Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddpwdc Structured version   Visualization version   GIF version

Theorem oddpwdc 32954
Description: Lemma for eulerpart 32982. The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.)
Hypotheses
Ref Expression
oddpwdc.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
oddpwdc.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
Assertion
Ref Expression
oddpwdc 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝐽(𝑧)

Proof of Theorem oddpwdc
Dummy variables 𝑘 𝑎 𝑙 𝑚 𝑛 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddpwdc.f . . 3 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
2 2nn 12226 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 ((𝑦 ∈ ℕ0𝑥𝐽) → 2 ∈ ℕ)
4 simpl 483 . . . . . . 7 ((𝑦 ∈ ℕ0𝑥𝐽) → 𝑦 ∈ ℕ0)
53, 4nnexpcld 14148 . . . . . 6 ((𝑦 ∈ ℕ0𝑥𝐽) → (2↑𝑦) ∈ ℕ)
6 oddpwdc.j . . . . . . . 8 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
7 ssrab2 4037 . . . . . . . 8 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
86, 7eqsstri 3978 . . . . . . 7 𝐽 ⊆ ℕ
9 simpr 485 . . . . . . 7 ((𝑦 ∈ ℕ0𝑥𝐽) → 𝑥𝐽)
108, 9sselid 3942 . . . . . 6 ((𝑦 ∈ ℕ0𝑥𝐽) → 𝑥 ∈ ℕ)
115, 10nnmulcld 12206 . . . . 5 ((𝑦 ∈ ℕ0𝑥𝐽) → ((2↑𝑦) · 𝑥) ∈ ℕ)
1211ancoms 459 . . . 4 ((𝑥𝐽𝑦 ∈ ℕ0) → ((2↑𝑦) · 𝑥) ∈ ℕ)
1312adantl 482 . . 3 ((⊤ ∧ (𝑥𝐽𝑦 ∈ ℕ0)) → ((2↑𝑦) · 𝑥) ∈ ℕ)
14 id 22 . . . . . . 7 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ)
152a1i 11 . . . . . . . 8 (𝑎 ∈ ℕ → 2 ∈ ℕ)
16 nn0ssre 12417 . . . . . . . . . . 11 0 ⊆ ℝ
17 ltso 11235 . . . . . . . . . . 11 < Or ℝ
18 soss 5565 . . . . . . . . . . 11 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1916, 17, 18mp2 9 . . . . . . . . . 10 < Or ℕ0
2019a1i 11 . . . . . . . . 9 (𝑎 ∈ ℕ → < Or ℕ0)
21 0zd 12511 . . . . . . . . . 10 (𝑎 ∈ ℕ → 0 ∈ ℤ)
22 ssrab2 4037 . . . . . . . . . . 11 {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0
2322a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0)
24 nnz 12520 . . . . . . . . . . 11 (𝑎 ∈ ℕ → 𝑎 ∈ ℤ)
25 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (2↑𝑘) = (2↑𝑛))
2625breq1d 5115 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑𝑛) ∥ 𝑎))
2726elrab 3645 . . . . . . . . . . . . 13 (𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎))
28 simprl 769 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑛 ∈ ℕ0)
2928nn0red 12474 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑛 ∈ ℝ)
302a1i 11 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 2 ∈ ℕ)
3130, 28nnexpcld 14148 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ∈ ℕ)
3231nnred 12168 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ∈ ℝ)
33 simpl 483 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑎 ∈ ℕ)
3433nnred 12168 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑎 ∈ ℝ)
35 2re 12227 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
3635leidi 11689 . . . . . . . . . . . . . . . 16 2 ≤ 2
37 nexple 32608 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0 ∧ 2 ∈ ℝ ∧ 2 ≤ 2) → 𝑛 ≤ (2↑𝑛))
3835, 36, 37mp3an23 1453 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0𝑛 ≤ (2↑𝑛))
3938ad2antrl 726 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑛 ≤ (2↑𝑛))
4031nnzd 12526 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ∈ ℤ)
41 simprr 771 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ∥ 𝑎)
42 dvdsle 16192 . . . . . . . . . . . . . . . 16 (((2↑𝑛) ∈ ℤ ∧ 𝑎 ∈ ℕ) → ((2↑𝑛) ∥ 𝑎 → (2↑𝑛) ≤ 𝑎))
4342imp 407 . . . . . . . . . . . . . . 15 ((((2↑𝑛) ∈ ℤ ∧ 𝑎 ∈ ℕ) ∧ (2↑𝑛) ∥ 𝑎) → (2↑𝑛) ≤ 𝑎)
4440, 33, 41, 43syl21anc 836 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ≤ 𝑎)
4529, 32, 34, 39, 44letrd 11312 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑛𝑎)
4627, 45sylan2b 594 . . . . . . . . . . . 12 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑛𝑎)
4746ralrimiva 3143 . . . . . . . . . . 11 (𝑎 ∈ ℕ → ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑎)
48 brralrspcev 5165 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑎) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑚)
4924, 47, 48syl2anc 584 . . . . . . . . . 10 (𝑎 ∈ ℕ → ∃𝑚 ∈ ℤ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑚)
50 nn0uz 12805 . . . . . . . . . . 11 0 = (ℤ‘0)
5150uzsupss 12865 . . . . . . . . . 10 ((0 ∈ ℤ ∧ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0 ∧ ∃𝑚 ∈ ℤ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑚) → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛 < 𝑜)))
5221, 23, 49, 51syl3anc 1371 . . . . . . . . 9 (𝑎 ∈ ℕ → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛 < 𝑜)))
5320, 52supcl 9394 . . . . . . . 8 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0)
5415, 53nnexpcld 14148 . . . . . . 7 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℕ)
55 fzfi 13877 . . . . . . . . . . . 12 (0...𝑎) ∈ Fin
56 0zd 12511 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 0 ∈ ℤ)
5724adantr 481 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑎 ∈ ℤ)
5827, 28sylan2b 594 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑛 ∈ ℕ0)
5958nn0zd 12525 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑛 ∈ ℤ)
6058nn0ge0d 12476 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 0 ≤ 𝑛)
6156, 57, 59, 60, 46elfzd 13432 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑛 ∈ (0...𝑎))
6261ex 413 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → (𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} → 𝑛 ∈ (0...𝑎)))
6362ssrdv 3950 . . . . . . . . . . . 12 (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ (0...𝑎))
64 ssfi 9117 . . . . . . . . . . . 12 (((0...𝑎) ∈ Fin ∧ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ (0...𝑎)) → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ∈ Fin)
6555, 63, 64sylancr 587 . . . . . . . . . . 11 (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ∈ Fin)
66 0nn0 12428 . . . . . . . . . . . . . 14 0 ∈ ℕ0
6766a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → 0 ∈ ℕ0)
68 2cn 12228 . . . . . . . . . . . . . . 15 2 ∈ ℂ
69 exp0 13971 . . . . . . . . . . . . . . 15 (2 ∈ ℂ → (2↑0) = 1)
7068, 69ax-mp 5 . . . . . . . . . . . . . 14 (2↑0) = 1
71 1dvds 16153 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℤ → 1 ∥ 𝑎)
7224, 71syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ → 1 ∥ 𝑎)
7370, 72eqbrtrid 5140 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → (2↑0) ∥ 𝑎)
74 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (2↑𝑘) = (2↑0))
7574breq1d 5115 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑0) ∥ 𝑎))
7675elrab 3645 . . . . . . . . . . . . 13 (0 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (0 ∈ ℕ0 ∧ (2↑0) ∥ 𝑎))
7767, 73, 76sylanbrc 583 . . . . . . . . . . . 12 (𝑎 ∈ ℕ → 0 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
7877ne0d 4295 . . . . . . . . . . 11 (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ≠ ∅)
79 fisupcl 9405 . . . . . . . . . . 11 (( < Or ℕ0 ∧ ({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ∈ Fin ∧ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ≠ ∅ ∧ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0)) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
8020, 65, 78, 23, 79syl13anc 1372 . . . . . . . . . 10 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
81 oveq2 7365 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (2↑𝑘) = (2↑𝑙))
8281breq1d 5115 . . . . . . . . . . 11 (𝑘 = 𝑙 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑𝑙) ∥ 𝑎))
8382cbvrabv 3417 . . . . . . . . . 10 {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} = {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎}
8480, 83eleqtrdi 2848 . . . . . . . . 9 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎})
85 oveq2 7365 . . . . . . . . . . 11 (𝑙 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) → (2↑𝑙) = (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
8685breq1d 5115 . . . . . . . . . 10 (𝑙 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) → ((2↑𝑙) ∥ 𝑎 ↔ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎))
8786elrab 3645 . . . . . . . . 9 (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎} ↔ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0 ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎))
8884, 87sylib 217 . . . . . . . 8 (𝑎 ∈ ℕ → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0 ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎))
8988simprd 496 . . . . . . 7 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎)
90 nndivdvds 16145 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℕ) → ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎 ↔ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℕ))
9190biimpa 477 . . . . . . 7 (((𝑎 ∈ ℕ ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℕ) ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℕ)
9214, 54, 89, 91syl21anc 836 . . . . . 6 (𝑎 ∈ ℕ → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℕ)
93 1nn0 12429 . . . . . . . . . . 11 1 ∈ ℕ0
9493a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℕ → 1 ∈ ℕ0)
9553, 94nn0addcld 12477 . . . . . . . . 9 (𝑎 ∈ ℕ → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0)
9653nn0red 12474 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℝ)
9796ltp1d 12085 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1))
9820, 52supub 9395 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} → ¬ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)))
9997, 98mt2d 136 . . . . . . . . . . . 12 (𝑎 ∈ ℕ → ¬ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
10083eleq2i 2829 . . . . . . . . . . . 12 ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎})
10199, 100sylnib 327 . . . . . . . . . . 11 (𝑎 ∈ ℕ → ¬ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎})
102 oveq2 7365 . . . . . . . . . . . . 13 (𝑙 = (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) → (2↑𝑙) = (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)))
103102breq1d 5115 . . . . . . . . . . . 12 (𝑙 = (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) → ((2↑𝑙) ∥ 𝑎 ↔ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
104103elrab 3645 . . . . . . . . . . 11 ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎} ↔ ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
105101, 104sylnib 327 . . . . . . . . . 10 (𝑎 ∈ ℕ → ¬ ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
106 imnan 400 . . . . . . . . . 10 (((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 → ¬ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎) ↔ ¬ ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
107105, 106sylibr 233 . . . . . . . . 9 (𝑎 ∈ ℕ → ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 → ¬ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
10895, 107mpd 15 . . . . . . . 8 (𝑎 ∈ ℕ → ¬ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎)
109 expp1 13974 . . . . . . . . . 10 ((2 ∈ ℂ ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0) → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2))
11068, 53, 109sylancr 587 . . . . . . . . 9 (𝑎 ∈ ℕ → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2))
111110breq1d 5115 . . . . . . . 8 (𝑎 ∈ ℕ → ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎 ↔ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ 𝑎))
112108, 111mtbid 323 . . . . . . 7 (𝑎 ∈ ℕ → ¬ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ 𝑎)
113 nncn 12161 . . . . . . . . . . 11 (𝑎 ∈ ℕ → 𝑎 ∈ ℂ)
11454nncnd 12169 . . . . . . . . . . 11 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℂ)
11554nnne0d 12203 . . . . . . . . . . 11 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ≠ 0)
116113, 114, 115divcan2d 11933 . . . . . . . . . 10 (𝑎 ∈ ℕ → ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) = 𝑎)
117116eqcomd 2742 . . . . . . . . 9 (𝑎 ∈ ℕ → 𝑎 = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
118117breq2d 5117 . . . . . . . 8 (𝑎 ∈ ℕ → (((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ 𝑎 ↔ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))))
11915nnzd 12526 . . . . . . . . 9 (𝑎 ∈ ℕ → 2 ∈ ℤ)
12092nnzd 12526 . . . . . . . . 9 (𝑎 ∈ ℕ → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ)
12154nnzd 12526 . . . . . . . . 9 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℤ)
122 dvdscmulr 16167 . . . . . . . . 9 ((2 ∈ ℤ ∧ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ ∧ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℤ ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ≠ 0)) → (((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
123119, 120, 121, 115, 122syl112anc 1374 . . . . . . . 8 (𝑎 ∈ ℕ → (((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
124118, 123bitrd 278 . . . . . . 7 (𝑎 ∈ ℕ → (((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ 𝑎 ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
125112, 124mtbid 323 . . . . . 6 (𝑎 ∈ ℕ → ¬ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
126 breq2 5109 . . . . . . . 8 (𝑧 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → (2 ∥ 𝑧 ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
127126notbid 317 . . . . . . 7 (𝑧 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
128127, 6elrab2 3648 . . . . . 6 ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽 ↔ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℕ ∧ ¬ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
12992, 125, 128sylanbrc 583 . . . . 5 (𝑎 ∈ ℕ → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽)
130129, 53jca 512 . . . 4 (𝑎 ∈ ℕ → ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽 ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0))
131130adantl 482 . . 3 ((⊤ ∧ 𝑎 ∈ ℕ) → ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽 ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0))
132 simpr 485 . . . . . . 7 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑎 = ((2↑𝑦) · 𝑥))
1332a1i 11 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 2 ∈ ℕ)
134 simplr 767 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 ∈ ℕ0)
135133, 134nnexpcld 14148 . . . . . . . 8 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∈ ℕ)
1368sseli 3940 . . . . . . . . 9 (𝑥𝐽𝑥 ∈ ℕ)
137136ad2antrr 724 . . . . . . . 8 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑥 ∈ ℕ)
138135, 137nnmulcld 12206 . . . . . . 7 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ((2↑𝑦) · 𝑥) ∈ ℕ)
139132, 138eqeltrd 2838 . . . . . 6 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑎 ∈ ℕ)
140 simplll 773 . . . . . . . . . 10 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥𝐽)
141 breq2 5109 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥))
142141notbid 317 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥))
143142, 6elrab2 3648 . . . . . . . . . . . 12 (𝑥𝐽 ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥))
144143simprbi 497 . . . . . . . . . . 11 (𝑥𝐽 → ¬ 2 ∥ 𝑥)
145 2z 12535 . . . . . . . . . . . . . 14 2 ∈ ℤ
146134adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 ∈ ℕ0)
147146nn0zd 12525 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 ∈ ℤ)
14819a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → < Or ℕ0)
149139, 52syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛 < 𝑜)))
150149adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛 < 𝑜)))
151148, 150supcl 9394 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0)
152151nn0zd 12525 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℤ)
153 simpr 485 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
154 znnsub 12549 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℤ) → (𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ↔ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ))
155154biimpa 477 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℤ ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℤ) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ)
156147, 152, 153, 155syl21anc 836 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ)
157 iddvdsexp 16162 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ) → 2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))
158145, 156, 157sylancr 587 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))
159145a1i 11 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∈ ℤ)
160139, 120syl 17 . . . . . . . . . . . . . . 15 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ)
161160adantr 481 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ)
162156nnnn0d 12473 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ0)
163 zexpcl 13982 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ0) → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈ ℤ)
164145, 162, 163sylancr 587 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈ ℤ)
165 dvdsmultr2 16180 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈ ℤ) → (2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) → 2 ∥ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))))
166159, 161, 164, 165syl3anc 1371 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) → 2 ∥ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))))
167158, 166mpd 15 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∥ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))
168137adantr 481 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 ∈ ℕ)
169168nncnd 12169 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 ∈ ℂ)
170 2cnd 12231 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∈ ℂ)
171170, 162expcld 14051 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈ ℂ)
172139adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 ∈ ℕ)
173172nncnd 12169 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 ∈ ℂ)
174172, 114syl 17 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℂ)
175 2ne0 12257 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
176175a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ≠ 0)
177170, 176, 152expne0d 14057 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ≠ 0)
178173, 174, 177divcld 11931 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℂ)
179171, 178mulcld 11175 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) ∈ ℂ)
180170, 146expcld 14051 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑𝑦) ∈ ℂ)
181170, 176, 147expne0d 14057 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑𝑦) ≠ 0)
182172, 117syl 17 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
183 simplr 767 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 = ((2↑𝑦) · 𝑥))
184146nn0cnd 12475 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 ∈ ℂ)
185151nn0cnd 12475 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℂ)
186184, 185pncan3d 11515 . . . . . . . . . . . . . . . . . . 19 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑦 + (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
187186oveq2d 7373 . . . . . . . . . . . . . . . . . 18 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑(𝑦 + (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) = (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
188170, 162, 146expaddd 14053 . . . . . . . . . . . . . . . . . 18 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑(𝑦 + (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) = ((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))
189187, 188eqtr3d 2778 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) = ((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))
190189oveq1d 7372 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) = (((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
191182, 183, 1903eqtr3d 2784 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑𝑦) · 𝑥) = (((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
192180, 171, 178mulassd 11178 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) = ((2↑𝑦) · ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))))
193191, 192eqtrd 2776 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))))
194169, 179, 180, 181, 193mulcanad 11790 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 = ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
195178, 171mulcomd 11176 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) = ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
196194, 195eqtr4d 2779 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 = ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))
197167, 196breqtrrd 5133 . . . . . . . . . . 11 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∥ 𝑥)
198144, 197nsyl3 138 . . . . . . . . . 10 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ¬ 𝑥𝐽)
199140, 198pm2.65da 815 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ¬ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
200137nnzd 12526 . . . . . . . . . . . 12 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑥 ∈ ℤ)
201135nnzd 12526 . . . . . . . . . . . 12 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∈ ℤ)
202139nnzd 12526 . . . . . . . . . . . 12 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑎 ∈ ℤ)
203135nncnd 12169 . . . . . . . . . . . . . 14 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∈ ℂ)
204137nncnd 12169 . . . . . . . . . . . . . 14 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑥 ∈ ℂ)
205203, 204mulcomd 11176 . . . . . . . . . . . . 13 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ((2↑𝑦) · 𝑥) = (𝑥 · (2↑𝑦)))
206132, 205eqtr2d 2777 . . . . . . . . . . . 12 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑥 · (2↑𝑦)) = 𝑎)
207 dvds0lem 16149 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ (2↑𝑦) ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑥 · (2↑𝑦)) = 𝑎) → (2↑𝑦) ∥ 𝑎)
208200, 201, 202, 206, 207syl31anc 1373 . . . . . . . . . . 11 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∥ 𝑎)
209 oveq2 7365 . . . . . . . . . . . . 13 (𝑘 = 𝑦 → (2↑𝑘) = (2↑𝑦))
210209breq1d 5115 . . . . . . . . . . . 12 (𝑘 = 𝑦 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑𝑦) ∥ 𝑎))
211210elrab 3645 . . . . . . . . . . 11 (𝑦 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (𝑦 ∈ ℕ0 ∧ (2↑𝑦) ∥ 𝑎))
212134, 208, 211sylanbrc 583 . . . . . . . . . 10 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
21319a1i 11 . . . . . . . . . . 11 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → < Or ℕ0)
214213, 149supub 9395 . . . . . . . . . 10 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} → ¬ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < 𝑦))
215212, 214mpd 15 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ¬ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < 𝑦)
216134nn0red 12474 . . . . . . . . . 10 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 ∈ ℝ)
217139, 96syl 17 . . . . . . . . . 10 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℝ)
218216, 217lttri3d 11295 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ↔ (¬ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∧ ¬ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < 𝑦)))
219199, 215, 218mpbir2and 711 . . . . . . . 8 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
220 simplr 767 . . . . . . . . . . 11 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 = ((2↑𝑦) · 𝑥))
221139adantr 481 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 ∈ ℕ)
222221nncnd 12169 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 ∈ ℂ)
223137adantr 481 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 ∈ ℕ)
224223nncnd 12169 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 ∈ ℂ)
225 nnexpcl 13980 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ)
2262, 225mpan 688 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℕ)
227226nncnd 12169 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℂ)
228226nnne0d 12203 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0 → (2↑𝑦) ≠ 0)
229227, 228jca 512 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ((2↑𝑦) ∈ ℂ ∧ (2↑𝑦) ≠ 0))
230229ad3antlr 729 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑𝑦) ∈ ℂ ∧ (2↑𝑦) ≠ 0))
231 divmul2 11817 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ((2↑𝑦) ∈ ℂ ∧ (2↑𝑦) ≠ 0)) → ((𝑎 / (2↑𝑦)) = 𝑥𝑎 = ((2↑𝑦) · 𝑥)))
232222, 224, 230, 231syl3anc 1371 . . . . . . . . . . 11 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((𝑎 / (2↑𝑦)) = 𝑥𝑎 = ((2↑𝑦) · 𝑥)))
233220, 232mpbird 256 . . . . . . . . . 10 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑎 / (2↑𝑦)) = 𝑥)
234 simpr 485 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
235234oveq2d 7373 . . . . . . . . . . 11 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑𝑦) = (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
236235oveq2d 7373 . . . . . . . . . 10 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑎 / (2↑𝑦)) = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
237233, 236eqtr3d 2778 . . . . . . . . 9 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
238237ex 413 . . . . . . . 8 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) → 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
239219, 238jcai 517 . . . . . . 7 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∧ 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
240239ancomd 462 . . . . . 6 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
241139, 240jca 512 . . . . 5 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
242 simprl 769 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
243129adantr 481 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽)
244242, 243eqeltrd 2838 . . . . . 6 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑥𝐽)
245 simprr 771 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
24653adantr 481 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0)
247245, 246eqeltrd 2838 . . . . . 6 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑦 ∈ ℕ0)
248117adantr 481 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑎 = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
249245oveq2d 7373 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → (2↑𝑦) = (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
250249, 242oveq12d 7375 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → ((2↑𝑦) · 𝑥) = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
251248, 250eqtr4d 2779 . . . . . 6 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑎 = ((2↑𝑦) · 𝑥))
252244, 247, 251jca31 515 . . . . 5 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → ((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)))
253241, 252impbii 208 . . . 4 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
254253a1i 11 . . 3 (⊤ → (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
2551, 13, 131, 254f1od2 31638 . 2 (⊤ → 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ)
256255mptru 1548 1 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  wss 3910  c0 4282   class class class wbr 5105   Or wor 5544   × cxp 5631  1-1-ontowf1o 6495  (class class class)co 7357  cmpo 7359  Fincfn 8883  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  ...cfz 13424  cexp 13967  cdvds 16136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907  df-exp 13968  df-dvds 16137
This theorem is referenced by:  eulerpartgbij  32972  eulerpartlemgvv  32976  eulerpartlemgh  32978  eulerpartlemgf  32979
  Copyright terms: Public domain W3C validator