![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sitmf | Structured version Visualization version GIF version |
Description: The integral metric as a function. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
sitmf.0 | β’ (π β π β Mnd) |
sitmf.1 | β’ (π β π β βMetSp) |
sitmf.2 | β’ (π β π β βͺ ran measures) |
Ref | Expression |
---|---|
sitmf | β’ (π β (πsitmπ):(dom (πsitgπ) Γ dom (πsitgπ))βΆ(0[,]+β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . . . 6 β’ (distβπ) = (distβπ) | |
2 | sitmf.1 | . . . . . . 7 β’ (π β π β βMetSp) | |
3 | 2 | adantr 480 | . . . . . 6 β’ ((π β§ (π β dom (πsitgπ) β§ π β dom (πsitgπ))) β π β βMetSp) |
4 | sitmf.2 | . . . . . . 7 β’ (π β π β βͺ ran measures) | |
5 | 4 | adantr 480 | . . . . . 6 β’ ((π β§ (π β dom (πsitgπ) β§ π β dom (πsitgπ))) β π β βͺ ran measures) |
6 | simprl 768 | . . . . . 6 β’ ((π β§ (π β dom (πsitgπ) β§ π β dom (πsitgπ))) β π β dom (πsitgπ)) | |
7 | simprr 770 | . . . . . 6 β’ ((π β§ (π β dom (πsitgπ) β§ π β dom (πsitgπ))) β π β dom (πsitgπ)) | |
8 | 1, 3, 5, 6, 7 | sitmfval 33868 | . . . . 5 β’ ((π β§ (π β dom (πsitgπ) β§ π β dom (πsitgπ))) β (π(πsitmπ)π) = (((β*π βΎs (0[,]+β))sitgπ)β(π βf (distβπ)π))) |
9 | sitmf.0 | . . . . . . 7 β’ (π β π β Mnd) | |
10 | 9 | adantr 480 | . . . . . 6 β’ ((π β§ (π β dom (πsitgπ) β§ π β dom (πsitgπ))) β π β Mnd) |
11 | 10, 3, 5, 6, 7 | sitmcl 33869 | . . . . 5 β’ ((π β§ (π β dom (πsitgπ) β§ π β dom (πsitgπ))) β (π(πsitmπ)π) β (0[,]+β)) |
12 | 8, 11 | eqeltrrd 2826 | . . . 4 β’ ((π β§ (π β dom (πsitgπ) β§ π β dom (πsitgπ))) β (((β*π βΎs (0[,]+β))sitgπ)β(π βf (distβπ)π)) β (0[,]+β)) |
13 | 12 | ralrimivva 3192 | . . 3 β’ (π β βπ β dom (πsitgπ)βπ β dom (πsitgπ)(((β*π βΎs (0[,]+β))sitgπ)β(π βf (distβπ)π)) β (0[,]+β)) |
14 | eqid 2724 | . . . 4 β’ (π β dom (πsitgπ), π β dom (πsitgπ) β¦ (((β*π βΎs (0[,]+β))sitgπ)β(π βf (distβπ)π))) = (π β dom (πsitgπ), π β dom (πsitgπ) β¦ (((β*π βΎs (0[,]+β))sitgπ)β(π βf (distβπ)π))) | |
15 | 14 | fmpo 8048 | . . 3 β’ (βπ β dom (πsitgπ)βπ β dom (πsitgπ)(((β*π βΎs (0[,]+β))sitgπ)β(π βf (distβπ)π)) β (0[,]+β) β (π β dom (πsitgπ), π β dom (πsitgπ) β¦ (((β*π βΎs (0[,]+β))sitgπ)β(π βf (distβπ)π))):(dom (πsitgπ) Γ dom (πsitgπ))βΆ(0[,]+β)) |
16 | 13, 15 | sylib 217 | . 2 β’ (π β (π β dom (πsitgπ), π β dom (πsitgπ) β¦ (((β*π βΎs (0[,]+β))sitgπ)β(π βf (distβπ)π))):(dom (πsitgπ) Γ dom (πsitgπ))βΆ(0[,]+β)) |
17 | 1, 2, 4 | sitmval 33867 | . . 3 β’ (π β (πsitmπ) = (π β dom (πsitgπ), π β dom (πsitgπ) β¦ (((β*π βΎs (0[,]+β))sitgπ)β(π βf (distβπ)π)))) |
18 | 17 | feq1d 6693 | . 2 β’ (π β ((πsitmπ):(dom (πsitgπ) Γ dom (πsitgπ))βΆ(0[,]+β) β (π β dom (πsitgπ), π β dom (πsitgπ) β¦ (((β*π βΎs (0[,]+β))sitgπ)β(π βf (distβπ)π))):(dom (πsitgπ) Γ dom (πsitgπ))βΆ(0[,]+β))) |
19 | 16, 18 | mpbird 257 | 1 β’ (π β (πsitmπ):(dom (πsitgπ) Γ dom (πsitgπ))βΆ(0[,]+β)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β wcel 2098 βwral 3053 βͺ cuni 4900 Γ cxp 5665 dom cdm 5667 ran crn 5668 βΆwf 6530 βcfv 6534 (class class class)co 7402 β cmpo 7404 βf cof 7662 0cc0 11107 +βcpnf 11244 [,]cicc 13328 βΎs cress 17178 distcds 17211 β*π cxrs 17451 Mndcmnd 18663 βMetSpcxms 24167 measurescmeas 33712 sitmcsitm 33846 sitgcsitg 33847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-ac2 10455 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 ax-mulf 11187 ax-xrssca 32666 ax-xrsvsca 32667 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-disj 5105 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-map 8819 df-pm 8820 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-fi 9403 df-sup 9434 df-inf 9435 df-oi 9502 df-dju 9893 df-card 9931 df-acn 9934 df-ac 10108 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12976 df-xneg 13093 df-xadd 13094 df-xmul 13095 df-ioo 13329 df-ioc 13330 df-ico 13331 df-icc 13332 df-fz 13486 df-fzo 13629 df-fl 13758 df-mod 13836 df-seq 13968 df-exp 14029 df-fac 14235 df-bc 14264 df-hash 14292 df-shft 15016 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-limsup 15417 df-clim 15434 df-rlim 15435 df-sum 15635 df-ef 16013 df-sin 16015 df-cos 16016 df-pi 16018 df-dvds 16201 df-gcd 16439 df-numer 16676 df-denom 16677 df-gz 16868 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-ordt 17452 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-proset 18256 df-poset 18274 df-plt 18291 df-toset 18378 df-ps 18527 df-tsr 18528 df-plusf 18568 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-mhm 18709 df-submnd 18710 df-grp 18862 df-minusg 18863 df-sbg 18864 df-mulg 18992 df-subg 19046 df-ghm 19135 df-cntz 19229 df-od 19444 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-rhm 20370 df-nzr 20411 df-subrng 20442 df-subrg 20467 df-drng 20585 df-field 20586 df-abv 20656 df-lmod 20704 df-scaf 20705 df-sra 21017 df-rgmod 21018 df-psmet 21226 df-xmet 21227 df-met 21228 df-bl 21229 df-mopn 21230 df-fbas 21231 df-fg 21232 df-metu 21233 df-cnfld 21235 df-zring 21323 df-zrh 21379 df-zlm 21380 df-chr 21381 df-refld 21487 df-top 22740 df-topon 22757 df-topsp 22779 df-bases 22793 df-cld 22867 df-ntr 22868 df-cls 22869 df-nei 22946 df-lp 22984 df-perf 22985 df-cn 23075 df-cnp 23076 df-t1 23162 df-haus 23163 df-reg 23164 df-cmp 23235 df-tx 23410 df-hmeo 23603 df-fil 23694 df-fm 23786 df-flim 23787 df-flf 23788 df-fcls 23789 df-cnext 23908 df-tmd 23920 df-tgp 23921 df-tsms 23975 df-trg 24008 df-ust 24049 df-utop 24080 df-uss 24105 df-usp 24106 df-ucn 24125 df-cfilu 24136 df-cusp 24147 df-xms 24170 df-ms 24171 df-tms 24172 df-nm 24435 df-ngp 24436 df-nrg 24438 df-nlm 24439 df-ii 24741 df-cncf 24742 df-cfil 25127 df-cmet 25129 df-cms 25207 df-limc 25739 df-dv 25740 df-log 26430 df-omnd 32710 df-ogrp 32711 df-orng 32907 df-ofld 32908 df-qqh 33472 df-rrh 33494 df-rrext 33498 df-esum 33545 df-siga 33626 df-sigagen 33656 df-meas 33713 df-mbfm 33767 df-sitg 33848 df-sitm 33849 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |