| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oddpwdc.f | . . 3
⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) | 
| 2 |  | 2nn 12340 | . . . . . . . 8
⊢ 2 ∈
ℕ | 
| 3 | 2 | a1i 11 | . . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ 𝑥 ∈ 𝐽) → 2 ∈
ℕ) | 
| 4 |  | simpl 482 | . . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ 𝑥 ∈ 𝐽) → 𝑦 ∈ ℕ0) | 
| 5 | 3, 4 | nnexpcld 14285 | . . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ 𝑥 ∈ 𝐽) → (2↑𝑦) ∈
ℕ) | 
| 6 |  | oddpwdc.j | . . . . . . . 8
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} | 
| 7 |  | ssrab2 4079 | . . . . . . . 8
⊢ {𝑧 ∈ ℕ ∣ ¬ 2
∥ 𝑧} ⊆
ℕ | 
| 8 | 6, 7 | eqsstri 4029 | . . . . . . 7
⊢ 𝐽 ⊆
ℕ | 
| 9 |  | simpr 484 | . . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐽) | 
| 10 | 8, 9 | sselid 3980 | . . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ ℕ) | 
| 11 | 5, 10 | nnmulcld 12320 | . . . . 5
⊢ ((𝑦 ∈ ℕ0
∧ 𝑥 ∈ 𝐽) → ((2↑𝑦) · 𝑥) ∈ ℕ) | 
| 12 | 11 | ancoms 458 | . . . 4
⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) →
((2↑𝑦) · 𝑥) ∈
ℕ) | 
| 13 | 12 | adantl 481 | . . 3
⊢
((⊤ ∧ (𝑥
∈ 𝐽 ∧ 𝑦 ∈ ℕ0))
→ ((2↑𝑦) ·
𝑥) ∈
ℕ) | 
| 14 |  | id 22 | . . . . . . 7
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℕ) | 
| 15 | 2 | a1i 11 | . . . . . . . 8
⊢ (𝑎 ∈ ℕ → 2 ∈
ℕ) | 
| 16 |  | nn0ssre 12532 | . . . . . . . . . . 11
⊢
ℕ0 ⊆ ℝ | 
| 17 |  | ltso 11342 | . . . . . . . . . . 11
⊢  < Or
ℝ | 
| 18 |  | soss 5611 | . . . . . . . . . . 11
⊢
(ℕ0 ⊆ ℝ → ( < Or ℝ →
< Or ℕ0)) | 
| 19 | 16, 17, 18 | mp2 9 | . . . . . . . . . 10
⊢  < Or
ℕ0 | 
| 20 | 19 | a1i 11 | . . . . . . . . 9
⊢ (𝑎 ∈ ℕ → < Or
ℕ0) | 
| 21 |  | 0zd 12627 | . . . . . . . . . 10
⊢ (𝑎 ∈ ℕ → 0 ∈
ℤ) | 
| 22 |  | ssrab2 4079 | . . . . . . . . . . 11
⊢ {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎} ⊆
ℕ0 | 
| 23 | 22 | a1i 11 | . . . . . . . . . 10
⊢ (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎} ⊆
ℕ0) | 
| 24 |  | nnz 12636 | . . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℤ) | 
| 25 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (2↑𝑘) = (2↑𝑛)) | 
| 26 | 25 | breq1d 5152 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑𝑛) ∥ 𝑎)) | 
| 27 | 26 | elrab 3691 | . . . . . . . . . . . . 13
⊢ (𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎} ↔ (𝑛 ∈ ℕ0 ∧
(2↑𝑛) ∥ 𝑎)) | 
| 28 |  | simprl 770 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0
∧ (2↑𝑛) ∥
𝑎)) → 𝑛 ∈
ℕ0) | 
| 29 | 28 | nn0red 12590 | . . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0
∧ (2↑𝑛) ∥
𝑎)) → 𝑛 ∈
ℝ) | 
| 30 | 2 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0
∧ (2↑𝑛) ∥
𝑎)) → 2 ∈
ℕ) | 
| 31 | 30, 28 | nnexpcld 14285 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0
∧ (2↑𝑛) ∥
𝑎)) → (2↑𝑛) ∈
ℕ) | 
| 32 | 31 | nnred 12282 | . . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0
∧ (2↑𝑛) ∥
𝑎)) → (2↑𝑛) ∈
ℝ) | 
| 33 |  | simpl 482 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0
∧ (2↑𝑛) ∥
𝑎)) → 𝑎 ∈
ℕ) | 
| 34 | 33 | nnred 12282 | . . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0
∧ (2↑𝑛) ∥
𝑎)) → 𝑎 ∈
ℝ) | 
| 35 |  | 2re 12341 | . . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℝ | 
| 36 | 35 | leidi 11798 | . . . . . . . . . . . . . . . 16
⊢ 2 ≤
2 | 
| 37 |  | nexple 32834 | . . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ0
∧ 2 ∈ ℝ ∧ 2 ≤ 2) → 𝑛 ≤ (2↑𝑛)) | 
| 38 | 35, 36, 37 | mp3an23 1454 | . . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ≤ (2↑𝑛)) | 
| 39 | 38 | ad2antrl 728 | . . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0
∧ (2↑𝑛) ∥
𝑎)) → 𝑛 ≤ (2↑𝑛)) | 
| 40 | 31 | nnzd 12642 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0
∧ (2↑𝑛) ∥
𝑎)) → (2↑𝑛) ∈
ℤ) | 
| 41 |  | simprr 772 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0
∧ (2↑𝑛) ∥
𝑎)) → (2↑𝑛) ∥ 𝑎) | 
| 42 |  | dvdsle 16348 | . . . . . . . . . . . . . . . 16
⊢
(((2↑𝑛) ∈
ℤ ∧ 𝑎 ∈
ℕ) → ((2↑𝑛)
∥ 𝑎 →
(2↑𝑛) ≤ 𝑎)) | 
| 43 | 42 | imp 406 | . . . . . . . . . . . . . . 15
⊢
((((2↑𝑛) ∈
ℤ ∧ 𝑎 ∈
ℕ) ∧ (2↑𝑛)
∥ 𝑎) →
(2↑𝑛) ≤ 𝑎) | 
| 44 | 40, 33, 41, 43 | syl21anc 837 | . . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0
∧ (2↑𝑛) ∥
𝑎)) → (2↑𝑛) ≤ 𝑎) | 
| 45 | 29, 32, 34, 39, 44 | letrd 11419 | . . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0
∧ (2↑𝑛) ∥
𝑎)) → 𝑛 ≤ 𝑎) | 
| 46 | 27, 45 | sylan2b 594 | . . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}) → 𝑛 ≤ 𝑎) | 
| 47 | 46 | ralrimiva 3145 | . . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ →
∀𝑛 ∈ {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}𝑛 ≤ 𝑎) | 
| 48 |  | brralrspcev 5202 | . . . . . . . . . . 11
⊢ ((𝑎 ∈ ℤ ∧
∀𝑛 ∈ {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}𝑛 ≤ 𝑎) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}𝑛 ≤ 𝑚) | 
| 49 | 24, 47, 48 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝑎 ∈ ℕ →
∃𝑚 ∈ ℤ
∀𝑛 ∈ {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}𝑛 ≤ 𝑚) | 
| 50 |  | nn0uz 12921 | . . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) | 
| 51 | 50 | uzsupss 12983 | . . . . . . . . . 10
⊢ ((0
∈ ℤ ∧ {𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0 ∧
∃𝑚 ∈ ℤ
∀𝑛 ∈ {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}𝑛 ≤ 𝑚) → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}𝑛 < 𝑜))) | 
| 52 | 21, 23, 49, 51 | syl3anc 1372 | . . . . . . . . 9
⊢ (𝑎 ∈ ℕ →
∃𝑚 ∈
ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}𝑛 < 𝑜))) | 
| 53 | 20, 52 | supcl 9499 | . . . . . . . 8
⊢ (𝑎 ∈ ℕ →
sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈
ℕ0) | 
| 54 | 15, 53 | nnexpcld 14285 | . . . . . . 7
⊢ (𝑎 ∈ ℕ →
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈
ℕ) | 
| 55 |  | fzfi 14014 | . . . . . . . . . . . 12
⊢
(0...𝑎) ∈
Fin | 
| 56 |  | 0zd 12627 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}) → 0 ∈
ℤ) | 
| 57 | 24 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}) → 𝑎 ∈ ℤ) | 
| 58 | 27, 28 | sylan2b 594 | . . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}) → 𝑛 ∈ ℕ0) | 
| 59 | 58 | nn0zd 12641 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}) → 𝑛 ∈ ℤ) | 
| 60 | 58 | nn0ge0d 12592 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}) → 0 ≤ 𝑛) | 
| 61 | 56, 57, 59, 60, 46 | elfzd 13556 | . . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}) → 𝑛 ∈ (0...𝑎)) | 
| 62 | 61 | ex 412 | . . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℕ → (𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎} → 𝑛 ∈ (0...𝑎))) | 
| 63 | 62 | ssrdv 3988 | . . . . . . . . . . . 12
⊢ (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎} ⊆ (0...𝑎)) | 
| 64 |  | ssfi 9214 | . . . . . . . . . . . 12
⊢
(((0...𝑎) ∈ Fin
∧ {𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ (0...𝑎)) → {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎} ∈ Fin) | 
| 65 | 55, 63, 64 | sylancr 587 | . . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎} ∈
Fin) | 
| 66 |  | 0nn0 12543 | . . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 | 
| 67 | 66 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℕ → 0 ∈
ℕ0) | 
| 68 |  | 2cn 12342 | . . . . . . . . . . . . . . 15
⊢ 2 ∈
ℂ | 
| 69 |  | exp0 14107 | . . . . . . . . . . . . . . 15
⊢ (2 ∈
ℂ → (2↑0) = 1) | 
| 70 | 68, 69 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢
(2↑0) = 1 | 
| 71 |  | 1dvds 16309 | . . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℤ → 1 ∥
𝑎) | 
| 72 | 24, 71 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ℕ → 1 ∥
𝑎) | 
| 73 | 70, 72 | eqbrtrid 5177 | . . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℕ →
(2↑0) ∥ 𝑎) | 
| 74 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → (2↑𝑘) = (2↑0)) | 
| 75 | 74 | breq1d 5152 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑0) ∥ 𝑎)) | 
| 76 | 75 | elrab 3691 | . . . . . . . . . . . . 13
⊢ (0 ∈
{𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (0 ∈ ℕ0 ∧
(2↑0) ∥ 𝑎)) | 
| 77 | 67, 73, 76 | sylanbrc 583 | . . . . . . . . . . . 12
⊢ (𝑎 ∈ ℕ → 0 ∈
{𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) | 
| 78 | 77 | ne0d 4341 | . . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎} ≠
∅) | 
| 79 |  | fisupcl 9510 | . . . . . . . . . . 11
⊢ (( <
Or ℕ0 ∧ ({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎} ∈ Fin ∧ {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎} ≠ ∅ ∧
{𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0)) →
sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}) | 
| 80 | 20, 65, 78, 23, 79 | syl13anc 1373 | . . . . . . . . . 10
⊢ (𝑎 ∈ ℕ →
sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}) | 
| 81 |  | oveq2 7440 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑙 → (2↑𝑘) = (2↑𝑙)) | 
| 82 | 81 | breq1d 5152 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑙 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑𝑙) ∥ 𝑎)) | 
| 83 | 82 | cbvrabv 3446 | . . . . . . . . . 10
⊢ {𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎} = {𝑙 ∈ ℕ0 ∣
(2↑𝑙) ∥ 𝑎} | 
| 84 | 80, 83 | eleqtrdi 2850 | . . . . . . . . 9
⊢ (𝑎 ∈ ℕ →
sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑙 ∈ ℕ0
∣ (2↑𝑙) ∥
𝑎}) | 
| 85 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑙 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
→ (2↑𝑙) =
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, <
))) | 
| 86 | 85 | breq1d 5152 | . . . . . . . . . 10
⊢ (𝑙 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
→ ((2↑𝑙) ∥
𝑎 ↔ (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )) ∥ 𝑎)) | 
| 87 | 86 | elrab 3691 | . . . . . . . . 9
⊢
(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑙 ∈ ℕ0
∣ (2↑𝑙) ∥
𝑎} ↔ (sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ) ∈ ℕ0 ∧ (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
∥ 𝑎)) | 
| 88 | 84, 87 | sylib 218 | . . . . . . . 8
⊢ (𝑎 ∈ ℕ →
(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈
ℕ0 ∧ (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
∥ 𝑎)) | 
| 89 | 88 | simprd 495 | . . . . . . 7
⊢ (𝑎 ∈ ℕ →
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎) | 
| 90 |  | nndivdvds 16300 | . . . . . . . 8
⊢ ((𝑎 ∈ ℕ ∧
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈
ℕ) → ((2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
∥ 𝑎 ↔ (𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) ∈ ℕ)) | 
| 91 | 90 | biimpa 476 | . . . . . . 7
⊢ (((𝑎 ∈ ℕ ∧
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈
ℕ) ∧ (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
∥ 𝑎) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) ∈ ℕ) | 
| 92 | 14, 54, 89, 91 | syl21anc 837 | . . . . . 6
⊢ (𝑎 ∈ ℕ → (𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) ∈ ℕ) | 
| 93 |  | 1nn0 12544 | . . . . . . . . . . 11
⊢ 1 ∈
ℕ0 | 
| 94 | 93 | a1i 11 | . . . . . . . . . 10
⊢ (𝑎 ∈ ℕ → 1 ∈
ℕ0) | 
| 95 | 53, 94 | nn0addcld 12593 | . . . . . . . . 9
⊢ (𝑎 ∈ ℕ →
(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈
ℕ0) | 
| 96 | 53 | nn0red 12590 | . . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ℕ →
sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈
ℝ) | 
| 97 | 96 | ltp1d 12199 | . . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℕ →
sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) <
(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1)) | 
| 98 | 20, 52 | supub 9500 | . . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℕ →
((sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈
{𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎} → ¬ sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
< (sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1))) | 
| 99 | 97, 98 | mt2d 136 | . . . . . . . . . . . 12
⊢ (𝑎 ∈ ℕ → ¬
(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈
{𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) | 
| 100 | 83 | eleq2i 2832 | . . . . . . . . . . . 12
⊢
((sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈
{𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1) ∈ {𝑙 ∈
ℕ0 ∣ (2↑𝑙) ∥ 𝑎}) | 
| 101 | 99, 100 | sylnib 328 | . . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ → ¬
(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈
{𝑙 ∈
ℕ0 ∣ (2↑𝑙) ∥ 𝑎}) | 
| 102 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑙 = (sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1) → (2↑𝑙) =
(2↑(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1))) | 
| 103 | 102 | breq1d 5152 | . . . . . . . . . . . 12
⊢ (𝑙 = (sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1) → ((2↑𝑙)
∥ 𝑎 ↔
(2↑(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥
𝑎)) | 
| 104 | 103 | elrab 3691 | . . . . . . . . . . 11
⊢
((sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈
{𝑙 ∈
ℕ0 ∣ (2↑𝑙) ∥ 𝑎} ↔ ((sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1) ∈ ℕ0 ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1)) ∥ 𝑎)) | 
| 105 | 101, 104 | sylnib 328 | . . . . . . . . . 10
⊢ (𝑎 ∈ ℕ → ¬
((sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈
ℕ0 ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1)) ∥ 𝑎)) | 
| 106 |  | imnan 399 | . . . . . . . . . 10
⊢
(((sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈
ℕ0 → ¬ (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1)) ∥ 𝑎) ↔ ¬
((sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈
ℕ0 ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1)) ∥ 𝑎)) | 
| 107 | 105, 106 | sylibr 234 | . . . . . . . . 9
⊢ (𝑎 ∈ ℕ →
((sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈
ℕ0 → ¬ (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1)) ∥ 𝑎)) | 
| 108 | 95, 107 | mpd 15 | . . . . . . . 8
⊢ (𝑎 ∈ ℕ → ¬
(2↑(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥
𝑎) | 
| 109 |  | expp1 14110 | . . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈
ℕ0) → (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ) +
1)) = ((2↑sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ·
2)) | 
| 110 | 68, 53, 109 | sylancr 587 | . . . . . . . . 9
⊢ (𝑎 ∈ ℕ →
(2↑(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) =
((2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ·
2)) | 
| 111 | 110 | breq1d 5152 | . . . . . . . 8
⊢ (𝑎 ∈ ℕ →
((2↑(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥
𝑎 ↔
((2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2)
∥ 𝑎)) | 
| 112 | 108, 111 | mtbid 324 | . . . . . . 7
⊢ (𝑎 ∈ ℕ → ¬
((2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2)
∥ 𝑎) | 
| 113 |  | nncn 12275 | . . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℂ) | 
| 114 | 54 | nncnd 12283 | . . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ →
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈
ℂ) | 
| 115 | 54 | nnne0d 12317 | . . . . . . . . . . 11
⊢ (𝑎 ∈ ℕ →
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ≠
0) | 
| 116 | 113, 114,
115 | divcan2d 12046 | . . . . . . . . . 10
⊢ (𝑎 ∈ ℕ →
((2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ·
(𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )))) = 𝑎) | 
| 117 | 116 | eqcomd 2742 | . . . . . . . . 9
⊢ (𝑎 ∈ ℕ → 𝑎 = ((2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )) · (𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, <
))))) | 
| 118 | 117 | breq2d 5154 | . . . . . . . 8
⊢ (𝑎 ∈ ℕ →
(((2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2)
∥ 𝑎 ↔
((2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2)
∥ ((2↑sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ·
(𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )))))) | 
| 119 | 15 | nnzd 12642 | . . . . . . . . 9
⊢ (𝑎 ∈ ℕ → 2 ∈
ℤ) | 
| 120 | 92 | nnzd 12642 | . . . . . . . . 9
⊢ (𝑎 ∈ ℕ → (𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) ∈ ℤ) | 
| 121 | 54 | nnzd 12642 | . . . . . . . . 9
⊢ (𝑎 ∈ ℕ →
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈
ℤ) | 
| 122 |  | dvdscmulr 16323 | . . . . . . . . 9
⊢ ((2
∈ ℤ ∧ (𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈
ℤ ∧ ((2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
∈ ℤ ∧ (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
≠ 0)) → (((2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
· 2) ∥ ((2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
· (𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) ↔ 2
∥ (𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, <
))))) | 
| 123 | 119, 120,
121, 115, 122 | syl112anc 1375 | . . . . . . . 8
⊢ (𝑎 ∈ ℕ →
(((2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2)
∥ ((2↑sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ·
(𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )))) ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, <
))))) | 
| 124 | 118, 123 | bitrd 279 | . . . . . . 7
⊢ (𝑎 ∈ ℕ →
(((2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2)
∥ 𝑎 ↔ 2 ∥
(𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))))) | 
| 125 | 112, 124 | mtbid 324 | . . . . . 6
⊢ (𝑎 ∈ ℕ → ¬ 2
∥ (𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, <
)))) | 
| 126 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑧 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
→ (2 ∥ 𝑧 ↔
2 ∥ (𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, <
))))) | 
| 127 | 126 | notbid 318 | . . . . . . 7
⊢ (𝑧 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
→ (¬ 2 ∥ 𝑧
↔ ¬ 2 ∥ (𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, <
))))) | 
| 128 | 127, 6 | elrab2 3694 | . . . . . 6
⊢ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) ∈ 𝐽 ↔
((𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) ∈ ℕ ∧ ¬ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, <
))))) | 
| 129 | 92, 125, 128 | sylanbrc 583 | . . . . 5
⊢ (𝑎 ∈ ℕ → (𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) ∈ 𝐽) | 
| 130 | 129, 53 | jca 511 | . . . 4
⊢ (𝑎 ∈ ℕ → ((𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) ∈ 𝐽 ∧
sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈
ℕ0)) | 
| 131 | 130 | adantl 481 | . . 3
⊢
((⊤ ∧ 𝑎
∈ ℕ) → ((𝑎
/ (2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽 ∧ sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
∈ ℕ0)) | 
| 132 |  | simpr 484 | . . . . . . 7
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑎 = ((2↑𝑦) · 𝑥)) | 
| 133 | 2 | a1i 11 | . . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 2 ∈ ℕ) | 
| 134 |  | simplr 768 | . . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 ∈ ℕ0) | 
| 135 | 133, 134 | nnexpcld 14285 | . . . . . . . 8
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∈ ℕ) | 
| 136 | 8 | sseli 3978 | . . . . . . . . 9
⊢ (𝑥 ∈ 𝐽 → 𝑥 ∈ ℕ) | 
| 137 | 136 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑥 ∈ ℕ) | 
| 138 | 135, 137 | nnmulcld 12320 | . . . . . . 7
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ((2↑𝑦) · 𝑥) ∈ ℕ) | 
| 139 | 132, 138 | eqeltrd 2840 | . . . . . 6
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑎 ∈ ℕ) | 
| 140 |  | simplll 774 | . . . . . . . . . 10
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑥 ∈ 𝐽) | 
| 141 |  | breq2 5146 | . . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) | 
| 142 | 141 | notbid 318 | . . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥)) | 
| 143 | 142, 6 | elrab2 3694 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐽 ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥)) | 
| 144 | 143 | simprbi 496 | . . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐽 → ¬ 2 ∥ 𝑥) | 
| 145 |  | 2z 12651 | . . . . . . . . . . . . . 14
⊢ 2 ∈
ℤ | 
| 146 | 134 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑦 ∈
ℕ0) | 
| 147 | 146 | nn0zd 12641 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑦 ∈
ℤ) | 
| 148 | 19 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ < Or ℕ0) | 
| 149 | 139, 52 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}𝑛 < 𝑜))) | 
| 150 | 149 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ ∃𝑚 ∈
ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}𝑛 < 𝑜))) | 
| 151 | 148, 150 | supcl 9499 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈
ℕ0) | 
| 152 | 151 | nn0zd 12641 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈
ℤ) | 
| 153 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑦 < sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )) | 
| 154 |  | znnsub 12665 | . . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℤ ∧ sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ) ∈ ℤ) → (𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
↔ (sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈
ℕ)) | 
| 155 | 154 | biimpa 476 | . . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ ℤ ∧ sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ) ∈ ℤ) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈
ℕ) | 
| 156 | 147, 152,
153, 155 | syl21anc 837 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈
ℕ) | 
| 157 |  | iddvdsexp 16318 | . . . . . . . . . . . . . 14
⊢ ((2
∈ ℤ ∧ (sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
− 𝑦) ∈ ℕ)
→ 2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
− 𝑦))) | 
| 158 | 145, 156,
157 | sylancr 587 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
− 𝑦))) | 
| 159 | 145 | a1i 11 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 2 ∈ ℤ) | 
| 160 | 139, 120 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∈ ℤ) | 
| 161 | 160 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈
ℤ) | 
| 162 | 156 | nnnn0d 12589 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈
ℕ0) | 
| 163 |  | zexpcl 14118 | . . . . . . . . . . . . . . 15
⊢ ((2
∈ ℤ ∧ (sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
− 𝑦) ∈
ℕ0) → (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
− 𝑦)) ∈
ℤ) | 
| 164 | 145, 162,
163 | sylancr 587 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (2↑(sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈
ℤ) | 
| 165 |  | dvdsmultr2 16336 | . . . . . . . . . . . . . 14
⊢ ((2
∈ ℤ ∧ (𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈
ℤ ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
− 𝑦)) ∈ ℤ)
→ (2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
− 𝑦)) → 2
∥ ((𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ·
(2↑(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))) | 
| 166 | 159, 161,
164, 165 | syl3anc 1372 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
− 𝑦)) → 2
∥ ((𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ·
(2↑(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))) | 
| 167 | 158, 166 | mpd 15 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 2 ∥ ((𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ·
(2↑(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))) | 
| 168 | 137 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑥 ∈
ℕ) | 
| 169 | 168 | nncnd 12283 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑥 ∈
ℂ) | 
| 170 |  | 2cnd 12345 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 2 ∈ ℂ) | 
| 171 | 170, 162 | expcld 14187 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (2↑(sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈
ℂ) | 
| 172 | 139 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑎 ∈
ℕ) | 
| 173 | 172 | nncnd 12283 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑎 ∈
ℂ) | 
| 174 | 172, 114 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (2↑sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈
ℂ) | 
| 175 |  | 2ne0 12371 | . . . . . . . . . . . . . . . . . 18
⊢ 2 ≠
0 | 
| 176 | 175 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 2 ≠ 0) | 
| 177 | 170, 176,
152 | expne0d 14193 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (2↑sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ≠
0) | 
| 178 | 173, 174,
177 | divcld 12044 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈
ℂ) | 
| 179 | 171, 178 | mulcld 11282 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ ((2↑(sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, <
)))) ∈ ℂ) | 
| 180 | 170, 146 | expcld 14187 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (2↑𝑦) ∈
ℂ) | 
| 181 | 170, 176,
147 | expne0d 14193 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (2↑𝑦) ≠
0) | 
| 182 | 172, 117 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑎 =
((2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ·
(𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))))) | 
| 183 |  | simplr 768 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑎 = ((2↑𝑦) · 𝑥)) | 
| 184 | 146 | nn0cnd 12591 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑦 ∈
ℂ) | 
| 185 | 151 | nn0cnd 12591 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈
ℂ) | 
| 186 | 184, 185 | pncan3d 11624 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (𝑦 + (sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ) − 𝑦)) =
sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, <
)) | 
| 187 | 186 | oveq2d 7448 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (2↑(𝑦 +
(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) = (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) | 
| 188 | 170, 162,
146 | expaddd 14189 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (2↑(𝑦 +
(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) = ((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ) − 𝑦)))) | 
| 189 | 187, 188 | eqtr3d 2778 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (2↑sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) =
((2↑𝑦) ·
(2↑(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))) | 
| 190 | 189 | oveq1d 7447 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ ((2↑sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ·
(𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )))) = (((2↑𝑦)
· (2↑(sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, <
))))) | 
| 191 | 182, 183,
190 | 3eqtr3d 2784 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ ((2↑𝑦) ·
𝑥) = (((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ) − 𝑦)))
· (𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, <
))))) | 
| 192 | 180, 171,
178 | mulassd 11285 | . . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (((2↑𝑦)
· (2↑(sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, <
)))) = ((2↑𝑦) ·
((2↑(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, <
)))))) | 
| 193 | 191, 192 | eqtrd 2776 | . . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ ((2↑𝑦) ·
𝑥) = ((2↑𝑦) · ((2↑(sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ) − 𝑦)) ·
(𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )))))) | 
| 194 | 169, 179,
180, 181, 193 | mulcanad 11899 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑥 =
((2↑(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, <
))))) | 
| 195 | 178, 171 | mulcomd 11283 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ ((𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ·
(2↑(sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) = ((2↑(sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ) − 𝑦)) ·
(𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))))) | 
| 196 | 194, 195 | eqtr4d 2779 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑥 = ((𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
− 𝑦)))) | 
| 197 | 167, 196 | breqtrrd 5170 | . . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 2 ∥ 𝑥) | 
| 198 | 144, 197 | nsyl3 138 | . . . . . . . . . 10
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ ¬ 𝑥 ∈ 𝐽) | 
| 199 | 140, 198 | pm2.65da 816 | . . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ¬ 𝑦 < sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, <
)) | 
| 200 | 137 | nnzd 12642 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑥 ∈ ℤ) | 
| 201 | 135 | nnzd 12642 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∈ ℤ) | 
| 202 | 139 | nnzd 12642 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑎 ∈ ℤ) | 
| 203 | 135 | nncnd 12283 | . . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∈ ℂ) | 
| 204 | 137 | nncnd 12283 | . . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑥 ∈ ℂ) | 
| 205 | 203, 204 | mulcomd 11283 | . . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ((2↑𝑦) · 𝑥) = (𝑥 · (2↑𝑦))) | 
| 206 | 132, 205 | eqtr2d 2777 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑥 · (2↑𝑦)) = 𝑎) | 
| 207 |  | dvds0lem 16305 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℤ ∧
(2↑𝑦) ∈ ℤ
∧ 𝑎 ∈ ℤ)
∧ (𝑥 ·
(2↑𝑦)) = 𝑎) → (2↑𝑦) ∥ 𝑎) | 
| 208 | 200, 201,
202, 206, 207 | syl31anc 1374 | . . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∥ 𝑎) | 
| 209 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑦 → (2↑𝑘) = (2↑𝑦)) | 
| 210 | 209 | breq1d 5152 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑦 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑𝑦) ∥ 𝑎)) | 
| 211 | 210 | elrab 3691 | . . . . . . . . . . 11
⊢ (𝑦 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎} ↔ (𝑦 ∈ ℕ0 ∧
(2↑𝑦) ∥ 𝑎)) | 
| 212 | 134, 208,
211 | sylanbrc 583 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}) | 
| 213 | 19 | a1i 11 | . . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → < Or
ℕ0) | 
| 214 | 213, 149 | supub 9500 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 ∈ {𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎} → ¬ sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ) < 𝑦)) | 
| 215 | 212, 214 | mpd 15 | . . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ¬ sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
< 𝑦) | 
| 216 | 134 | nn0red 12590 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 ∈ ℝ) | 
| 217 | 139, 96 | syl 17 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
∈ ℝ) | 
| 218 | 216, 217 | lttri3d 11402 | . . . . . . . . 9
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
↔ (¬ 𝑦 <
sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∧ ¬
sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < 𝑦))) | 
| 219 | 199, 215,
218 | mpbir2and 713 | . . . . . . . 8
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, <
)) | 
| 220 |  | simplr 768 | . . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑎 = ((2↑𝑦) · 𝑥)) | 
| 221 | 139 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑎 ∈
ℕ) | 
| 222 | 221 | nncnd 12283 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑎 ∈
ℂ) | 
| 223 | 137 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑥 ∈
ℕ) | 
| 224 | 223 | nncnd 12283 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑥 ∈
ℂ) | 
| 225 |  | nnexpcl 14116 | . . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℕ ∧ 𝑦
∈ ℕ0) → (2↑𝑦) ∈ ℕ) | 
| 226 | 2, 225 | mpan 690 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℕ0
→ (2↑𝑦) ∈
ℕ) | 
| 227 | 226 | nncnd 12283 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ0
→ (2↑𝑦) ∈
ℂ) | 
| 228 | 226 | nnne0d 12317 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ0
→ (2↑𝑦) ≠
0) | 
| 229 | 227, 228 | jca 511 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ0
→ ((2↑𝑦) ∈
ℂ ∧ (2↑𝑦)
≠ 0)) | 
| 230 | 229 | ad3antlr 731 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ ((2↑𝑦) ∈
ℂ ∧ (2↑𝑦)
≠ 0)) | 
| 231 |  | divmul2 11927 | . . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧
((2↑𝑦) ∈ ℂ
∧ (2↑𝑦) ≠ 0))
→ ((𝑎 / (2↑𝑦)) = 𝑥 ↔ 𝑎 = ((2↑𝑦) · 𝑥))) | 
| 232 | 222, 224,
230, 231 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ ((𝑎 / (2↑𝑦)) = 𝑥 ↔ 𝑎 = ((2↑𝑦) · 𝑥))) | 
| 233 | 220, 232 | mpbird 257 | . . . . . . . . . 10
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (𝑎 / (2↑𝑦)) = 𝑥) | 
| 234 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )) | 
| 235 | 234 | oveq2d 7448 | . . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (2↑𝑦) =
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, <
))) | 
| 236 | 235 | oveq2d 7448 | . . . . . . . . . 10
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ (𝑎 / (2↑𝑦)) = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, <
)))) | 
| 237 | 233, 236 | eqtr3d 2778 | . . . . . . . . 9
⊢ ((((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < ))
→ 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )))) | 
| 238 | 237 | ex 412 | . . . . . . . 8
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
→ 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))))) | 
| 239 | 219, 238 | jcai 516 | . . . . . . 7
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 = sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )
∧ 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))))) | 
| 240 | 239 | ancomd 461 | . . . . . 6
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) | 
| 241 | 139, 240 | jca 511 | . . . . 5
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )))) | 
| 242 |  | simprl 770 | . . . . . . 7
⊢ ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) → 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )))) | 
| 243 | 129 | adantr 480 | . . . . . . 7
⊢ ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) → (𝑎 /
(2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽) | 
| 244 | 242, 243 | eqeltrd 2840 | . . . . . 6
⊢ ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) → 𝑥 ∈
𝐽) | 
| 245 |  | simprr 772 | . . . . . . 7
⊢ ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) → 𝑦 =
sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, <
)) | 
| 246 | 53 | adantr 480 | . . . . . . 7
⊢ ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) → sup({𝑘
∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈
ℕ0) | 
| 247 | 245, 246 | eqeltrd 2840 | . . . . . 6
⊢ ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) → 𝑦 ∈
ℕ0) | 
| 248 | 117 | adantr 480 | . . . . . . 7
⊢ ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) → 𝑎 =
((2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ·
(𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))))) | 
| 249 | 245 | oveq2d 7448 | . . . . . . . 8
⊢ ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) → (2↑𝑦)
= (2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, <
))) | 
| 250 | 249, 242 | oveq12d 7450 | . . . . . . 7
⊢ ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) → ((2↑𝑦)
· 𝑥) =
((2↑sup({𝑘 ∈
ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ·
(𝑎 / (2↑sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))))) | 
| 251 | 248, 250 | eqtr4d 2779 | . . . . . 6
⊢ ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) → 𝑎 =
((2↑𝑦) · 𝑥)) | 
| 252 | 244, 247,
251 | jca31 514 | . . . . 5
⊢ ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))) → ((𝑥 ∈
𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥))) | 
| 253 | 241, 252 | impbii 209 | . . . 4
⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< )))) | 
| 254 | 253 | a1i 11 | . . 3
⊢ (⊤
→ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣
(2↑𝑘) ∥ 𝑎}, ℕ0, < )))
∧ 𝑦 = sup({𝑘 ∈ ℕ0
∣ (2↑𝑘) ∥
𝑎}, ℕ0,
< ))))) | 
| 255 | 1, 13, 131, 254 | f1od2 32733 | . 2
⊢ (⊤
→ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ) | 
| 256 | 255 | mptru 1546 | 1
⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |