MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg Structured version   Visualization version   GIF version

Definition df-itg 25545
Description: Define the full Lebesgue integral, for complex-valued functions to . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of 𝑥↑2 from 0 to 1 is ∫(0[,]1)(𝑥↑2) d𝑥 = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 25543 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 25543 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
df-itg 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Distinct variable groups:   𝑦,𝑘,𝐴   𝐵,𝑘,𝑦   𝑥,𝑘,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-itg
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3citg 25540 . 2 class 𝐴𝐵 d𝑥
5 cc0 11132 . . . 4 class 0
6 c3 12292 . . . 4 class 3
7 cfz 13510 . . . 4 class ...
85, 6, 7co 7414 . . 3 class (0...3)
9 ci 11134 . . . . 5 class i
10 vk . . . . . 6 setvar 𝑘
1110cv 1533 . . . . 5 class 𝑘
12 cexp 14052 . . . . 5 class
139, 11, 12co 7414 . . . 4 class (i↑𝑘)
14 cr 11131 . . . . . 6 class
15 vy . . . . . . 7 setvar 𝑦
16 cdiv 11895 . . . . . . . . 9 class /
173, 13, 16co 7414 . . . . . . . 8 class (𝐵 / (i↑𝑘))
18 cre 15070 . . . . . . . 8 class
1917, 18cfv 6542 . . . . . . 7 class (ℜ‘(𝐵 / (i↑𝑘)))
201cv 1533 . . . . . . . . . 10 class 𝑥
2120, 2wcel 2099 . . . . . . . . 9 wff 𝑥𝐴
2215cv 1533 . . . . . . . . . 10 class 𝑦
23 cle 11273 . . . . . . . . . 10 class
245, 22, 23wbr 5142 . . . . . . . . 9 wff 0 ≤ 𝑦
2521, 24wa 395 . . . . . . . 8 wff (𝑥𝐴 ∧ 0 ≤ 𝑦)
2625, 22, 5cif 4524 . . . . . . 7 class if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
2715, 19, 26csb 3889 . . . . . 6 class (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
281, 14, 27cmpt 5225 . . . . 5 class (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))
29 citg2 25538 . . . . 5 class 2
3028, 29cfv 6542 . . . 4 class (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))
31 cmul 11137 . . . 4 class ·
3213, 30, 31co 7414 . . 3 class ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
338, 32, 10csu 15658 . 2 class Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
344, 33wceq 1534 1 wff 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Colors of variables: wff setvar class
This definition is referenced by:  dfitg  25692  itgex  25693  nfitg1  25696
  Copyright terms: Public domain W3C validator