HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-kb Structured version   Visualization version   GIF version

Definition df-kb 30213
Description: Define a commuted bra and ket juxtaposition used by Dirac notation. In Dirac notation, 𝐴⟩⟨𝐵 is an operator known as the outer product of 𝐴 and 𝐵, which we represent by (𝐴 ketbra 𝐵). Based on Equation 8.1 of [Prugovecki] p. 376. This definition, combined with Definition df-bra 30212, allows any legal juxtaposition of bras and kets to make sense formally and also to obey the associative law when mapped back to Dirac notation. (Contributed by NM, 15-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-kb ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-kb
StepHypRef Expression
1 ck 29319 . 2 class ketbra
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 chba 29281 . . 3 class
5 vz . . . 4 setvar 𝑧
65cv 1538 . . . . . 6 class 𝑧
73cv 1538 . . . . . 6 class 𝑦
8 csp 29284 . . . . . 6 class ·ih
96, 7, 8co 7275 . . . . 5 class (𝑧 ·ih 𝑦)
102cv 1538 . . . . 5 class 𝑥
11 csm 29283 . . . . 5 class ·
129, 10, 11co 7275 . . . 4 class ((𝑧 ·ih 𝑦) · 𝑥)
135, 4, 12cmpt 5157 . . 3 class (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥))
142, 3, 4, 4, 13cmpo 7277 . 2 class (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
151, 14wceq 1539 1 wff ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  kbfval  30314
  Copyright terms: Public domain W3C validator