MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg Structured version   Visualization version   GIF version

Definition df-itg 25677
Description: Define the full Lebesgue integral, for complex-valued functions to . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of 𝑥↑2 from 0 to 1 is ∫(0[,]1)(𝑥↑2) d𝑥 = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 25675 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 25675 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
df-itg 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Distinct variable groups:   𝑦,𝑘,𝐴   𝐵,𝑘,𝑦   𝑥,𝑘,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-itg
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3citg 25672 . 2 class 𝐴𝐵 d𝑥
5 cc0 11184 . . . 4 class 0
6 c3 12349 . . . 4 class 3
7 cfz 13567 . . . 4 class ...
85, 6, 7co 7448 . . 3 class (0...3)
9 ci 11186 . . . . 5 class i
10 vk . . . . . 6 setvar 𝑘
1110cv 1536 . . . . 5 class 𝑘
12 cexp 14112 . . . . 5 class
139, 11, 12co 7448 . . . 4 class (i↑𝑘)
14 cr 11183 . . . . . 6 class
15 vy . . . . . . 7 setvar 𝑦
16 cdiv 11947 . . . . . . . . 9 class /
173, 13, 16co 7448 . . . . . . . 8 class (𝐵 / (i↑𝑘))
18 cre 15146 . . . . . . . 8 class
1917, 18cfv 6573 . . . . . . 7 class (ℜ‘(𝐵 / (i↑𝑘)))
201cv 1536 . . . . . . . . . 10 class 𝑥
2120, 2wcel 2108 . . . . . . . . 9 wff 𝑥𝐴
2215cv 1536 . . . . . . . . . 10 class 𝑦
23 cle 11325 . . . . . . . . . 10 class
245, 22, 23wbr 5166 . . . . . . . . 9 wff 0 ≤ 𝑦
2521, 24wa 395 . . . . . . . 8 wff (𝑥𝐴 ∧ 0 ≤ 𝑦)
2625, 22, 5cif 4548 . . . . . . 7 class if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
2715, 19, 26csb 3921 . . . . . 6 class (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
281, 14, 27cmpt 5249 . . . . 5 class (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))
29 citg2 25670 . . . . 5 class 2
3028, 29cfv 6573 . . . 4 class (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))
31 cmul 11189 . . . 4 class ·
3213, 30, 31co 7448 . . 3 class ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
338, 32, 10csu 15734 . 2 class Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
344, 33wceq 1537 1 wff 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Colors of variables: wff setvar class
This definition is referenced by:  dfitg  25824  itgex  25825  itgeq1f  25826  itgeq1  25828  nfitg1  25829  cbvitgv  25832  itgeq12i  36170  itgeq12sdv  36185  cbvitgvw2  36214  cbvitgdavw  36247  cbvitgdavw2  36263
  Copyright terms: Public domain W3C validator