HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-kb Structured version   Visualization version   GIF version

Definition df-kb 29282
Description: Define a commuted bra and ket juxtaposition used by Dirac notation. In Dirac notation, 𝐴 𝐵 is an operator known as the outer product of 𝐴 and 𝐵, which we represent by (𝐴 ketbra 𝐵). Based on Equation 8.1 of [Prugovecki] p. 376. This definition, combined with definition df-bra 29281, allows any legal juxtaposition of bras and kets to make sense formally and also to obey the associative law when mapped back to Dirac notation. (Contributed by NM, 15-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-kb ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-kb
StepHypRef Expression
1 ck 28386 . 2 class ketbra
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 chba 28348 . . 3 class
5 vz . . . 4 setvar 𝑧
65cv 1600 . . . . . 6 class 𝑧
73cv 1600 . . . . . 6 class 𝑦
8 csp 28351 . . . . . 6 class ·ih
96, 7, 8co 6922 . . . . 5 class (𝑧 ·ih 𝑦)
102cv 1600 . . . . 5 class 𝑥
11 csm 28350 . . . . 5 class ·
129, 10, 11co 6922 . . . 4 class ((𝑧 ·ih 𝑦) · 𝑥)
135, 4, 12cmpt 4965 . . 3 class (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥))
142, 3, 4, 4, 13cmpt2 6924 . 2 class (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
151, 14wceq 1601 1 wff ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  kbfval  29383
  Copyright terms: Public domain W3C validator