MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-itg Structured version   Visualization version   GIF version

Definition df-itg 25574
Description: Define the full Lebesgue integral, for complex-valued functions to . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of 𝑥↑2 from 0 to 1 is ∫(0[,]1)(𝑥↑2) d𝑥 = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 25572 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 25572 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
df-itg 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Distinct variable groups:   𝑦,𝑘,𝐴   𝐵,𝑘,𝑦   𝑥,𝑘,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-itg
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3citg 25569 . 2 class 𝐴𝐵 d𝑥
5 cc0 11127 . . . 4 class 0
6 c3 12294 . . . 4 class 3
7 cfz 13522 . . . 4 class ...
85, 6, 7co 7403 . . 3 class (0...3)
9 ci 11129 . . . . 5 class i
10 vk . . . . . 6 setvar 𝑘
1110cv 1539 . . . . 5 class 𝑘
12 cexp 14077 . . . . 5 class
139, 11, 12co 7403 . . . 4 class (i↑𝑘)
14 cr 11126 . . . . . 6 class
15 vy . . . . . . 7 setvar 𝑦
16 cdiv 11892 . . . . . . . . 9 class /
173, 13, 16co 7403 . . . . . . . 8 class (𝐵 / (i↑𝑘))
18 cre 15114 . . . . . . . 8 class
1917, 18cfv 6530 . . . . . . 7 class (ℜ‘(𝐵 / (i↑𝑘)))
201cv 1539 . . . . . . . . . 10 class 𝑥
2120, 2wcel 2108 . . . . . . . . 9 wff 𝑥𝐴
2215cv 1539 . . . . . . . . . 10 class 𝑦
23 cle 11268 . . . . . . . . . 10 class
245, 22, 23wbr 5119 . . . . . . . . 9 wff 0 ≤ 𝑦
2521, 24wa 395 . . . . . . . 8 wff (𝑥𝐴 ∧ 0 ≤ 𝑦)
2625, 22, 5cif 4500 . . . . . . 7 class if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
2715, 19, 26csb 3874 . . . . . 6 class (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)
281, 14, 27cmpt 5201 . . . . 5 class (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))
29 citg2 25567 . . . . 5 class 2
3028, 29cfv 6530 . . . 4 class (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))
31 cmul 11132 . . . 4 class ·
3213, 30, 31co 7403 . . 3 class ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
338, 32, 10csu 15700 . 2 class Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
344, 33wceq 1540 1 wff 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
Colors of variables: wff setvar class
This definition is referenced by:  dfitg  25720  itgex  25721  itgeq1f  25722  itgeq1  25724  nfitg1  25725  cbvitgv  25728  itgeq12i  36170  itgeq12sdv  36183  cbvitgvw2  36212  cbvitgdavw  36245  cbvitgdavw2  36261
  Copyright terms: Public domain W3C validator