HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-kb Structured version   Visualization version   GIF version

Definition df-kb 31821
Description: Define a commuted bra and ket juxtaposition used by Dirac notation. In Dirac notation, 𝐴⟩⟨𝐵 is an operator known as the outer product of 𝐴 and 𝐵, which we represent by (𝐴 ketbra 𝐵). Based on Equation 8.1 of [Prugovecki] p. 376. This definition, combined with Definition df-bra 31820, allows any legal juxtaposition of bras and kets to make sense formally and also to obey the associative law when mapped back to Dirac notation. (Contributed by NM, 15-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-kb ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-kb
StepHypRef Expression
1 ck 30927 . 2 class ketbra
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 chba 30889 . . 3 class
5 vz . . . 4 setvar 𝑧
65cv 1540 . . . . . 6 class 𝑧
73cv 1540 . . . . . 6 class 𝑦
8 csp 30892 . . . . . 6 class ·ih
96, 7, 8co 7341 . . . . 5 class (𝑧 ·ih 𝑦)
102cv 1540 . . . . 5 class 𝑥
11 csm 30891 . . . . 5 class ·
129, 10, 11co 7341 . . . 4 class ((𝑧 ·ih 𝑦) · 𝑥)
135, 4, 12cmpt 5170 . . 3 class (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥))
142, 3, 4, 4, 13cmpo 7343 . 2 class (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
151, 14wceq 1541 1 wff ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  kbfval  31922
  Copyright terms: Public domain W3C validator