MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg Structured version   Visualization version   GIF version

Definition df-itg 25524
Description: Define the full Lebesgue integral, for complex-valued functions to . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of 𝑥↑2 from 0 to 1 is ∫(0[,]1)(𝑥↑2) d𝑥 = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 25522 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 25522 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
df-itg 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Distinct variable groups:   𝑦,𝑘,𝐴   𝐵,𝑘,𝑦   𝑥,𝑘,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-itg
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3citg 25519 . 2 class 𝐴𝐵 d𝑥
5 cc0 11068 . . . 4 class 0
6 c3 12242 . . . 4 class 3
7 cfz 13468 . . . 4 class ...
85, 6, 7co 7387 . . 3 class (0...3)
9 ci 11070 . . . . 5 class i
10 vk . . . . . 6 setvar 𝑘
1110cv 1539 . . . . 5 class 𝑘
12 cexp 14026 . . . . 5 class
139, 11, 12co 7387 . . . 4 class (i↑𝑘)
14 cr 11067 . . . . . 6 class
15 vy . . . . . . 7 setvar 𝑦
16 cdiv 11835 . . . . . . . . 9 class /
173, 13, 16co 7387 . . . . . . . 8 class (𝐵 / (i↑𝑘))
18 cre 15063 . . . . . . . 8 class
1917, 18cfv 6511 . . . . . . 7 class (ℜ‘(𝐵 / (i↑𝑘)))
201cv 1539 . . . . . . . . . 10 class 𝑥
2120, 2wcel 2109 . . . . . . . . 9 wff 𝑥𝐴
2215cv 1539 . . . . . . . . . 10 class 𝑦
23 cle 11209 . . . . . . . . . 10 class
245, 22, 23wbr 5107 . . . . . . . . 9 wff 0 ≤ 𝑦
2521, 24wa 395 . . . . . . . 8 wff (𝑥𝐴 ∧ 0 ≤ 𝑦)
2625, 22, 5cif 4488 . . . . . . 7 class if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
2715, 19, 26csb 3862 . . . . . 6 class (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
281, 14, 27cmpt 5188 . . . . 5 class (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))
29 citg2 25517 . . . . 5 class 2
3028, 29cfv 6511 . . . 4 class (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))
31 cmul 11073 . . . 4 class ·
3213, 30, 31co 7387 . . 3 class ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
338, 32, 10csu 15652 . 2 class Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
344, 33wceq 1540 1 wff 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Colors of variables: wff setvar class
This definition is referenced by:  dfitg  25670  itgex  25671  itgeq1f  25672  itgeq1  25674  nfitg1  25675  cbvitgv  25678  itgeq12i  36194  itgeq12sdv  36207  cbvitgvw2  36236  cbvitgdavw  36269  cbvitgdavw2  36285
  Copyright terms: Public domain W3C validator