Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmf Structured version   Visualization version   GIF version

Theorem sitmf 34348
Description: The integral metric as a function. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Hypotheses
Ref Expression
sitmf.0 (𝜑𝑊 ∈ Mnd)
sitmf.1 (𝜑𝑊 ∈ ∞MetSp)
sitmf.2 (𝜑𝑀 ran measures)
Assertion
Ref Expression
sitmf (𝜑 → (𝑊sitm𝑀):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞))

Proof of Theorem sitmf
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . 6 (dist‘𝑊) = (dist‘𝑊)
2 sitmf.1 . . . . . . 7 (𝜑𝑊 ∈ ∞MetSp)
32adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑊 ∈ ∞MetSp)
4 sitmf.2 . . . . . . 7 (𝜑𝑀 ran measures)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑀 ran measures)
6 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑓 ∈ dom (𝑊sitg𝑀))
7 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑔 ∈ dom (𝑊sitg𝑀))
81, 3, 5, 6, 7sitmfval 34346 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → (𝑓(𝑊sitm𝑀)𝑔) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f (dist‘𝑊)𝑔)))
9 sitmf.0 . . . . . . 7 (𝜑𝑊 ∈ Mnd)
109adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑊 ∈ Mnd)
1110, 3, 5, 6, 7sitmcl 34347 . . . . 5 ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → (𝑓(𝑊sitm𝑀)𝑔) ∈ (0[,]+∞))
128, 11eqeltrrd 2842 . . . 4 ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f (dist‘𝑊)𝑔)) ∈ (0[,]+∞))
1312ralrimivva 3202 . . 3 (𝜑 → ∀𝑓 ∈ dom (𝑊sitg𝑀)∀𝑔 ∈ dom (𝑊sitg𝑀)(((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f (dist‘𝑊)𝑔)) ∈ (0[,]+∞))
14 eqid 2737 . . . 4 (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f (dist‘𝑊)𝑔))) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f (dist‘𝑊)𝑔)))
1514fmpo 8101 . . 3 (∀𝑓 ∈ dom (𝑊sitg𝑀)∀𝑔 ∈ dom (𝑊sitg𝑀)(((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f (dist‘𝑊)𝑔)) ∈ (0[,]+∞) ↔ (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f (dist‘𝑊)𝑔))):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞))
1613, 15sylib 218 . 2 (𝜑 → (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f (dist‘𝑊)𝑔))):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞))
171, 2, 4sitmval 34345 . . 3 (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f (dist‘𝑊)𝑔))))
1817feq1d 6728 . 2 (𝜑 → ((𝑊sitm𝑀):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞) ↔ (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f (dist‘𝑊)𝑔))):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)))
1916, 18mpbird 257 1 (𝜑 → (𝑊sitm𝑀):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3061   cuni 4915   × cxp 5691  dom cdm 5693  ran crn 5694  wf 6565  cfv 6569  (class class class)co 7438  cmpo 7440  f cof 7702  0cc0 11162  +∞cpnf 11299  [,]cicc 13396  s cress 17283  distcds 17316  *𝑠cxrs 17556  Mndcmnd 18769  ∞MetSpcxms 24352  measurescmeas 34190  sitmcsitm 34324  sitgcsitg 34325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688  ax-ac2 10510  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240  ax-addf 11241  ax-mulf 11242  ax-xrssca 33021  ax-xrsvsca 33022
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-disj 5119  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-om 7895  df-1st 8022  df-2nd 8023  df-supp 8194  df-tpos 8259  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-er 8753  df-map 8876  df-pm 8877  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-fsupp 9409  df-fi 9458  df-sup 9489  df-inf 9490  df-oi 9557  df-dju 9948  df-card 9986  df-acn 9989  df-ac 10163  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-q 12998  df-rp 13042  df-xneg 13161  df-xadd 13162  df-xmul 13163  df-ioo 13397  df-ioc 13398  df-ico 13399  df-icc 13400  df-fz 13554  df-fzo 13701  df-fl 13838  df-mod 13916  df-seq 14049  df-exp 14109  df-fac 14319  df-bc 14348  df-hash 14376  df-shft 15112  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-limsup 15513  df-clim 15530  df-rlim 15531  df-sum 15729  df-ef 16109  df-sin 16111  df-cos 16112  df-pi 16114  df-dvds 16297  df-gcd 16538  df-numer 16778  df-denom 16779  df-gz 16973  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-starv 17322  df-sca 17323  df-vsca 17324  df-ip 17325  df-tset 17326  df-ple 17327  df-ds 17329  df-unif 17330  df-hom 17331  df-cco 17332  df-rest 17478  df-topn 17479  df-0g 17497  df-gsum 17498  df-topgen 17499  df-pt 17500  df-prds 17503  df-ordt 17557  df-xrs 17558  df-qtop 17563  df-imas 17564  df-xps 17566  df-mre 17640  df-mrc 17641  df-acs 17643  df-proset 18361  df-poset 18380  df-plt 18397  df-toset 18484  df-ps 18633  df-tsr 18634  df-plusf 18674  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-od 19570  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20596  df-drng 20757  df-field 20758  df-abv 20836  df-lmod 20886  df-scaf 20887  df-sra 21199  df-rgmod 21200  df-psmet 21383  df-xmet 21384  df-met 21385  df-bl 21386  df-mopn 21387  df-fbas 21388  df-fg 21389  df-metu 21390  df-cnfld 21392  df-zring 21485  df-zrh 21541  df-zlm 21542  df-chr 21543  df-refld 21650  df-top 22925  df-topon 22942  df-topsp 22964  df-bases 22978  df-cld 23052  df-ntr 23053  df-cls 23054  df-nei 23131  df-lp 23169  df-perf 23170  df-cn 23260  df-cnp 23261  df-t1 23347  df-haus 23348  df-reg 23349  df-cmp 23420  df-tx 23595  df-hmeo 23788  df-fil 23879  df-fm 23971  df-flim 23972  df-flf 23973  df-fcls 23974  df-cnext 24093  df-tmd 24105  df-tgp 24106  df-tsms 24160  df-trg 24193  df-ust 24234  df-utop 24265  df-uss 24290  df-usp 24291  df-ucn 24310  df-cfilu 24321  df-cusp 24332  df-xms 24355  df-ms 24356  df-tms 24357  df-nm 24620  df-ngp 24621  df-nrg 24623  df-nlm 24624  df-ii 24928  df-cncf 24929  df-cfil 25314  df-cmet 25316  df-cms 25394  df-limc 25927  df-dv 25928  df-log 26624  df-omnd 33091  df-ogrp 33092  df-orng 33339  df-ofld 33340  df-qqh 33966  df-rrh 33990  df-rrext 33994  df-esum 34023  df-siga 34104  df-sigagen 34134  df-meas 34191  df-mbfm 34245  df-sitg 34326  df-sitm 34327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator