![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-kb | Structured version Visualization version GIF version |
Description: Define a commuted bra and ket juxtaposition used by Dirac notation. In Dirac notation, ∣ 𝐴〉 〈𝐵 ∣ is an operator known as the outer product of 𝐴 and 𝐵, which we represent by (𝐴 ketbra 𝐵). Based on Equation 8.1 of [Prugovecki] p. 376. This definition, combined with definition df-bra 29049, allows any legal juxtaposition of bras and kets to make sense formally and also to obey the associative law when mapped back to Dirac notation. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-kb | ⊢ ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) ·ℎ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ck 28154 | . 2 class ketbra | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | chil 28116 | . . 3 class ℋ | |
5 | vz | . . . 4 setvar 𝑧 | |
6 | 5 | cv 1630 | . . . . . 6 class 𝑧 |
7 | 3 | cv 1630 | . . . . . 6 class 𝑦 |
8 | csp 28119 | . . . . . 6 class ·ih | |
9 | 6, 7, 8 | co 6793 | . . . . 5 class (𝑧 ·ih 𝑦) |
10 | 2 | cv 1630 | . . . . 5 class 𝑥 |
11 | csm 28118 | . . . . 5 class ·ℎ | |
12 | 9, 10, 11 | co 6793 | . . . 4 class ((𝑧 ·ih 𝑦) ·ℎ 𝑥) |
13 | 5, 4, 12 | cmpt 4863 | . . 3 class (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) ·ℎ 𝑥)) |
14 | 2, 3, 4, 4, 13 | cmpt2 6795 | . 2 class (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) ·ℎ 𝑥))) |
15 | 1, 14 | wceq 1631 | 1 wff ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) ·ℎ 𝑥))) |
Colors of variables: wff setvar class |
This definition is referenced by: kbfval 29151 |
Copyright terms: Public domain | W3C validator |