Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddpwdc Structured version   Visualization version   GIF version

Theorem oddpwdc 34345
Description: Lemma for eulerpart 34373. The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.)
Hypotheses
Ref Expression
oddpwdc.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
oddpwdc.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
Assertion
Ref Expression
oddpwdc 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝐽(𝑧)

Proof of Theorem oddpwdc
Dummy variables 𝑘 𝑎 𝑙 𝑚 𝑛 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddpwdc.f . . 3 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
2 2nn 12259 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 ((𝑦 ∈ ℕ0𝑥𝐽) → 2 ∈ ℕ)
4 simpl 482 . . . . . . 7 ((𝑦 ∈ ℕ0𝑥𝐽) → 𝑦 ∈ ℕ0)
53, 4nnexpcld 14210 . . . . . 6 ((𝑦 ∈ ℕ0𝑥𝐽) → (2↑𝑦) ∈ ℕ)
6 oddpwdc.j . . . . . . . 8 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
7 ssrab2 4043 . . . . . . . 8 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
86, 7eqsstri 3993 . . . . . . 7 𝐽 ⊆ ℕ
9 simpr 484 . . . . . . 7 ((𝑦 ∈ ℕ0𝑥𝐽) → 𝑥𝐽)
108, 9sselid 3944 . . . . . 6 ((𝑦 ∈ ℕ0𝑥𝐽) → 𝑥 ∈ ℕ)
115, 10nnmulcld 12239 . . . . 5 ((𝑦 ∈ ℕ0𝑥𝐽) → ((2↑𝑦) · 𝑥) ∈ ℕ)
1211ancoms 458 . . . 4 ((𝑥𝐽𝑦 ∈ ℕ0) → ((2↑𝑦) · 𝑥) ∈ ℕ)
1312adantl 481 . . 3 ((⊤ ∧ (𝑥𝐽𝑦 ∈ ℕ0)) → ((2↑𝑦) · 𝑥) ∈ ℕ)
14 id 22 . . . . . . 7 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ)
152a1i 11 . . . . . . . 8 (𝑎 ∈ ℕ → 2 ∈ ℕ)
16 nn0ssre 12446 . . . . . . . . . . 11 0 ⊆ ℝ
17 ltso 11254 . . . . . . . . . . 11 < Or ℝ
18 soss 5566 . . . . . . . . . . 11 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1916, 17, 18mp2 9 . . . . . . . . . 10 < Or ℕ0
2019a1i 11 . . . . . . . . 9 (𝑎 ∈ ℕ → < Or ℕ0)
21 0zd 12541 . . . . . . . . . 10 (𝑎 ∈ ℕ → 0 ∈ ℤ)
22 ssrab2 4043 . . . . . . . . . . 11 {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0
2322a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0)
24 nnz 12550 . . . . . . . . . . 11 (𝑎 ∈ ℕ → 𝑎 ∈ ℤ)
25 oveq2 7395 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (2↑𝑘) = (2↑𝑛))
2625breq1d 5117 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑𝑛) ∥ 𝑎))
2726elrab 3659 . . . . . . . . . . . . 13 (𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎))
28 simprl 770 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑛 ∈ ℕ0)
2928nn0red 12504 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑛 ∈ ℝ)
302a1i 11 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 2 ∈ ℕ)
3130, 28nnexpcld 14210 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ∈ ℕ)
3231nnred 12201 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ∈ ℝ)
33 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑎 ∈ ℕ)
3433nnred 12201 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑎 ∈ ℝ)
35 2re 12260 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
3635leidi 11712 . . . . . . . . . . . . . . . 16 2 ≤ 2
37 nexple 32769 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0 ∧ 2 ∈ ℝ ∧ 2 ≤ 2) → 𝑛 ≤ (2↑𝑛))
3835, 36, 37mp3an23 1455 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0𝑛 ≤ (2↑𝑛))
3938ad2antrl 728 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑛 ≤ (2↑𝑛))
4031nnzd 12556 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ∈ ℤ)
41 simprr 772 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ∥ 𝑎)
42 dvdsle 16280 . . . . . . . . . . . . . . . 16 (((2↑𝑛) ∈ ℤ ∧ 𝑎 ∈ ℕ) → ((2↑𝑛) ∥ 𝑎 → (2↑𝑛) ≤ 𝑎))
4342imp 406 . . . . . . . . . . . . . . 15 ((((2↑𝑛) ∈ ℤ ∧ 𝑎 ∈ ℕ) ∧ (2↑𝑛) ∥ 𝑎) → (2↑𝑛) ≤ 𝑎)
4440, 33, 41, 43syl21anc 837 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → (2↑𝑛) ≤ 𝑎)
4529, 32, 34, 39, 44letrd 11331 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ (𝑛 ∈ ℕ0 ∧ (2↑𝑛) ∥ 𝑎)) → 𝑛𝑎)
4627, 45sylan2b 594 . . . . . . . . . . . 12 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑛𝑎)
4746ralrimiva 3125 . . . . . . . . . . 11 (𝑎 ∈ ℕ → ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑎)
48 brralrspcev 5167 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑎) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑚)
4924, 47, 48syl2anc 584 . . . . . . . . . 10 (𝑎 ∈ ℕ → ∃𝑚 ∈ ℤ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑚)
50 nn0uz 12835 . . . . . . . . . . 11 0 = (ℤ‘0)
5150uzsupss 12899 . . . . . . . . . 10 ((0 ∈ ℤ ∧ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0 ∧ ∃𝑚 ∈ ℤ ∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛𝑚) → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛 < 𝑜)))
5221, 23, 49, 51syl3anc 1373 . . . . . . . . 9 (𝑎 ∈ ℕ → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛 < 𝑜)))
5320, 52supcl 9409 . . . . . . . 8 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0)
5415, 53nnexpcld 14210 . . . . . . 7 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℕ)
55 fzfi 13937 . . . . . . . . . . . 12 (0...𝑎) ∈ Fin
56 0zd 12541 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 0 ∈ ℤ)
5724adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑎 ∈ ℤ)
5827, 28sylan2b 594 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑛 ∈ ℕ0)
5958nn0zd 12555 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑛 ∈ ℤ)
6058nn0ge0d 12506 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 0 ≤ 𝑛)
6156, 57, 59, 60, 46elfzd 13476 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ 𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}) → 𝑛 ∈ (0...𝑎))
6261ex 412 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → (𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} → 𝑛 ∈ (0...𝑎)))
6362ssrdv 3952 . . . . . . . . . . . 12 (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ (0...𝑎))
64 ssfi 9137 . . . . . . . . . . . 12 (((0...𝑎) ∈ Fin ∧ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ (0...𝑎)) → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ∈ Fin)
6555, 63, 64sylancr 587 . . . . . . . . . . 11 (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ∈ Fin)
66 0nn0 12457 . . . . . . . . . . . . . 14 0 ∈ ℕ0
6766a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → 0 ∈ ℕ0)
68 2cn 12261 . . . . . . . . . . . . . . 15 2 ∈ ℂ
69 exp0 14030 . . . . . . . . . . . . . . 15 (2 ∈ ℂ → (2↑0) = 1)
7068, 69ax-mp 5 . . . . . . . . . . . . . 14 (2↑0) = 1
71 1dvds 16240 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℤ → 1 ∥ 𝑎)
7224, 71syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ → 1 ∥ 𝑎)
7370, 72eqbrtrid 5142 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → (2↑0) ∥ 𝑎)
74 oveq2 7395 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (2↑𝑘) = (2↑0))
7574breq1d 5117 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑0) ∥ 𝑎))
7675elrab 3659 . . . . . . . . . . . . 13 (0 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (0 ∈ ℕ0 ∧ (2↑0) ∥ 𝑎))
7767, 73, 76sylanbrc 583 . . . . . . . . . . . 12 (𝑎 ∈ ℕ → 0 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
7877ne0d 4305 . . . . . . . . . . 11 (𝑎 ∈ ℕ → {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ≠ ∅)
79 fisupcl 9421 . . . . . . . . . . 11 (( < Or ℕ0 ∧ ({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ∈ Fin ∧ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ≠ ∅ ∧ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ⊆ ℕ0)) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
8020, 65, 78, 23, 79syl13anc 1374 . . . . . . . . . 10 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
81 oveq2 7395 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (2↑𝑘) = (2↑𝑙))
8281breq1d 5117 . . . . . . . . . . 11 (𝑘 = 𝑙 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑𝑙) ∥ 𝑎))
8382cbvrabv 3416 . . . . . . . . . 10 {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} = {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎}
8480, 83eleqtrdi 2838 . . . . . . . . 9 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎})
85 oveq2 7395 . . . . . . . . . . 11 (𝑙 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) → (2↑𝑙) = (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
8685breq1d 5117 . . . . . . . . . 10 (𝑙 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) → ((2↑𝑙) ∥ 𝑎 ↔ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎))
8786elrab 3659 . . . . . . . . 9 (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎} ↔ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0 ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎))
8884, 87sylib 218 . . . . . . . 8 (𝑎 ∈ ℕ → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0 ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎))
8988simprd 495 . . . . . . 7 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎)
90 nndivdvds 16231 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℕ) → ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎 ↔ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℕ))
9190biimpa 476 . . . . . . 7 (((𝑎 ∈ ℕ ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℕ) ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∥ 𝑎) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℕ)
9214, 54, 89, 91syl21anc 837 . . . . . 6 (𝑎 ∈ ℕ → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℕ)
93 1nn0 12458 . . . . . . . . . . 11 1 ∈ ℕ0
9493a1i 11 . . . . . . . . . 10 (𝑎 ∈ ℕ → 1 ∈ ℕ0)
9553, 94nn0addcld 12507 . . . . . . . . 9 (𝑎 ∈ ℕ → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0)
9653nn0red 12504 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℝ)
9796ltp1d 12113 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1))
9820, 52supub 9410 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} → ¬ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)))
9997, 98mt2d 136 . . . . . . . . . . . 12 (𝑎 ∈ ℕ → ¬ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
10083eleq2i 2820 . . . . . . . . . . . 12 ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎})
10199, 100sylnib 328 . . . . . . . . . . 11 (𝑎 ∈ ℕ → ¬ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎})
102 oveq2 7395 . . . . . . . . . . . . 13 (𝑙 = (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) → (2↑𝑙) = (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)))
103102breq1d 5117 . . . . . . . . . . . 12 (𝑙 = (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) → ((2↑𝑙) ∥ 𝑎 ↔ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
104103elrab 3659 . . . . . . . . . . 11 ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ {𝑙 ∈ ℕ0 ∣ (2↑𝑙) ∥ 𝑎} ↔ ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
105101, 104sylnib 328 . . . . . . . . . 10 (𝑎 ∈ ℕ → ¬ ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
106 imnan 399 . . . . . . . . . 10 (((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 → ¬ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎) ↔ ¬ ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
107105, 106sylibr 234 . . . . . . . . 9 (𝑎 ∈ ℕ → ((sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1) ∈ ℕ0 → ¬ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎))
10895, 107mpd 15 . . . . . . . 8 (𝑎 ∈ ℕ → ¬ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎)
109 expp1 14033 . . . . . . . . . 10 ((2 ∈ ℂ ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0) → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2))
11068, 53, 109sylancr 587 . . . . . . . . 9 (𝑎 ∈ ℕ → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2))
111110breq1d 5117 . . . . . . . 8 (𝑎 ∈ ℕ → ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) + 1)) ∥ 𝑎 ↔ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ 𝑎))
112108, 111mtbid 324 . . . . . . 7 (𝑎 ∈ ℕ → ¬ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ 𝑎)
113 nncn 12194 . . . . . . . . . . 11 (𝑎 ∈ ℕ → 𝑎 ∈ ℂ)
11454nncnd 12202 . . . . . . . . . . 11 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℂ)
11554nnne0d 12236 . . . . . . . . . . 11 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ≠ 0)
116113, 114, 115divcan2d 11960 . . . . . . . . . 10 (𝑎 ∈ ℕ → ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) = 𝑎)
117116eqcomd 2735 . . . . . . . . 9 (𝑎 ∈ ℕ → 𝑎 = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
118117breq2d 5119 . . . . . . . 8 (𝑎 ∈ ℕ → (((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ 𝑎 ↔ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))))
11915nnzd 12556 . . . . . . . . 9 (𝑎 ∈ ℕ → 2 ∈ ℤ)
12092nnzd 12556 . . . . . . . . 9 (𝑎 ∈ ℕ → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ)
12154nnzd 12556 . . . . . . . . 9 (𝑎 ∈ ℕ → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℤ)
122 dvdscmulr 16254 . . . . . . . . 9 ((2 ∈ ℤ ∧ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ ∧ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℤ ∧ (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ≠ 0)) → (((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
123119, 120, 121, 115, 122syl112anc 1376 . . . . . . . 8 (𝑎 ∈ ℕ → (((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
124118, 123bitrd 279 . . . . . . 7 (𝑎 ∈ ℕ → (((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · 2) ∥ 𝑎 ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
125112, 124mtbid 324 . . . . . 6 (𝑎 ∈ ℕ → ¬ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
126 breq2 5111 . . . . . . . 8 (𝑧 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → (2 ∥ 𝑧 ↔ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
127126notbid 318 . . . . . . 7 (𝑧 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
128127, 6elrab2 3662 . . . . . 6 ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽 ↔ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℕ ∧ ¬ 2 ∥ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
12992, 125, 128sylanbrc 583 . . . . 5 (𝑎 ∈ ℕ → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽)
130129, 53jca 511 . . . 4 (𝑎 ∈ ℕ → ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽 ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0))
131130adantl 481 . . 3 ((⊤ ∧ 𝑎 ∈ ℕ) → ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽 ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0))
132 simpr 484 . . . . . . 7 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑎 = ((2↑𝑦) · 𝑥))
1332a1i 11 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 2 ∈ ℕ)
134 simplr 768 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 ∈ ℕ0)
135133, 134nnexpcld 14210 . . . . . . . 8 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∈ ℕ)
1368sseli 3942 . . . . . . . . 9 (𝑥𝐽𝑥 ∈ ℕ)
137136ad2antrr 726 . . . . . . . 8 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑥 ∈ ℕ)
138135, 137nnmulcld 12239 . . . . . . 7 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ((2↑𝑦) · 𝑥) ∈ ℕ)
139132, 138eqeltrd 2828 . . . . . 6 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑎 ∈ ℕ)
140 simplll 774 . . . . . . . . . 10 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥𝐽)
141 breq2 5111 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥))
142141notbid 318 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥))
143142, 6elrab2 3662 . . . . . . . . . . . 12 (𝑥𝐽 ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥))
144143simprbi 496 . . . . . . . . . . 11 (𝑥𝐽 → ¬ 2 ∥ 𝑥)
145 2z 12565 . . . . . . . . . . . . . 14 2 ∈ ℤ
146134adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 ∈ ℕ0)
147146nn0zd 12555 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 ∈ ℤ)
14819a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → < Or ℕ0)
149139, 52syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛 < 𝑜)))
150149adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ∃𝑚 ∈ ℕ0 (∀𝑛 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ¬ 𝑚 < 𝑛 ∧ ∀𝑛 ∈ ℕ0 (𝑛 < 𝑚 → ∃𝑜 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}𝑛 < 𝑜)))
151148, 150supcl 9409 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0)
152151nn0zd 12555 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℤ)
153 simpr 484 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
154 znnsub 12579 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℤ) → (𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ↔ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ))
155154biimpa 476 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℤ ∧ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℤ) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ)
156147, 152, 153, 155syl21anc 837 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ)
157 iddvdsexp 16249 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ) → 2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))
158145, 156, 157sylancr 587 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))
159145a1i 11 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∈ ℤ)
160139, 120syl 17 . . . . . . . . . . . . . . 15 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ)
161160adantr 480 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ)
162156nnnn0d 12503 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ0)
163 zexpcl 14041 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦) ∈ ℕ0) → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈ ℤ)
164145, 162, 163sylancr 587 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈ ℤ)
165 dvdsmultr2 16268 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℤ ∧ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈ ℤ) → (2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) → 2 ∥ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))))
166159, 161, 164, 165syl3anc 1373 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2 ∥ (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) → 2 ∥ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)))))
167158, 166mpd 15 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∥ ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))
168137adantr 480 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 ∈ ℕ)
169168nncnd 12202 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 ∈ ℂ)
170 2cnd 12264 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∈ ℂ)
171170, 162expcld 14111 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) ∈ ℂ)
172139adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 ∈ ℕ)
173172nncnd 12202 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 ∈ ℂ)
174172, 114syl 17 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ∈ ℂ)
175 2ne0 12290 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
176175a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ≠ 0)
177170, 176, 152expne0d 14117 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) ≠ 0)
178173, 174, 177divcld 11958 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ ℂ)
179171, 178mulcld 11194 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) ∈ ℂ)
180170, 146expcld 14111 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑𝑦) ∈ ℂ)
181170, 176, 147expne0d 14117 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑𝑦) ≠ 0)
182172, 117syl 17 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
183 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 = ((2↑𝑦) · 𝑥))
184146nn0cnd 12505 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 ∈ ℂ)
185151nn0cnd 12505 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℂ)
186184, 185pncan3d 11536 . . . . . . . . . . . . . . . . . . 19 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑦 + (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
187186oveq2d 7403 . . . . . . . . . . . . . . . . . 18 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑(𝑦 + (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) = (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
188170, 162, 146expaddd 14113 . . . . . . . . . . . . . . . . . 18 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑(𝑦 + (sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) = ((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))
189187, 188eqtr3d 2766 . . . . . . . . . . . . . . . . 17 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) = ((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))
190189oveq1d 7402 . . . . . . . . . . . . . . . 16 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) = (((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
191182, 183, 1903eqtr3d 2772 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑𝑦) · 𝑥) = (((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
192180, 171, 178mulassd 11197 . . . . . . . . . . . . . . 15 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (((2↑𝑦) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))) = ((2↑𝑦) · ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))))
193191, 192eqtrd 2764 . . . . . . . . . . . . . 14 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))))
194169, 179, 180, 181, 193mulcanad 11813 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 = ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
195178, 171mulcomd 11195 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))) = ((2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦)) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
196194, 195eqtr4d 2767 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 = ((𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) · (2↑(sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) − 𝑦))))
197167, 196breqtrrd 5135 . . . . . . . . . . 11 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 2 ∥ 𝑥)
198144, 197nsyl3 138 . . . . . . . . . 10 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ¬ 𝑥𝐽)
199140, 198pm2.65da 816 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ¬ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
200137nnzd 12556 . . . . . . . . . . . 12 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑥 ∈ ℤ)
201135nnzd 12556 . . . . . . . . . . . 12 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∈ ℤ)
202139nnzd 12556 . . . . . . . . . . . 12 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑎 ∈ ℤ)
203135nncnd 12202 . . . . . . . . . . . . . 14 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∈ ℂ)
204137nncnd 12202 . . . . . . . . . . . . . 14 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑥 ∈ ℂ)
205203, 204mulcomd 11195 . . . . . . . . . . . . 13 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ((2↑𝑦) · 𝑥) = (𝑥 · (2↑𝑦)))
206132, 205eqtr2d 2765 . . . . . . . . . . . 12 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑥 · (2↑𝑦)) = 𝑎)
207 dvds0lem 16236 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ (2↑𝑦) ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑥 · (2↑𝑦)) = 𝑎) → (2↑𝑦) ∥ 𝑎)
208200, 201, 202, 206, 207syl31anc 1375 . . . . . . . . . . 11 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (2↑𝑦) ∥ 𝑎)
209 oveq2 7395 . . . . . . . . . . . . 13 (𝑘 = 𝑦 → (2↑𝑘) = (2↑𝑦))
210209breq1d 5117 . . . . . . . . . . . 12 (𝑘 = 𝑦 → ((2↑𝑘) ∥ 𝑎 ↔ (2↑𝑦) ∥ 𝑎))
211210elrab 3659 . . . . . . . . . . 11 (𝑦 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} ↔ (𝑦 ∈ ℕ0 ∧ (2↑𝑦) ∥ 𝑎))
212134, 208, 211sylanbrc 583 . . . . . . . . . 10 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎})
21319a1i 11 . . . . . . . . . . 11 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → < Or ℕ0)
214213, 149supub 9410 . . . . . . . . . 10 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 ∈ {𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎} → ¬ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < 𝑦))
215212, 214mpd 15 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → ¬ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < 𝑦)
216134nn0red 12504 . . . . . . . . . 10 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 ∈ ℝ)
217139, 96syl 17 . . . . . . . . . 10 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℝ)
218216, 217lttri3d 11314 . . . . . . . . 9 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ↔ (¬ 𝑦 < sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∧ ¬ sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) < 𝑦)))
219199, 215, 218mpbir2and 713 . . . . . . . 8 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
220 simplr 768 . . . . . . . . . . 11 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 = ((2↑𝑦) · 𝑥))
221139adantr 480 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 ∈ ℕ)
222221nncnd 12202 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑎 ∈ ℂ)
223137adantr 480 . . . . . . . . . . . . 13 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 ∈ ℕ)
224223nncnd 12202 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 ∈ ℂ)
225 nnexpcl 14039 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℕ)
2262, 225mpan 690 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℕ)
227226nncnd 12202 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℂ)
228226nnne0d 12236 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0 → (2↑𝑦) ≠ 0)
229227, 228jca 511 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ((2↑𝑦) ∈ ℂ ∧ (2↑𝑦) ≠ 0))
230229ad3antlr 731 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((2↑𝑦) ∈ ℂ ∧ (2↑𝑦) ≠ 0))
231 divmul2 11841 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ((2↑𝑦) ∈ ℂ ∧ (2↑𝑦) ≠ 0)) → ((𝑎 / (2↑𝑦)) = 𝑥𝑎 = ((2↑𝑦) · 𝑥)))
232222, 224, 230, 231syl3anc 1373 . . . . . . . . . . 11 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → ((𝑎 / (2↑𝑦)) = 𝑥𝑎 = ((2↑𝑦) · 𝑥)))
233220, 232mpbird 257 . . . . . . . . . 10 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑎 / (2↑𝑦)) = 𝑥)
234 simpr 484 . . . . . . . . . . . 12 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
235234oveq2d 7403 . . . . . . . . . . 11 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (2↑𝑦) = (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
236235oveq2d 7403 . . . . . . . . . 10 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → (𝑎 / (2↑𝑦)) = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
237233, 236eqtr3d 2766 . . . . . . . . 9 ((((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) → 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
238237ex 412 . . . . . . . 8 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) → 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
239219, 238jcai 516 . . . . . . 7 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∧ 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
240239ancomd 461 . . . . . 6 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
241139, 240jca 511 . . . . 5 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) → (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
242 simprl 770 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
243129adantr 480 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∈ 𝐽)
244242, 243eqeltrd 2828 . . . . . 6 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑥𝐽)
245 simprr 772 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))
24653adantr 480 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ) ∈ ℕ0)
247245, 246eqeltrd 2828 . . . . . 6 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑦 ∈ ℕ0)
248117adantr 480 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑎 = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
249245oveq2d 7403 . . . . . . . 8 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → (2↑𝑦) = (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))
250249, 242oveq12d 7405 . . . . . . 7 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → ((2↑𝑦) · 𝑥) = ((2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )) · (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
251248, 250eqtr4d 2767 . . . . . 6 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → 𝑎 = ((2↑𝑦) · 𝑥))
252244, 247, 251jca31 514 . . . . 5 ((𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) → ((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)))
253241, 252impbii 209 . . . 4 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))))
254253a1i 11 . . 3 (⊤ → (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < ))) ∧ 𝑦 = sup({𝑘 ∈ ℕ0 ∣ (2↑𝑘) ∥ 𝑎}, ℕ0, < )))))
2551, 13, 131, 254f1od2 32644 . 2 (⊤ → 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ)
256255mptru 1547 1 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  wss 3914  c0 4296   class class class wbr 5107   Or wor 5545   × cxp 5636  1-1-ontowf1o 6510  (class class class)co 7387  cmpo 7389  Fincfn 8918  supcsup 9391  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  ...cfz 13468  cexp 14026  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-exp 14027  df-dvds 16223
This theorem is referenced by:  eulerpartgbij  34363  eulerpartlemgvv  34367  eulerpartlemgh  34369  eulerpartlemgf  34370
  Copyright terms: Public domain W3C validator