MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg Structured version   Visualization version   GIF version

Definition df-itg 25544
Description: Define the full Lebesgue integral, for complex-valued functions to . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of 𝑥↑2 from 0 to 1 is ∫(0[,]1)(𝑥↑2) d𝑥 = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 25542 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 25542 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
df-itg 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Distinct variable groups:   𝑦,𝑘,𝐴   𝐵,𝑘,𝑦   𝑥,𝑘,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-itg
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3citg 25539 . 2 class 𝐴𝐵 d𝑥
5 cc0 10998 . . . 4 class 0
6 c3 12173 . . . 4 class 3
7 cfz 13399 . . . 4 class ...
85, 6, 7co 7341 . . 3 class (0...3)
9 ci 11000 . . . . 5 class i
10 vk . . . . . 6 setvar 𝑘
1110cv 1540 . . . . 5 class 𝑘
12 cexp 13960 . . . . 5 class
139, 11, 12co 7341 . . . 4 class (i↑𝑘)
14 cr 10997 . . . . . 6 class
15 vy . . . . . . 7 setvar 𝑦
16 cdiv 11766 . . . . . . . . 9 class /
173, 13, 16co 7341 . . . . . . . 8 class (𝐵 / (i↑𝑘))
18 cre 14996 . . . . . . . 8 class
1917, 18cfv 6477 . . . . . . 7 class (ℜ‘(𝐵 / (i↑𝑘)))
201cv 1540 . . . . . . . . . 10 class 𝑥
2120, 2wcel 2110 . . . . . . . . 9 wff 𝑥𝐴
2215cv 1540 . . . . . . . . . 10 class 𝑦
23 cle 11139 . . . . . . . . . 10 class
245, 22, 23wbr 5089 . . . . . . . . 9 wff 0 ≤ 𝑦
2521, 24wa 395 . . . . . . . 8 wff (𝑥𝐴 ∧ 0 ≤ 𝑦)
2625, 22, 5cif 4473 . . . . . . 7 class if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
2715, 19, 26csb 3848 . . . . . 6 class (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
281, 14, 27cmpt 5170 . . . . 5 class (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))
29 citg2 25537 . . . . 5 class 2
3028, 29cfv 6477 . . . 4 class (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))
31 cmul 11003 . . . 4 class ·
3213, 30, 31co 7341 . . 3 class ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
338, 32, 10csu 15585 . 2 class Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
344, 33wceq 1541 1 wff 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Colors of variables: wff setvar class
This definition is referenced by:  dfitg  25690  itgex  25691  itgeq1f  25692  itgeq1  25694  nfitg1  25695  cbvitgv  25698  itgeq12i  36219  itgeq12sdv  36232  cbvitgvw2  36261  cbvitgdavw  36294  cbvitgdavw2  36310
  Copyright terms: Public domain W3C validator