MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg Structured version   Visualization version   GIF version

Definition df-itg 25540
Description: Define the full Lebesgue integral, for complex-valued functions to . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of 𝑥↑2 from 0 to 1 is ∫(0[,]1)(𝑥↑2) d𝑥 = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 25538 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 25538 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
df-itg 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Distinct variable groups:   𝑦,𝑘,𝐴   𝐵,𝑘,𝑦   𝑥,𝑘,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-itg
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3citg 25535 . 2 class 𝐴𝐵 d𝑥
5 cc0 11028 . . . 4 class 0
6 c3 12202 . . . 4 class 3
7 cfz 13428 . . . 4 class ...
85, 6, 7co 7353 . . 3 class (0...3)
9 ci 11030 . . . . 5 class i
10 vk . . . . . 6 setvar 𝑘
1110cv 1539 . . . . 5 class 𝑘
12 cexp 13986 . . . . 5 class
139, 11, 12co 7353 . . . 4 class (i↑𝑘)
14 cr 11027 . . . . . 6 class
15 vy . . . . . . 7 setvar 𝑦
16 cdiv 11795 . . . . . . . . 9 class /
173, 13, 16co 7353 . . . . . . . 8 class (𝐵 / (i↑𝑘))
18 cre 15022 . . . . . . . 8 class
1917, 18cfv 6486 . . . . . . 7 class (ℜ‘(𝐵 / (i↑𝑘)))
201cv 1539 . . . . . . . . . 10 class 𝑥
2120, 2wcel 2109 . . . . . . . . 9 wff 𝑥𝐴
2215cv 1539 . . . . . . . . . 10 class 𝑦
23 cle 11169 . . . . . . . . . 10 class
245, 22, 23wbr 5095 . . . . . . . . 9 wff 0 ≤ 𝑦
2521, 24wa 395 . . . . . . . 8 wff (𝑥𝐴 ∧ 0 ≤ 𝑦)
2625, 22, 5cif 4478 . . . . . . 7 class if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
2715, 19, 26csb 3853 . . . . . 6 class (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
281, 14, 27cmpt 5176 . . . . 5 class (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))
29 citg2 25533 . . . . 5 class 2
3028, 29cfv 6486 . . . 4 class (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))
31 cmul 11033 . . . 4 class ·
3213, 30, 31co 7353 . . 3 class ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
338, 32, 10csu 15611 . 2 class Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
344, 33wceq 1540 1 wff 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Colors of variables: wff setvar class
This definition is referenced by:  dfitg  25686  itgex  25687  itgeq1f  25688  itgeq1  25690  nfitg1  25691  cbvitgv  25694  itgeq12i  36179  itgeq12sdv  36192  cbvitgvw2  36221  cbvitgdavw  36254  cbvitgdavw2  36270
  Copyright terms: Public domain W3C validator