MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg Structured version   Visualization version   GIF version

Definition df-itg 25594
Description: Define the full Lebesgue integral, for complex-valued functions to . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of 𝑥↑2 from 0 to 1 is ∫(0[,]1)(𝑥↑2) d𝑥 = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 25592 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 25592 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
df-itg 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Distinct variable groups:   𝑦,𝑘,𝐴   𝐵,𝑘,𝑦   𝑥,𝑘,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-itg
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3citg 25589 . 2 class 𝐴𝐵 d𝑥
5 cc0 11137 . . . 4 class 0
6 c3 12304 . . . 4 class 3
7 cfz 13529 . . . 4 class ...
85, 6, 7co 7413 . . 3 class (0...3)
9 ci 11139 . . . . 5 class i
10 vk . . . . . 6 setvar 𝑘
1110cv 1538 . . . . 5 class 𝑘
12 cexp 14084 . . . . 5 class
139, 11, 12co 7413 . . . 4 class (i↑𝑘)
14 cr 11136 . . . . . 6 class
15 vy . . . . . . 7 setvar 𝑦
16 cdiv 11902 . . . . . . . . 9 class /
173, 13, 16co 7413 . . . . . . . 8 class (𝐵 / (i↑𝑘))
18 cre 15118 . . . . . . . 8 class
1917, 18cfv 6541 . . . . . . 7 class (ℜ‘(𝐵 / (i↑𝑘)))
201cv 1538 . . . . . . . . . 10 class 𝑥
2120, 2wcel 2107 . . . . . . . . 9 wff 𝑥𝐴
2215cv 1538 . . . . . . . . . 10 class 𝑦
23 cle 11278 . . . . . . . . . 10 class
245, 22, 23wbr 5123 . . . . . . . . 9 wff 0 ≤ 𝑦
2521, 24wa 395 . . . . . . . 8 wff (𝑥𝐴 ∧ 0 ≤ 𝑦)
2625, 22, 5cif 4505 . . . . . . 7 class if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
2715, 19, 26csb 3879 . . . . . 6 class (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
281, 14, 27cmpt 5205 . . . . 5 class (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))
29 citg2 25587 . . . . 5 class 2
3028, 29cfv 6541 . . . 4 class (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))
31 cmul 11142 . . . 4 class ·
3213, 30, 31co 7413 . . 3 class ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
338, 32, 10csu 15704 . 2 class Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
344, 33wceq 1539 1 wff 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Colors of variables: wff setvar class
This definition is referenced by:  dfitg  25740  itgex  25741  itgeq1f  25742  itgeq1  25744  nfitg1  25745  cbvitgv  25748  itgeq12i  36166  itgeq12sdv  36179  cbvitgvw2  36208  cbvitgdavw  36241  cbvitgdavw2  36257
  Copyright terms: Public domain W3C validator