| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sitmf | Structured version Visualization version GIF version | ||
| Description: The integral metric as a function. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| Ref | Expression |
|---|---|
| sitmf.0 | ⊢ (𝜑 → 𝑊 ∈ Mnd) |
| sitmf.1 | ⊢ (𝜑 → 𝑊 ∈ ∞MetSp) |
| sitmf.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| Ref | Expression |
|---|---|
| sitmf | ⊢ (𝜑 → (𝑊sitm𝑀):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . . . 6 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
| 2 | sitmf.1 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ∞MetSp) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑊 ∈ ∞MetSp) |
| 4 | sitmf.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑀 ∈ ∪ ran measures) |
| 6 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑓 ∈ dom (𝑊sitg𝑀)) | |
| 7 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑔 ∈ dom (𝑊sitg𝑀)) | |
| 8 | 1, 3, 5, 6, 7 | sitmfval 34311 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → (𝑓(𝑊sitm𝑀)𝑔) = (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔))) |
| 9 | sitmf.0 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Mnd) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → 𝑊 ∈ Mnd) |
| 11 | 10, 3, 5, 6, 7 | sitmcl 34312 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → (𝑓(𝑊sitm𝑀)𝑔) ∈ (0[,]+∞)) |
| 12 | 8, 11 | eqeltrrd 2834 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ dom (𝑊sitg𝑀) ∧ 𝑔 ∈ dom (𝑊sitg𝑀))) → (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔)) ∈ (0[,]+∞)) |
| 13 | 12 | ralrimivva 3189 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ dom (𝑊sitg𝑀)∀𝑔 ∈ dom (𝑊sitg𝑀)(((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔)) ∈ (0[,]+∞)) |
| 14 | eqid 2734 | . . . 4 ⊢ (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔))) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔))) | |
| 15 | 14 | fmpo 8075 | . . 3 ⊢ (∀𝑓 ∈ dom (𝑊sitg𝑀)∀𝑔 ∈ dom (𝑊sitg𝑀)(((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔)) ∈ (0[,]+∞) ↔ (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔))):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)) |
| 16 | 13, 15 | sylib 218 | . 2 ⊢ (𝜑 → (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔))):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)) |
| 17 | 1, 2, 4 | sitmval 34310 | . . 3 ⊢ (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔)))) |
| 18 | 17 | feq1d 6700 | . 2 ⊢ (𝜑 → ((𝑊sitm𝑀):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞) ↔ (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠 ↾s (0[,]+∞))sitg𝑀)‘(𝑓 ∘f (dist‘𝑊)𝑔))):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞))) |
| 19 | 16, 18 | mpbird 257 | 1 ⊢ (𝜑 → (𝑊sitm𝑀):(dom (𝑊sitg𝑀) × dom (𝑊sitg𝑀))⟶(0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ∪ cuni 4887 × cxp 5663 dom cdm 5665 ran crn 5666 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 ∘f cof 7677 0cc0 11137 +∞cpnf 11274 [,]cicc 13372 ↾s cress 17252 distcds 17282 ℝ*𝑠cxrs 17516 Mndcmnd 18716 ∞MetSpcxms 24272 measurescmeas 34155 sitmcsitm 34289 sitgcsitg 34290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-ac2 10485 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 ax-mulf 11217 ax-xrssca 32945 ax-xrsvsca 32946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-disj 5091 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-dju 9923 df-card 9961 df-acn 9964 df-ac 10138 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-ioc 13374 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14295 df-bc 14324 df-hash 14352 df-shft 15088 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-limsup 15489 df-clim 15506 df-rlim 15507 df-sum 15705 df-ef 16085 df-sin 16087 df-cos 16088 df-pi 16090 df-dvds 16273 df-gcd 16514 df-numer 16754 df-denom 16755 df-gz 16950 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-hom 17297 df-cco 17298 df-rest 17438 df-topn 17439 df-0g 17457 df-gsum 17458 df-topgen 17459 df-pt 17460 df-prds 17463 df-ordt 17517 df-xrs 17518 df-qtop 17523 df-imas 17524 df-xps 17526 df-mre 17600 df-mrc 17601 df-acs 17603 df-proset 18310 df-poset 18329 df-plt 18344 df-toset 18431 df-ps 18580 df-tsr 18581 df-plusf 18621 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-submnd 18766 df-grp 18923 df-minusg 18924 df-sbg 18925 df-mulg 19055 df-subg 19110 df-ghm 19200 df-cntz 19304 df-od 19514 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-dvr 20369 df-rhm 20440 df-nzr 20481 df-subrng 20514 df-subrg 20538 df-drng 20699 df-field 20700 df-abv 20778 df-lmod 20828 df-scaf 20829 df-sra 21140 df-rgmod 21141 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-fbas 21323 df-fg 21324 df-metu 21325 df-cnfld 21327 df-zring 21420 df-zrh 21476 df-zlm 21477 df-chr 21478 df-refld 21577 df-top 22848 df-topon 22865 df-topsp 22887 df-bases 22900 df-cld 22973 df-ntr 22974 df-cls 22975 df-nei 23052 df-lp 23090 df-perf 23091 df-cn 23181 df-cnp 23182 df-t1 23268 df-haus 23269 df-reg 23270 df-cmp 23341 df-tx 23516 df-hmeo 23709 df-fil 23800 df-fm 23892 df-flim 23893 df-flf 23894 df-fcls 23895 df-cnext 24014 df-tmd 24026 df-tgp 24027 df-tsms 24081 df-trg 24114 df-ust 24155 df-utop 24186 df-uss 24211 df-usp 24212 df-ucn 24230 df-cfilu 24241 df-cusp 24252 df-xms 24275 df-ms 24276 df-tms 24277 df-nm 24539 df-ngp 24540 df-nrg 24542 df-nlm 24543 df-ii 24839 df-cncf 24840 df-cfil 25225 df-cmet 25227 df-cms 25305 df-limc 25837 df-dv 25838 df-log 26534 df-omnd 33015 df-ogrp 33016 df-orng 33267 df-ofld 33268 df-qqh 33931 df-rrh 33955 df-rrext 33959 df-esum 33988 df-siga 34069 df-sigagen 34099 df-meas 34156 df-mbfm 34210 df-sitg 34291 df-sitm 34292 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |