HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-kb Structured version   Visualization version   GIF version

Definition df-kb 31883
Description: Define a commuted bra and ket juxtaposition used by Dirac notation. In Dirac notation, 𝐴⟩⟨𝐵 is an operator known as the outer product of 𝐴 and 𝐵, which we represent by (𝐴 ketbra 𝐵). Based on Equation 8.1 of [Prugovecki] p. 376. This definition, combined with Definition df-bra 31882, allows any legal juxtaposition of bras and kets to make sense formally and also to obey the associative law when mapped back to Dirac notation. (Contributed by NM, 15-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-kb ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-kb
StepHypRef Expression
1 ck 30989 . 2 class ketbra
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 chba 30951 . . 3 class
5 vz . . . 4 setvar 𝑧
65cv 1536 . . . . . 6 class 𝑧
73cv 1536 . . . . . 6 class 𝑦
8 csp 30954 . . . . . 6 class ·ih
96, 7, 8co 7448 . . . . 5 class (𝑧 ·ih 𝑦)
102cv 1536 . . . . 5 class 𝑥
11 csm 30953 . . . . 5 class ·
129, 10, 11co 7448 . . . 4 class ((𝑧 ·ih 𝑦) · 𝑥)
135, 4, 12cmpt 5249 . . 3 class (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥))
142, 3, 4, 4, 13cmpo 7450 . 2 class (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
151, 14wceq 1537 1 wff ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  kbfval  31984
  Copyright terms: Public domain W3C validator