HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-kb Structured version   Visualization version   GIF version

Definition df-kb 31717
Description: Define a commuted bra and ket juxtaposition used by Dirac notation. In Dirac notation, โˆฃ ๐ดโŸฉโŸจ๐ต โˆฃ is an operator known as the outer product of ๐ด and ๐ต, which we represent by (๐ด ketbra ๐ต). Based on Equation 8.1 of [Prugovecki] p. 376. This definition, combined with Definition df-bra 31716, allows any legal juxtaposition of bras and kets to make sense formally and also to obey the associative law when mapped back to Dirac notation. (Contributed by NM, 15-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-kb ketbra = (๐‘ฅ โˆˆ โ„‹, ๐‘ฆ โˆˆ โ„‹ โ†ฆ (๐‘ง โˆˆ โ„‹ โ†ฆ ((๐‘ง ยทih ๐‘ฆ) ยทโ„Ž ๐‘ฅ)))
Distinct variable group:   ๐‘ฅ,๐‘ฆ,๐‘ง

Detailed syntax breakdown of Definition df-kb
StepHypRef Expression
1 ck 30823 . 2 class ketbra
2 vx . . 3 setvar ๐‘ฅ
3 vy . . 3 setvar ๐‘ฆ
4 chba 30785 . . 3 class โ„‹
5 vz . . . 4 setvar ๐‘ง
65cv 1532 . . . . . 6 class ๐‘ง
73cv 1532 . . . . . 6 class ๐‘ฆ
8 csp 30788 . . . . . 6 class ยทih
96, 7, 8co 7417 . . . . 5 class (๐‘ง ยทih ๐‘ฆ)
102cv 1532 . . . . 5 class ๐‘ฅ
11 csm 30787 . . . . 5 class ยทโ„Ž
129, 10, 11co 7417 . . . 4 class ((๐‘ง ยทih ๐‘ฆ) ยทโ„Ž ๐‘ฅ)
135, 4, 12cmpt 5231 . . 3 class (๐‘ง โˆˆ โ„‹ โ†ฆ ((๐‘ง ยทih ๐‘ฆ) ยทโ„Ž ๐‘ฅ))
142, 3, 4, 4, 13cmpo 7419 . 2 class (๐‘ฅ โˆˆ โ„‹, ๐‘ฆ โˆˆ โ„‹ โ†ฆ (๐‘ง โˆˆ โ„‹ โ†ฆ ((๐‘ง ยทih ๐‘ฆ) ยทโ„Ž ๐‘ฅ)))
151, 14wceq 1533 1 wff ketbra = (๐‘ฅ โˆˆ โ„‹, ๐‘ฆ โˆˆ โ„‹ โ†ฆ (๐‘ง โˆˆ โ„‹ โ†ฆ ((๐‘ง ยทih ๐‘ฆ) ยทโ„Ž ๐‘ฅ)))
Colors of variables: wff setvar class
This definition is referenced by:  kbfval  31818
  Copyright terms: Public domain W3C validator