| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sitmf | Structured version Visualization version GIF version | ||
| Description: The integral metric as a function. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| Ref | Expression |
|---|---|
| sitmf.0 | ⊢ (𝜑 → 𝑊 ∈ Mnd) |
| sitmf.1 | ⊢ (𝜑 → 𝑊 ∈ ∞MetSp) |
| sitmf.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| Ref | Expression |
|---|---|
| sitmf | ⊢ (𝜑 → (𝑊sitm𝑀):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . 6 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
| 2 | sitmf.1 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ∞MetSp) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑊 ∈ ∞MetSp) |
| 4 | sitmf.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑀 ∈ ∪ ran measures) |
| 6 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑓 ∈ dom (𝑊sitg𝑀)) | |
| 7 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑔 ∈ dom (𝑊sitg𝑀)) | |
| 8 | 1, 3, 5, 6, 7 | sitmfval 34347 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → (𝑓(𝑊sitm𝑀)𝑔) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔))) |
| 9 | sitmf.0 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Mnd) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑊 ∈ Mnd) |
| 11 | 10, 3, 5, 6, 7 | sitmcl 34348 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → (𝑓(𝑊sitm𝑀)𝑔) ∈ (0[,]+∞)) |
| 12 | 8, 11 | eqeltrrd 2830 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔)) ∈ (0[,]+∞)) |
| 13 | 12 | ralrimivva 3181 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ dom (𝑊sitg𝑀)∀𝑔 ∈ dom (𝑊sitg𝑀)(((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔)) ∈ (0[,]+∞)) |
| 14 | eqid 2730 | . . . 4 ⊢ (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔))) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔))) | |
| 15 | 14 | fmpo 8049 | . . 3 ⊢ (∀𝑓 ∈ dom (𝑊sitg𝑀)∀𝑔 ∈ dom (𝑊sitg𝑀)(((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔)) ∈ (0[,]+∞) ↔ (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔))):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)) |
| 16 | 13, 15 | sylib 218 | . 2 ⊢ (𝜑 → (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔))):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)) |
| 17 | 1, 2, 4 | sitmval 34346 | . . 3 ⊢ (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔)))) |
| 18 | 17 | feq1d 6672 | . 2 ⊢ (𝜑 → ((𝑊sitm𝑀):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞) ↔ (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔))):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞))) |
| 19 | 16, 18 | mpbird 257 | 1 ⊢ (𝜑 → (𝑊sitm𝑀):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∪ cuni 4873 × cxp 5638 dom cdm 5640 ran crn 5641 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 ∘f cof 7653 0cc0 11074 +∞cpnf 11211 [,]cicc 13315 ↾s cress 17206 distcds 17235 ℝ*𝑠cxrs 17469 Mndcmnd 18667 ∞MetSpcxms 24211 measurescmeas 34191 sitmcsitm 34325 sitgcsitg 34326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-ac2 10422 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 ax-mulf 11154 ax-xrssca 32948 ax-xrsvsca 32949 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-disj 5077 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-fi 9368 df-sup 9399 df-inf 9400 df-oi 9469 df-dju 9860 df-card 9898 df-acn 9901 df-ac 10075 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ioo 13316 df-ioc 13317 df-ico 13318 df-icc 13319 df-fz 13475 df-fzo 13622 df-fl 13760 df-mod 13838 df-seq 13973 df-exp 14033 df-fac 14245 df-bc 14274 df-hash 14302 df-shft 15039 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-limsup 15443 df-clim 15460 df-rlim 15461 df-sum 15659 df-ef 16039 df-sin 16041 df-cos 16042 df-pi 16044 df-dvds 16229 df-gcd 16471 df-numer 16711 df-denom 16712 df-gz 16907 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-ordt 17470 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-proset 18261 df-poset 18280 df-plt 18295 df-toset 18382 df-ps 18531 df-tsr 18532 df-plusf 18572 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cntz 19255 df-od 19464 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-rhm 20387 df-nzr 20428 df-subrng 20461 df-subrg 20485 df-drng 20646 df-field 20647 df-abv 20724 df-lmod 20774 df-scaf 20775 df-sra 21086 df-rgmod 21087 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-metu 21269 df-cnfld 21271 df-zring 21363 df-zrh 21419 df-zlm 21420 df-chr 21421 df-refld 21520 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-t1 23207 df-haus 23208 df-reg 23209 df-cmp 23280 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-fcls 23834 df-cnext 23953 df-tmd 23965 df-tgp 23966 df-tsms 24020 df-trg 24053 df-ust 24094 df-utop 24125 df-uss 24150 df-usp 24151 df-ucn 24169 df-cfilu 24180 df-cusp 24191 df-xms 24214 df-ms 24215 df-tms 24216 df-nm 24476 df-ngp 24477 df-nrg 24479 df-nlm 24480 df-ii 24776 df-cncf 24777 df-cfil 25161 df-cmet 25163 df-cms 25241 df-limc 25773 df-dv 25774 df-log 26471 df-omnd 33019 df-ogrp 33020 df-orng 33281 df-ofld 33282 df-qqh 33967 df-rrh 33991 df-rrext 33995 df-esum 34024 df-siga 34105 df-sigagen 34135 df-meas 34192 df-mbfm 34246 df-sitg 34327 df-sitm 34328 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |