![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-kb | Structured version Visualization version GIF version |
Description: Define a commuted bra and ket juxtaposition used by Dirac notation. In Dirac notation, ∣ 𝐴〉 〈𝐵 ∣ is an operator known as the outer product of 𝐴 and 𝐵, which we represent by (𝐴 ketbra 𝐵). Based on Equation 8.1 of [Prugovecki] p. 376. This definition, combined with definition df-bra 29281, allows any legal juxtaposition of bras and kets to make sense formally and also to obey the associative law when mapped back to Dirac notation. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-kb | ⊢ ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) ·ℎ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ck 28386 | . 2 class ketbra | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | chba 28348 | . . 3 class ℋ | |
5 | vz | . . . 4 setvar 𝑧 | |
6 | 5 | cv 1600 | . . . . . 6 class 𝑧 |
7 | 3 | cv 1600 | . . . . . 6 class 𝑦 |
8 | csp 28351 | . . . . . 6 class ·ih | |
9 | 6, 7, 8 | co 6922 | . . . . 5 class (𝑧 ·ih 𝑦) |
10 | 2 | cv 1600 | . . . . 5 class 𝑥 |
11 | csm 28350 | . . . . 5 class ·ℎ | |
12 | 9, 10, 11 | co 6922 | . . . 4 class ((𝑧 ·ih 𝑦) ·ℎ 𝑥) |
13 | 5, 4, 12 | cmpt 4965 | . . 3 class (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) ·ℎ 𝑥)) |
14 | 2, 3, 4, 4, 13 | cmpt2 6924 | . 2 class (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) ·ℎ 𝑥))) |
15 | 1, 14 | wceq 1601 | 1 wff ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) ·ℎ 𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: kbfval 29383 |
Copyright terms: Public domain | W3C validator |