MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg Structured version   Visualization version   GIF version

Definition df-itg 24832
Description: Define the full Lebesgue integral, for complex-valued functions to . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of 𝑥↑2 from 0 to 1 is ∫(0[,]1)(𝑥↑2) d𝑥 = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 24830 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 24830 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
df-itg 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Distinct variable groups:   𝑦,𝑘,𝐴   𝐵,𝑘,𝑦   𝑥,𝑘,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-itg
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3citg 24827 . 2 class 𝐴𝐵 d𝑥
5 cc0 10917 . . . 4 class 0
6 c3 12075 . . . 4 class 3
7 cfz 13285 . . . 4 class ...
85, 6, 7co 7307 . . 3 class (0...3)
9 ci 10919 . . . . 5 class i
10 vk . . . . . 6 setvar 𝑘
1110cv 1538 . . . . 5 class 𝑘
12 cexp 13828 . . . . 5 class
139, 11, 12co 7307 . . . 4 class (i↑𝑘)
14 cr 10916 . . . . . 6 class
15 vy . . . . . . 7 setvar 𝑦
16 cdiv 11678 . . . . . . . . 9 class /
173, 13, 16co 7307 . . . . . . . 8 class (𝐵 / (i↑𝑘))
18 cre 14853 . . . . . . . 8 class
1917, 18cfv 6458 . . . . . . 7 class (ℜ‘(𝐵 / (i↑𝑘)))
201cv 1538 . . . . . . . . . 10 class 𝑥
2120, 2wcel 2104 . . . . . . . . 9 wff 𝑥𝐴
2215cv 1538 . . . . . . . . . 10 class 𝑦
23 cle 11056 . . . . . . . . . 10 class
245, 22, 23wbr 5081 . . . . . . . . 9 wff 0 ≤ 𝑦
2521, 24wa 397 . . . . . . . 8 wff (𝑥𝐴 ∧ 0 ≤ 𝑦)
2625, 22, 5cif 4465 . . . . . . 7 class if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
2715, 19, 26csb 3837 . . . . . 6 class (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
281, 14, 27cmpt 5164 . . . . 5 class (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))
29 citg2 24825 . . . . 5 class 2
3028, 29cfv 6458 . . . 4 class (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))
31 cmul 10922 . . . 4 class ·
3213, 30, 31co 7307 . . 3 class ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
338, 32, 10csu 15442 . 2 class Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
344, 33wceq 1539 1 wff 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Colors of variables: wff setvar class
This definition is referenced by:  dfitg  24979  itgex  24980  nfitg1  24983
  Copyright terms: Public domain W3C validator