Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-itgm | Structured version Visualization version GIF version |
Description: Define the Bochner
integral as the extension by continuity of the
Bochnel integral for simple functions.
Bogachev first defines 'fundamental in the mean' sequences, in definition 2.3.1 of [Bogachev] p. 116, and notes that those are actually Cauchy sequences for the pseudometric (𝑤sitm𝑚). He then defines the Bochner integral in chapter 2.4.4 in [Bogachev] p. 118. The definition of the Lebesgue integral, df-itg 24692. (Contributed by Thierry Arnoux, 13-Feb-2018.) |
Ref | Expression |
---|---|
df-itgm | ⊢ itgm = (𝑤 ∈ V, 𝑚 ∈ ∪ ran measures ↦ (((metUnif‘(𝑤sitm𝑚))CnExt(UnifSt‘𝑤))‘(𝑤sitg𝑚))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | citgm 32194 | . 2 class itgm | |
2 | vw | . . 3 setvar 𝑤 | |
3 | vm | . . 3 setvar 𝑚 | |
4 | cvv 3422 | . . 3 class V | |
5 | cmeas 32063 | . . . . 5 class measures | |
6 | 5 | crn 5581 | . . . 4 class ran measures |
7 | 6 | cuni 4836 | . . 3 class ∪ ran measures |
8 | 2 | cv 1538 | . . . . 5 class 𝑤 |
9 | 3 | cv 1538 | . . . . 5 class 𝑚 |
10 | csitg 32196 | . . . . 5 class sitg | |
11 | 8, 9, 10 | co 7255 | . . . 4 class (𝑤sitg𝑚) |
12 | csitm 32195 | . . . . . . 7 class sitm | |
13 | 8, 9, 12 | co 7255 | . . . . . 6 class (𝑤sitm𝑚) |
14 | cmetu 20501 | . . . . . 6 class metUnif | |
15 | 13, 14 | cfv 6418 | . . . . 5 class (metUnif‘(𝑤sitm𝑚)) |
16 | cuss 23313 | . . . . . 6 class UnifSt | |
17 | 8, 16 | cfv 6418 | . . . . 5 class (UnifSt‘𝑤) |
18 | ccnext 23118 | . . . . 5 class CnExt | |
19 | 15, 17, 18 | co 7255 | . . . 4 class ((metUnif‘(𝑤sitm𝑚))CnExt(UnifSt‘𝑤)) |
20 | 11, 19 | cfv 6418 | . . 3 class (((metUnif‘(𝑤sitm𝑚))CnExt(UnifSt‘𝑤))‘(𝑤sitg𝑚)) |
21 | 2, 3, 4, 7, 20 | cmpo 7257 | . 2 class (𝑤 ∈ V, 𝑚 ∈ ∪ ran measures ↦ (((metUnif‘(𝑤sitm𝑚))CnExt(UnifSt‘𝑤))‘(𝑤sitg𝑚))) |
22 | 1, 21 | wceq 1539 | 1 wff itgm = (𝑤 ∈ V, 𝑚 ∈ ∪ ran measures ↦ (((metUnif‘(𝑤sitm𝑚))CnExt(UnifSt‘𝑤))‘(𝑤sitg𝑚))) |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |