MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg Structured version   Visualization version   GIF version

Definition df-itg 25561
Description: Define the full Lebesgue integral, for complex-valued functions to . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of 𝑥↑2 from 0 to 1 is ∫(0[,]1)(𝑥↑2) d𝑥 = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 25559 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 25559 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
df-itg 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Distinct variable groups:   𝑦,𝑘,𝐴   𝐵,𝑘,𝑦   𝑥,𝑘,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-itg
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3citg 25556 . 2 class 𝐴𝐵 d𝑥
5 cc0 11016 . . . 4 class 0
6 c3 12191 . . . 4 class 3
7 cfz 13417 . . . 4 class ...
85, 6, 7co 7355 . . 3 class (0...3)
9 ci 11018 . . . . 5 class i
10 vk . . . . . 6 setvar 𝑘
1110cv 1540 . . . . 5 class 𝑘
12 cexp 13978 . . . . 5 class
139, 11, 12co 7355 . . . 4 class (i↑𝑘)
14 cr 11015 . . . . . 6 class
15 vy . . . . . . 7 setvar 𝑦
16 cdiv 11784 . . . . . . . . 9 class /
173, 13, 16co 7355 . . . . . . . 8 class (𝐵 / (i↑𝑘))
18 cre 15014 . . . . . . . 8 class
1917, 18cfv 6489 . . . . . . 7 class (ℜ‘(𝐵 / (i↑𝑘)))
201cv 1540 . . . . . . . . . 10 class 𝑥
2120, 2wcel 2113 . . . . . . . . 9 wff 𝑥𝐴
2215cv 1540 . . . . . . . . . 10 class 𝑦
23 cle 11157 . . . . . . . . . 10 class
245, 22, 23wbr 5095 . . . . . . . . 9 wff 0 ≤ 𝑦
2521, 24wa 395 . . . . . . . 8 wff (𝑥𝐴 ∧ 0 ≤ 𝑦)
2625, 22, 5cif 4476 . . . . . . 7 class if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
2715, 19, 26csb 3847 . . . . . 6 class (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
281, 14, 27cmpt 5176 . . . . 5 class (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))
29 citg2 25554 . . . . 5 class 2
3028, 29cfv 6489 . . . 4 class (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))
31 cmul 11021 . . . 4 class ·
3213, 30, 31co 7355 . . 3 class ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
338, 32, 10csu 15603 . 2 class Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
344, 33wceq 1541 1 wff 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Colors of variables: wff setvar class
This definition is referenced by:  dfitg  25707  itgex  25708  itgeq1f  25709  itgeq1  25711  nfitg1  25712  cbvitgv  25715  itgeq12i  36261  itgeq12sdv  36274  cbvitgvw2  36303  cbvitgdavw  36336  cbvitgdavw2  36352
  Copyright terms: Public domain W3C validator