Detailed syntax breakdown of Definition df-itg
Step | Hyp | Ref
| Expression |
1 | | vx |
. . 3
setvar 𝑥 |
2 | | cA |
. . 3
class 𝐴 |
3 | | cB |
. . 3
class 𝐵 |
4 | 1, 2, 3 | citg 24763 |
. 2
class
∫𝐴𝐵 d𝑥 |
5 | | cc0 10855 |
. . . 4
class
0 |
6 | | c3 12012 |
. . . 4
class
3 |
7 | | cfz 13221 |
. . . 4
class
... |
8 | 5, 6, 7 | co 7268 |
. . 3
class
(0...3) |
9 | | ci 10857 |
. . . . 5
class
i |
10 | | vk |
. . . . . 6
setvar 𝑘 |
11 | 10 | cv 1540 |
. . . . 5
class 𝑘 |
12 | | cexp 13763 |
. . . . 5
class
↑ |
13 | 9, 11, 12 | co 7268 |
. . . 4
class
(i↑𝑘) |
14 | | cr 10854 |
. . . . . 6
class
ℝ |
15 | | vy |
. . . . . . 7
setvar 𝑦 |
16 | | cdiv 11615 |
. . . . . . . . 9
class
/ |
17 | 3, 13, 16 | co 7268 |
. . . . . . . 8
class (𝐵 / (i↑𝑘)) |
18 | | cre 14789 |
. . . . . . . 8
class
ℜ |
19 | 17, 18 | cfv 6430 |
. . . . . . 7
class
(ℜ‘(𝐵 /
(i↑𝑘))) |
20 | 1 | cv 1540 |
. . . . . . . . . 10
class 𝑥 |
21 | 20, 2 | wcel 2109 |
. . . . . . . . 9
wff 𝑥 ∈ 𝐴 |
22 | 15 | cv 1540 |
. . . . . . . . . 10
class 𝑦 |
23 | | cle 10994 |
. . . . . . . . . 10
class
≤ |
24 | 5, 22, 23 | wbr 5078 |
. . . . . . . . 9
wff 0 ≤
𝑦 |
25 | 21, 24 | wa 395 |
. . . . . . . 8
wff (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦) |
26 | 25, 22, 5 | cif 4464 |
. . . . . . 7
class if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) |
27 | 15, 19, 26 | csb 3836 |
. . . . . 6
class
⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) |
28 | 1, 14, 27 | cmpt 5161 |
. . . . 5
class (𝑥 ∈ ℝ ↦
⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
29 | | citg2 24761 |
. . . . 5
class
∫2 |
30 | 28, 29 | cfv 6430 |
. . . 4
class
(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) |
31 | | cmul 10860 |
. . . 4
class
· |
32 | 13, 30, 31 | co 7268 |
. . 3
class
((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) |
33 | 8, 32, 10 | csu 15378 |
. 2
class
Σ𝑘 ∈
(0...3)((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) |
34 | 4, 33 | wceq 1541 |
1
wff ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) |