Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddpwdc Structured version   Visualization version   GIF version

Theorem oddpwdc 31722
Description: Lemma for eulerpart 31750. The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.)
Hypotheses
Ref Expression
oddpwdc.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
oddpwdc.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
Assertion
Ref Expression
oddpwdc 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝐽(𝑧)

Proof of Theorem oddpwdc
Dummy variables 𝑘 𝑎 𝑙 𝑚 𝑛 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddpwdc.f . . 3 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
2 2nn 11698 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 ((𝑦 ∈ ℕ0𝑥𝐽) → 2 ∈ ℕ)
4 simpl 486 . . . . . . 7 ((𝑦 ∈ ℕ0𝑥𝐽) → 𝑦 ∈ ℕ0)
53, 4nnexpcld 13602 . . . . . 6 ((𝑦 ∈ ℕ0𝑥𝐽) → (2↑𝑦) ∈ ℕ)
6 oddpwdc.j . . . . . . . 8 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
7 ssrab2 4007 . . . . . . . 8 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
86, 7eqsstri 3949 . . . . . . 7 𝐽 ⊆ ℕ
9 simpr 488 . . . . . . 7 ((𝑦 ∈ ℕ0𝑥𝐽) → 𝑥𝐽)
108, 9sseldi 3913 . . . . . 6 ((𝑦 ∈ ℕ0𝑥𝐽) → 𝑥 ∈ ℕ)
115, 10nnmulcld 11678 . . . . 5 ((𝑦 ∈ ℕ0𝑥𝐽) → ((2↑𝑦) · 𝑥) ∈ ℕ)
1211ancoms 462 . . . 4 ((𝑥𝐽𝑦 ∈ ℕ0) → ((2↑𝑦) · 𝑥) ∈ ℕ)
1312adantl 485 . . 3 ((⊤ ∧ (𝑥𝐽𝑦 ∈ ℕ0)) → ((2↑𝑦) · 𝑥) ∈ ℕ)
14 id 22 . . . . . . 7 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ)
152a1i 11 . . . . . . . 8 (𝑎 ∈ ℕ → 2 ∈ ℕ)
16 nn0ssre 11889 . . . . . . . . . . 11 0 ⊆ ℝ
17 ltso 10710 . . . . . . . . . . 11 < Or ℝ
18 soss 5457 . . . . . . . . . . 11 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1916, 17, 18mp2 9 . . . . . . . . . 10 < Or ℕ0
2019a1i 11 . . . . . . . . 9 (𝑎 ∈ ℕ → < Or ℕ0)
21 0zd 11981 . . . . . . . . . 10 (𝑎 ∈ ℕ → 0 ∈ ℤ)
22 ssrab2 4007 . . . . . . . . . . 11 {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0
2322a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0)
24 nnz 11992 . . . . . . . . . . 11 (𝑎 ∈ ℕ → 𝑎 ∈ ℤ)
25 oveq2 7143 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (2↑𝑘) = (2↑𝑛))
2625breq1d 5040 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑𝑛) ∥ 𝑎))
2726elrab 3628 . . . . . . . . . . . . 13 (𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎))
28 simprl 770 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑛 ∈ ℕ0)
2928nn0red 11944 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑛 ∈ ℝ)
302a1i 11 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 2 ∈ ℕ)
3130, 28nnexpcld 13602 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ∈ ℕ)
3231nnred 11640 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ∈ ℝ)
33 simpl 486 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑎 ∈ ℕ)
3433nnred 11640 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑎 ∈ ℝ)
35 2re 11699 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
3635leidi 11163 . . . . . . . . . . . . . . . 16 2 ≤ 2
37 nexple 31378 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0 ∧ 2 ∈ ℝ ∧ 2 ≤ 2) → 𝑛 ≤ (2↑𝑛))
3835, 36, 37mp3an23 1450 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0𝑛 ≤ (2↑𝑛))
3938ad2antrl 727 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑛 ≤ (2↑𝑛))
4031nnzd 12074 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ∈ ℤ)
41 simprr 772 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ∥ 𝑎)
42 dvdsle 15652 . . . . . . . . . . . . . . . 16 (((2↑𝑛) ∈ ℤ ∧ 𝑎 ∈ ℕ) → ((2↑𝑛) ∥ 𝑎 → (2↑𝑛) ≤ 𝑎))
4342imp 410 . . . . . . . . . . . . . . 15 ((((2↑𝑛) ∈ ℤ ∧ 𝑎 ∈ ℕ) ∧ (2↑𝑛) ∥ 𝑎) → (2↑𝑛) ≤ 𝑎)
4440, 33, 41, 43syl21anc 836 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ≤ 𝑎)
4529, 32, 34, 39, 44letrd 10786 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑛𝑎)
4627, 45sylan2b 596 . . . . . . . . . . . 12 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑛𝑎)
4746ralrimiva 3149 . . . . . . . . . . 11 (𝑎 ∈ ℕ → ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑎)
48 brralrspcev 5090 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑎) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑚)
4924, 47, 48syl2anc 587 . . . . . . . . . 10 (𝑎 ∈ ℕ → ∃𝑚 ∈ ℤ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑚)
50 nn0uz 12268 . . . . . . . . . . 11 0 = (ℤ‘0)
5150uzsupss 12328 . . . . . . . . . 10 ((0 ∈ ℤ ∧ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0 ∧ ∃𝑚 ∈ ℤ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑚) → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛 < 𝑜)))
5221, 23, 49, 51syl3anc 1368 . . . . . . . . 9 (𝑎 ∈ ℕ → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛 < 𝑜)))
5320, 52supcl 8906 . . . . . . . 8 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0)
5415, 53nnexpcld 13602 . . . . . . 7 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℕ)
55 fzfi 13335 . . . . . . . . . . . 12 (0...𝑎) ∈ Fin
56 0zd 11981 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 0 ∈ ℤ)
5724adantr 484 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑎 ∈ ℤ)
5827, 28sylan2b 596 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑛 ∈ ℕ0)
5958nn0zd 12073 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑛 ∈ ℤ)
6058nn0ge0d 11946 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 0 ≤ 𝑛)
61 elfz4 12895 . . . . . . . . . . . . . . 15 (((0 ∈ ℤ ∧ 𝑎 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (0 ≤ 𝑛𝑛𝑎)) → 𝑛 ∈ (0...𝑎))
6256, 57, 59, 60, 46, 61syl32anc 1375 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑛 ∈ (0...𝑎))
6362ex 416 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → (𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} → 𝑛 ∈ (0...𝑎)))
6463ssrdv 3921 . . . . . . . . . . . 12 (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ (0...𝑎))
65 ssfi 8722 . . . . . . . . . . . 12 (((0...𝑎) ∈ Fin ∧ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ (0...𝑎)) → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ∈ Fin)
6655, 64, 65sylancr 590 . . . . . . . . . . 11 (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ∈ Fin)
67 0nn0 11900 . . . . . . . . . . . . . 14 0 ∈ ℕ0
6867a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → 0 ∈ ℕ0)
69 2cn 11700 . . . . . . . . . . . . . . 15 2 ∈ ℂ
70 exp0 13429 . . . . . . . . . . . . . . 15 (2 ∈ ℂ → (2↑0) = 1)
7169, 70ax-mp 5 . . . . . . . . . . . . . 14 (2↑0) = 1
72 1dvds 15616 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℤ → 1 ∥ 𝑎)
7324, 72syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ → 1 ∥ 𝑎)
7471, 73eqbrtrid 5065 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → (2↑0) ∥ 𝑎)
75 oveq2 7143 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (2↑𝑘) = (2↑0))
7675breq1d 5040 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑0) ∥ 𝑎))
7776elrab 3628 . . . . . . . . . . . . 13 (0 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (0 ∈ ℕ0 ∧ (2↑0) ∥ 𝑎))
7868, 74, 77sylanbrc 586 . . . . . . . . . . . 12 (𝑎 ∈ ℕ → 0 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
7978ne0d 4251 . . . . . . . . . . 11 (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ≠ ∅)
80 fisupcl 8917 . . . . . . . . . . 11 (( < Or ℕ0 ∧ ({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ∈ Fin ∧ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ≠ ∅ ∧ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0)) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
8120, 66, 79, 23, 80syl13anc 1369 . . . . . . . . . 10 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
82 oveq2 7143 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (2↑𝑘) = (2↑𝑙))
8382breq1d 5040 . . . . . . . . . . 11 (𝑘 = 𝑙 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑𝑙) ∥ 𝑎))
8483cbvrabv 3439 . . . . . . . . . 10 {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} = {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎}
8581, 84eleqtrdi 2900 . . . . . . . . 9 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎})
86 oveq2 7143 . . . . . . . . . . 11 (𝑙 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) → (2↑𝑙) = (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
8786breq1d 5040 . . . . . . . . . 10 (𝑙 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) → ((2↑𝑙) ∥ 𝑎 ↔ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎))
8887elrab 3628 . . . . . . . . 9 (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎} ↔ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0 ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎))
8985, 88sylib 221 . . . . . . . 8 (𝑎 ∈ ℕ → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0 ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎))
9089simprd 499 . . . . . . 7 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎)
91 nndivdvds 15608 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℕ) → ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎 ↔ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℕ))
9291biimpa 480 . . . . . . 7 (((𝑎 ∈ ℕ ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℕ) ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℕ)
9314, 54, 90, 92syl21anc 836 . . . . . 6 (𝑎 ∈ ℕ → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℕ)
94 1nn0 11901 . . . . . . . . . . 11 1 ∈ ℕ0
9594a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℕ → 1 ∈ ℕ0)
9653, 95nn0addcld 11947 . . . . . . . . 9 (𝑎 ∈ ℕ → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0)
9753nn0red 11944 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℝ)
9897ltp1d 11559 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1))
9920, 52supub 8907 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} → ¬ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)))
10098, 99mt2d 138 . . . . . . . . . . . 12 (𝑎 ∈ ℕ → ¬ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
10184eleq2i 2881 . . . . . . . . . . . 12 ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎})
102100, 101sylnib 331 . . . . . . . . . . 11 (𝑎 ∈ ℕ → ¬ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎})
103 oveq2 7143 . . . . . . . . . . . . 13 (𝑙 = (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) → (2↑𝑙) = (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)))
104103breq1d 5040 . . . . . . . . . . . 12 (𝑙 = (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) → ((2↑𝑙) ∥ 𝑎 ↔ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
105104elrab 3628 . . . . . . . . . . 11 ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎} ↔ ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
106102, 105sylnib 331 . . . . . . . . . 10 (𝑎 ∈ ℕ → ¬ ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
107 imnan 403 . . . . . . . . . 10 (((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 → ¬ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎) ↔ ¬ ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
108106, 107sylibr 237 . . . . . . . . 9 (𝑎 ∈ ℕ → ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 → ¬ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
10996, 108mpd 15 . . . . . . . 8 (𝑎 ∈ ℕ → ¬ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎)
110 expp1 13432 . . . . . . . . . 10 ((2 ∈ ℂ ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0) → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2))
11169, 53, 110sylancr 590 . . . . . . . . 9 (𝑎 ∈ ℕ → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2))
112111breq1d 5040 . . . . . . . 8 (𝑎 ∈ ℕ → ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎 ↔ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ 𝑎))
113109, 112mtbid 327 . . . . . . 7 (𝑎 ∈ ℕ → ¬ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ 𝑎)
114 nncn 11633 . . . . . . . . . . 11 (𝑎 ∈ ℕ → 𝑎 ∈ ℂ)
11554nncnd 11641 . . . . . . . . . . 11 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℂ)
11654nnne0d 11675 . . . . . . . . . . 11 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ≠ 0)
117114, 115, 116divcan2d 11407 . . . . . . . . . 10 (𝑎 ∈ ℕ → ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) = 𝑎)
118117eqcomd 2804 . . . . . . . . 9 (𝑎 ∈ ℕ → 𝑎 = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
119118breq2d 5042 . . . . . . . 8 (𝑎 ∈ ℕ → (((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ 𝑎 ↔ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))))
12015nnzd 12074 . . . . . . . . 9 (𝑎 ∈ ℕ → 2 ∈ ℤ)
12193nnzd 12074 . . . . . . . . 9 (𝑎 ∈ ℕ → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ)
12254nnzd 12074 . . . . . . . . 9 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℤ)
123 dvdscmulr 15630 . . . . . . . . 9 ((2 ∈ ℤ ∧ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ ∧ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℤ ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ≠ 0)) → (((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
124120, 121, 122, 116, 123syl112anc 1371 . . . . . . . 8 (𝑎 ∈ ℕ → (((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
125119, 124bitrd 282 . . . . . . 7 (𝑎 ∈ ℕ → (((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ 𝑎 ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
126113, 125mtbid 327 . . . . . 6 (𝑎 ∈ ℕ → ¬ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
127 breq2 5034 . . . . . . . 8 (𝑧 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → (2 ∥ 𝑧 ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
128127notbid 321 . . . . . . 7 (𝑧 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
129128, 6elrab2 3631 . . . . . 6 ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽 ↔ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℕ ∧ ¬ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
13093, 126, 129sylanbrc 586 . . . . 5 (𝑎 ∈ ℕ → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽)
131130, 53jca 515 . . . 4 (𝑎 ∈ ℕ → ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽 ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0))
132131adantl 485 . . 3 ((⊤ ∧ 𝑎 ∈ ℕ) → ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽 ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0))
133 simpr 488 . . . . . . 7 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑎 = ((2↑𝑦) · 𝑥))
1342a1i 11 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 2 ∈ ℕ)
135 simplr 768 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 ∈ ℕ0)
136134, 135nnexpcld 13602 . . . . . . . 8 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∈ ℕ)
1378sseli 3911 . . . . . . . . 9 (𝑥𝐽𝑥 ∈ ℕ)
138137ad2antrr 725 . . . . . . . 8 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑥 ∈ ℕ)
139136, 138nnmulcld 11678 . . . . . . 7 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ((2↑𝑦) · 𝑥) ∈ ℕ)
140133, 139eqeltrd 2890 . . . . . 6 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑎 ∈ ℕ)
141 simplll 774 . . . . . . . . . 10 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥𝐽)
142 breq2 5034 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥))
143142notbid 321 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥))
144143, 6elrab2 3631 . . . . . . . . . . . 12 (𝑥𝐽 ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥))
145144simprbi 500 . . . . . . . . . . 11 (𝑥𝐽 → ¬ 2 ∥ 𝑥)
146 2z 12002 . . . . . . . . . . . . . 14 2 ∈ ℤ
147135adantr 484 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 ∈ ℕ0)
148147nn0zd 12073 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 ∈ ℤ)
14919a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → < Or ℕ0)
150140, 52syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛 < 𝑜)))
151150adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛 < 𝑜)))
152149, 151supcl 8906 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0)
153152nn0zd 12073 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℤ)
154 simpr 488 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
155 znnsub 12016 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℤ) → (𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ↔ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ))
156155biimpa 480 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℤ ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℤ) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ)
157148, 153, 154, 156syl21anc 836 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ)
158 iddvdsexp 15625 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ) → 2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))
159146, 157, 158sylancr 590 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))
160146a1i 11 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∈ ℤ)
161140, 121syl 17 . . . . . . . . . . . . . . 15 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ)
162161adantr 484 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ)
163157nnnn0d 11943 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ0)
164 zexpcl 13440 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ0) → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈ ℤ)
165146, 163, 164sylancr 590 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈ ℤ)
166 dvdsmultr2 15641 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈ ℤ) → (2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) → 2 ∥ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))))
167160, 162, 165, 166syl3anc 1368 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) → 2 ∥ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))))
168159, 167mpd 15 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∥ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))
169138adantr 484 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 ∈ ℕ)
170169nncnd 11641 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 ∈ ℂ)
171 2cnd 11703 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∈ ℂ)
172171, 163expcld 13506 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈ ℂ)
173140adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 ∈ ℕ)
174173nncnd 11641 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 ∈ ℂ)
175173, 115syl 17 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℂ)
176 2ne0 11729 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
177176a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ≠ 0)
178171, 177, 153expne0d 13512 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ≠ 0)
179174, 175, 178divcld 11405 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℂ)
180172, 179mulcld 10650 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) ∈ ℂ)
181171, 147expcld 13506 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑𝑦) ∈ ℂ)
182171, 177, 148expne0d 13512 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑𝑦) ≠ 0)
183173, 118syl 17 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
184 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 = ((2↑𝑦) · 𝑥))
185147nn0cnd 11945 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 ∈ ℂ)
186152nn0cnd 11945 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℂ)
187185, 186pncan3d 10989 . . . . . . . . . . . . . . . . . . 19 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑦 + (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
188187oveq2d 7151 . . . . . . . . . . . . . . . . . 18 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑(𝑦 + (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) = (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
189171, 163, 147expaddd 13508 . . . . . . . . . . . . . . . . . 18 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑(𝑦 + (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) = ((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))
190188, 189eqtr3d 2835 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) = ((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))
191190oveq1d 7150 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) = (((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
192183, 184, 1913eqtr3d 2841 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑𝑦) · 𝑥) = (((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
193181, 172, 179mulassd 10653 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) = ((2↑𝑦) · ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))))
194192, 193eqtrd 2833 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))))
195170, 180, 181, 182, 194mulcanad 11264 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 = ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
196179, 172mulcomd 10651 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) = ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
197195, 196eqtr4d 2836 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 = ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))
198168, 197breqtrrd 5058 . . . . . . . . . . 11 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∥ 𝑥)
199145, 198nsyl3 140 . . . . . . . . . 10 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ¬ 𝑥𝐽)
200141, 199pm2.65da 816 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ¬ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
201138nnzd 12074 . . . . . . . . . . . 12 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑥 ∈ ℤ)
202136nnzd 12074 . . . . . . . . . . . 12 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∈ ℤ)
203140nnzd 12074 . . . . . . . . . . . 12 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑎 ∈ ℤ)
204136nncnd 11641 . . . . . . . . . . . . . 14 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∈ ℂ)
205138nncnd 11641 . . . . . . . . . . . . . 14 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑥 ∈ ℂ)
206204, 205mulcomd 10651 . . . . . . . . . . . . 13 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ((2↑𝑦) · 𝑥) = (𝑥 · (2↑𝑦)))
207133, 206eqtr2d 2834 . . . . . . . . . . . 12 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑥 · (2↑𝑦)) = 𝑎)
208 dvds0lem 15612 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ (2↑𝑦) ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑥 · (2↑𝑦)) = 𝑎) → (2↑𝑦) ∥ 𝑎)
209201, 202, 203, 207, 208syl31anc 1370 . . . . . . . . . . 11 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∥ 𝑎)
210 oveq2 7143 . . . . . . . . . . . . 13 (𝑘 = 𝑦 → (2↑𝑘) = (2↑𝑦))
211210breq1d 5040 . . . . . . . . . . . 12 (𝑘 = 𝑦 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑𝑦) ∥ 𝑎))
212211elrab 3628 . . . . . . . . . . 11 (𝑦 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (𝑦 ∈ ℕ0 ∧ (2↑𝑦) ∥ 𝑎))
213135, 209, 212sylanbrc 586 . . . . . . . . . 10 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
21419a1i 11 . . . . . . . . . . 11 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → < Or ℕ0)
215214, 150supub 8907 . . . . . . . . . 10 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} → ¬ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < 𝑦))
216213, 215mpd 15 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ¬ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < 𝑦)
217135nn0red 11944 . . . . . . . . . 10 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 ∈ ℝ)
218140, 97syl 17 . . . . . . . . . 10 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℝ)
219217, 218lttri3d 10769 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ↔ (¬ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∧ ¬ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < 𝑦)))
220200, 216, 219mpbir2and 712 . . . . . . . 8 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
221 simplr 768 . . . . . . . . . . 11 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 = ((2↑𝑦) · 𝑥))
222140adantr 484 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 ∈ ℕ)
223222nncnd 11641 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 ∈ ℂ)
224138adantr 484 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 ∈ ℕ)
225224nncnd 11641 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 ∈ ℂ)
226 nnexpcl 13438 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ)
2272, 226mpan 689 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℕ)
228227nncnd 11641 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℂ)
229227nnne0d 11675 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0 → (2↑𝑦) ≠ 0)
230228, 229jca 515 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ((2↑𝑦) ∈ ℂ ∧ (2↑𝑦) ≠ 0))
231230ad3antlr 730 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑𝑦) ∈ ℂ ∧ (2↑𝑦) ≠ 0))
232 divmul2 11291 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ((2↑𝑦) ∈ ℂ ∧ (2↑𝑦) ≠ 0)) → ((𝑎 / (2↑𝑦)) = 𝑥𝑎 = ((2↑𝑦) · 𝑥)))
233223, 225, 231, 232syl3anc 1368 . . . . . . . . . . 11 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((𝑎 / (2↑𝑦)) = 𝑥𝑎 = ((2↑𝑦) · 𝑥)))
234221, 233mpbird 260 . . . . . . . . . 10 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑎 / (2↑𝑦)) = 𝑥)
235 simpr 488 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
236235oveq2d 7151 . . . . . . . . . . 11 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑𝑦) = (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
237236oveq2d 7151 . . . . . . . . . 10 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑎 / (2↑𝑦)) = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
238234, 237eqtr3d 2835 . . . . . . . . 9 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
239238ex 416 . . . . . . . 8 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) → 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
240220, 239jcai 520 . . . . . . 7 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∧ 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
241240ancomd 465 . . . . . 6 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
242140, 241jca 515 . . . . 5 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
243 simprl 770 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
244130adantr 484 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽)
245243, 244eqeltrd 2890 . . . . . 6 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑥𝐽)
246 simprr 772 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
24753adantr 484 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0)
248246, 247eqeltrd 2890 . . . . . 6 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑦 ∈ ℕ0)
249118adantr 484 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑎 = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
250246oveq2d 7151 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → (2↑𝑦) = (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
251250, 243oveq12d 7153 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → ((2↑𝑦) · 𝑥) = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
252249, 251eqtr4d 2836 . . . . . 6 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑎 = ((2↑𝑦) · 𝑥))
253245, 248, 252jca31 518 . . . . 5 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → ((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)))
254242, 253impbii 212 . . . 4 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
255254a1i 11 . . 3 (⊤ → (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
2561, 13, 132, 255f1od2 30483 . 2 (⊤ → 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ)
257256mptru 1545 1 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wtru 1539  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  wss 3881  c0 4243   class class class wbr 5030   Or wor 5437   × cxp 5517  1-1-ontowf1o 6323  (class class class)co 7135  cmpo 7137  Fincfn 8492  supcsup 8888  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  ...cfz 12885  cexp 13425  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-exp 13426  df-dvds 15600
This theorem is referenced by:  eulerpartgbij  31740  eulerpartlemgvv  31744  eulerpartlemgh  31746  eulerpartlemgf  31747
  Copyright terms: Public domain W3C validator