𝐴)𝐹1) + (𝐴𝐹(𝐴 − 1))) + (1𝐹𝐴)) ∈ {-π, π})
 
Theoremang180lem5 25391* Lemma for ang180 25392: Reduce the statement to two variables. (Contributed by Mario Carneiro, 23-Sep-2014.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))       (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → ((((𝐴𝐵)𝐹𝐴) + (𝐵𝐹(𝐵𝐴))) + (𝐴𝐹𝐵)) ∈ {-π, π})
 
Theoremang180 25392* The sum of angles 𝑚𝐴𝐵𝐶 + 𝑚𝐵𝐶𝐴 + 𝑚𝐶𝐴𝐵 in a triangle adds up to either π or , i.e. 180 degrees. (The sign is due to the two possible orientations of vertex arrangement and our signed notion of angle). This is Metamath 100 proof #27. (Contributed by Mario Carneiro, 23-Sep-2014.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))       (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐵𝐵𝐶𝐴𝐶)) → ((((𝐶𝐵)𝐹(𝐴𝐵)) + ((𝐴𝐶)𝐹(𝐵𝐶))) + ((𝐵𝐴)𝐹(𝐶𝐴))) ∈ {-π, π})
 
Theoremlawcoslem1 25393 Lemma for lawcos 25394. Here we prove the law for a point at the origin and two distinct points U and V, using an expanded version of the signed angle expression on the complex plane. (Contributed by David A. Wheeler, 11-Jun-2015.)
(𝜑𝑈 ∈ ℂ)    &   (𝜑𝑉 ∈ ℂ)    &   (𝜑𝑈 ≠ 0)    &   (𝜑𝑉 ≠ 0)       (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))
 
Theoremlawcos 25394* Law of cosines (also known as the Al-Kashi theorem or the generalized Pythagorean theorem, or the cosine formula or cosine rule). Given three distinct points A, B, and C, prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 25392), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB, and 𝑂 is the signed angle m/_ BCA on the complex plane. We translate triangle ABC to move C to the origin (C-C), B to U=(B-C), and A to V=(A-C), then use lemma lawcoslem1 25393 to prove this algebraically simpler case. The Metamath convention is to use a signed angle; in this case the sign doesn't matter because we use the cosine of the angle (see cosneg 15500). The Pythagorean theorem pythag 25395 is a special case of the law of cosines. The theorem's expression and approach were suggested by Mario Carneiro. This is Metamath 100 proof #94. (Contributed by David A. Wheeler, 12-Jun-2015.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   𝑋 = (abs‘(𝐵𝐶))    &   𝑌 = (abs‘(𝐴𝐶))    &   𝑍 = (abs‘(𝐴𝐵))    &   𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))       (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
 
Theorempythag 25395* Pythagorean theorem. Given three distinct points A, B, and C that form a right triangle (with the right angle at C), prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 25392), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB (the hypotenuse), and 𝑂 is the signed right angle m/_ BCA. We use the law of cosines lawcos 25394 to prove this, along with simple trigonometry facts like coshalfpi 25055 and cosneg 15500. (Contributed by David A. Wheeler, 13-Jun-2015.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   𝑋 = (abs‘(𝐵𝐶))    &   𝑌 = (abs‘(𝐴𝐶))    &   𝑍 = (abs‘(𝐴𝐵))    &   𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))       (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = ((𝑋↑2) + (𝑌↑2)))
 
Theoremisosctrlem1 25396 Lemma for isosctr 25399. (Contributed by Saveliy Skresanov, 30-Dec-2016.)
((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
 
Theoremisosctrlem2 25397 Lemma for isosctr 25399. Corresponds to the case where one vertex is at 0, another at 1 and the third lies on the unit circle. (Contributed by Saveliy Skresanov, 31-Dec-2016.)
((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴)))))
 
Theoremisosctrlem3 25398* Lemma for isosctr 25399. Corresponds to the case where one vertex is at 0. (Contributed by Saveliy Skresanov, 1-Jan-2017.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))       (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹(𝐵𝐴)) = ((𝐴𝐵)𝐹-𝐵))
 
Theoremisosctr 25399* Isosceles triangle theorem. This is Metamath 100 proof #65. (Contributed by Saveliy Skresanov, 1-Jan-2017.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))       (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶𝐴𝐵) ∧ (abs‘(𝐴𝐶)) = (abs‘(𝐵𝐶))) → ((𝐶𝐴)𝐹(𝐵𝐴)) = ((𝐴𝐵)𝐹(𝐶𝐵)))
 
Theoremssscongptld 25400* If two triangles have equal sides, one angle in one triangle has the same cosine as the corresponding angle in the other triangle. This is a partial form of the SSS congruence theorem.

This theorem is proven by using lawcos 25394 on both triangles to express one side in terms of the other two, and then equating these expressions and reducing this algebraically to get an equality of cosines of angles. (Contributed by David Moews, 28-Feb-2017.)

𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐸 ∈ ℂ)    &   (𝜑𝐺 ∈ ℂ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)    &   (𝜑𝐷𝐸)    &   (𝜑𝐸𝐺)    &   (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐷𝐸)))    &   (𝜑 → (abs‘(𝐵𝐶)) = (abs‘(𝐸𝐺)))    &   (𝜑 → (abs‘(𝐶𝐴)) = (abs‘(𝐺𝐷)))       (𝜑 → (cos‘((𝐴𝐵)𝐹(𝐶𝐵))) = (cos‘((𝐷𝐸)𝐹(𝐺𝐸))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-44955
  Copyright terms: Public domain < Previous  Next >