| Metamath
Proof Explorer Theorem List (p. 318 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hoaddcomi 31701 | Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 +op 𝑇) = (𝑇 +op 𝑆) | ||
| Theorem | hosubcl 31702 | Mapping of difference of Hilbert space operators. (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇): ℋ⟶ ℋ) | ||
| Theorem | hoaddcom 31703 | Commutativity of sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑇 +op 𝑆)) | ||
| Theorem | hodsi 31704 | Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 −op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅) | ||
| Theorem | hoaddassi 31705 | Associativity of sum of Hilbert space operators. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)) | ||
| Theorem | hoadd12i 31706 | Commutative/associative law for Hilbert space operator sum that swaps the first two terms. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑆 +op (𝑅 +op 𝑇)) | ||
| Theorem | hoadd32i 31707 | Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
| ⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆) | ||
| Theorem | hocadddiri 31708 | Distributive law for Hilbert space operator sum. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 +op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) +op (𝑆 ∘ 𝑇)) | ||
| Theorem | hocsubdiri 31709 | Distributive law for Hilbert space operator difference. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇)) | ||
| Theorem | ho2coi 31710 | Double composition of Hilbert space operators. (Contributed by NM, 1-Dec-2000.) (New usage is discouraged.) |
| ⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝐴 ∈ ℋ → (((𝑅 ∘ 𝑆) ∘ 𝑇)‘𝐴) = (𝑅‘(𝑆‘(𝑇‘𝐴)))) | ||
| Theorem | hoaddass 31711 | Associativity of sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))) | ||
| Theorem | hoadd32 31712 | Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆)) | ||
| Theorem | hoadd4 31713 | Rearrangement of 4 terms in a sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 +op 𝑆) +op (𝑇 +op 𝑈)) = ((𝑅 +op 𝑇) +op (𝑆 +op 𝑈))) | ||
| Theorem | hocsubdir 31714 | Distributive law for Hilbert space operator difference. (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑅 −op 𝑆) ∘ 𝑇) = ((𝑅 ∘ 𝑇) −op (𝑆 ∘ 𝑇))) | ||
| Theorem | hoaddridi 31715 | Sum of a Hilbert space operator with the zero operator. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑇 +op 0hop ) = 𝑇 | ||
| Theorem | hodidi 31716 | Difference of a Hilbert space operator from itself. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑇 −op 𝑇) = 0hop | ||
| Theorem | ho0coi 31717 | Composition of the zero operator and a Hilbert space operator. (Contributed by NM, 9-Aug-2006.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ( 0hop ∘ 𝑇) = 0hop | ||
| Theorem | hoid1i 31718 | Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑇 ∘ Iop ) = 𝑇 | ||
| Theorem | hoid1ri 31719 | Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ( Iop ∘ 𝑇) = 𝑇 | ||
| Theorem | hoaddrid 31720 | Sum of a Hilbert space operator with the zero operator. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 +op 0hop ) = 𝑇) | ||
| Theorem | hodid 31721 | Difference of a Hilbert space operator from itself. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 −op 𝑇) = 0hop ) | ||
| Theorem | hon0 31722 | A Hilbert space operator is not empty. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) | ||
| Theorem | hodseqi 31723 | Subtraction and addition of equal Hilbert space operators. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 +op (𝑇 −op 𝑆)) = 𝑇 | ||
| Theorem | ho0subi 31724 | Subtraction of Hilbert space operators expressed in terms of difference from zero. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 −op 𝑇) = (𝑆 +op ( 0hop −op 𝑇)) | ||
| Theorem | honegsubi 31725 | Relationship between Hilbert operator addition and subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇) | ||
| Theorem | ho0sub 31726 | Subtraction of Hilbert space operators expressed in terms of difference from zero. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑆 +op ( 0hop −op 𝑇))) | ||
| Theorem | hosubid1 31727 | The zero operator subtracted from a Hilbert space operator. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 −op 0hop ) = 𝑇) | ||
| Theorem | honegsub 31728 | Relationship between Hilbert space operator addition and subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op (-1 ·op 𝑈)) = (𝑇 −op 𝑈)) | ||
| Theorem | homullid 31729 | An operator equals its scalar product with one. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) | ||
| Theorem | homco1 31730 | Associative law for scalar product and composition of operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇 ∘ 𝑈))) | ||
| Theorem | homulass 31731 | Scalar product associative law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))) | ||
| Theorem | hoadddi 31732 | Scalar product distributive law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))) | ||
| Theorem | hoadddir 31733 | Scalar product reverse distributive law for Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))) | ||
| Theorem | homul12 31734 | Swap first and second factors in a nested operator scalar product. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)) = (𝐵 ·op (𝐴 ·op 𝑇))) | ||
| Theorem | honegneg 31735 | Double negative of a Hilbert space operator. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (-1 ·op (-1 ·op 𝑇)) = 𝑇) | ||
| Theorem | hosubneg 31736 | Relationship between operator subtraction and negative. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 −op (-1 ·op 𝑈)) = (𝑇 +op 𝑈)) | ||
| Theorem | hosubdi 31737 | Scalar product distributive law for operator difference. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 −op 𝑈)) = ((𝐴 ·op 𝑇) −op (𝐴 ·op 𝑈))) | ||
| Theorem | honegdi 31738 | Distribution of negative over addition. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (-1 ·op (𝑇 +op 𝑈)) = ((-1 ·op 𝑇) +op (-1 ·op 𝑈))) | ||
| Theorem | honegsubdi 31739 | Distribution of negative over subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (-1 ·op (𝑇 −op 𝑈)) = ((-1 ·op 𝑇) +op 𝑈)) | ||
| Theorem | honegsubdi2 31740 | Distribution of negative over subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (-1 ·op (𝑇 −op 𝑈)) = (𝑈 −op 𝑇)) | ||
| Theorem | hosubsub2 31741 | Law for double subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑆 −op (𝑇 −op 𝑈)) = (𝑆 +op (𝑈 −op 𝑇))) | ||
| Theorem | hosub4 31742 | Rearrangement of 4 terms in a mixed addition and subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 +op 𝑆) −op (𝑇 +op 𝑈)) = ((𝑅 −op 𝑇) +op (𝑆 −op 𝑈))) | ||
| Theorem | hosubadd4 31743 | Rearrangement of 4 terms in a mixed addition and subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
| ⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 −op 𝑆) −op (𝑇 −op 𝑈)) = ((𝑅 +op 𝑈) −op (𝑆 +op 𝑇))) | ||
| Theorem | hoaddsubass 31744 | Associative-type law for addition and subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝑆 +op 𝑇) −op 𝑈) = (𝑆 +op (𝑇 −op 𝑈))) | ||
| Theorem | hoaddsub 31745 | Law for operator addition and subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝑆 +op 𝑇) −op 𝑈) = ((𝑆 −op 𝑈) +op 𝑇)) | ||
| Theorem | hosubsub 31746 | Law for double subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑆 −op (𝑇 −op 𝑈)) = ((𝑆 −op 𝑇) +op 𝑈)) | ||
| Theorem | hosubsub4 31747 | Law for double subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝑆 −op 𝑇) −op 𝑈) = (𝑆 −op (𝑇 +op 𝑈))) | ||
| Theorem | ho2times 31748 | Two times a Hilbert space operator. (Contributed by NM, 26-Aug-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) | ||
| Theorem | hoaddsubassi 31749 | Associativity of sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 +op 𝑆) −op 𝑇) = (𝑅 +op (𝑆 −op 𝑇)) | ||
| Theorem | hoaddsubi 31750 | Law for sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 +op 𝑆) −op 𝑇) = ((𝑅 −op 𝑇) +op 𝑆) | ||
| Theorem | hosd1i 31751 | Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ (𝑇 +op 𝑈) = (𝑇 −op ( 0hop −op 𝑈)) | ||
| Theorem | hosd2i 31752 | Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ (𝑇 +op 𝑈) = (𝑇 −op ((𝑈 −op 𝑈) −op 𝑈)) | ||
| Theorem | hopncani 31753 | Hilbert space operator cancellation law. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ ((𝑇 +op 𝑈) −op 𝑈) = 𝑇 | ||
| Theorem | honpcani 31754 | Hilbert space operator cancellation law. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ ((𝑇 −op 𝑈) +op 𝑈) = 𝑇 | ||
| Theorem | hosubeq0i 31755 | If the difference between two operators is zero, they are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ ((𝑇 −op 𝑈) = 0hop ↔ 𝑇 = 𝑈) | ||
| Theorem | honpncani 31756 | Hilbert space operator cancellation law. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 −op 𝑆) +op (𝑆 −op 𝑇)) = (𝑅 −op 𝑇) | ||
| Theorem | ho01i 31757* | A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S8) of [Beran] p. 95. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = 0 ↔ 𝑇 = 0hop ) | ||
| Theorem | ho02i 31758* | A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S10) of [Beran] p. 95. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = 0 ↔ 𝑇 = 0hop ) | ||
| Theorem | hoeq1 31759* | A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ 𝑆 = 𝑇)) | ||
| Theorem | hoeq2 31760* | A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) | ||
| Theorem | adjmo 31761* | Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) | ||
| Theorem | adjsym 31762* | Symmetry property of an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑆‘𝑥) ·ih 𝑦))) | ||
| Theorem | eigrei 31763 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 21-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) | ||
| Theorem | eigre 31764 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) | ||
| Theorem | eigposi 31765 | A sufficient condition (first conjunct pair, that holds when 𝑇 is a positive operator) for an eigenvalue 𝐵 (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((((𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇‘𝐴))) ∧ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | ||
| Theorem | eigorthi 31766 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) | ||
| Theorem | eigorth 31767 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) ∧ (((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) | ||
| Definition | df-nmop 31768* | Define the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
| ⊢ normop = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ ((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑧)))}, ℝ*, < )) | ||
| Definition | df-cnop 31769* | Define the set of continuous operators on Hilbert space. For every "epsilon" (𝑦) there is a "delta" (𝑧) such that... (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
| ⊢ ContOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦)} | ||
| Definition | df-lnop 31770* | Define the set of linear operators on Hilbert space. (See df-hosum 31659 for definition of operator.) (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
| ⊢ LinOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧))} | ||
| Definition | df-bdop 31771 | Define the set of bounded linear Hilbert space operators. (See df-hosum 31659 for definition of operator.) (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
| ⊢ BndLinOp = {𝑡 ∈ LinOp ∣ (normop‘𝑡) < +∞} | ||
| Definition | df-unop 31772* | Define the set of unitary operators on Hilbert space. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
| ⊢ UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦))} | ||
| Definition | df-hmop 31773* | Define the set of Hermitian operators on Hilbert space. Some books call these "symmetric operators" and others call them "self-adjoint operators", sometimes with slightly different technical meanings. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
| ⊢ HrmOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)} | ||
| Definition | df-nmfn 31774* | Define the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ normfn = (𝑡 ∈ (ℂ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ ((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))}, ℝ*, < )) | ||
| Definition | df-nlfn 31775 | Define the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) | ||
| Definition | df-cnfn 31776* | Define the set of continuous functionals on Hilbert space. For every "epsilon" (𝑦) there is a "delta" (𝑧) such that... (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)} | ||
| Definition | df-lnfn 31777* | Define the set of linear functionals on Hilbert space. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ LinFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧))} | ||
| Definition | df-adjh 31778* | Define the adjoint of a Hilbert space operator (if it exists). The domain of adjℎ is the set of all adjoint operators. Definition of adjoint in [Kalmbach2] p. 8. Unlike Kalmbach (and most authors), we do not demand that the operator be linear, but instead show (in adjbdln 32012) that the adjoint exists for a bounded linear operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
| ⊢ adjℎ = {〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)))} | ||
| Definition | df-bra 31779* |
Define the bra of a vector used by Dirac notation. Based on definition
of bra in [Prugovecki] p. 186 (p.
180 in 1971 edition). In Dirac
bra-ket notation, 〈𝐴 ∣ 𝐵〉 is a complex number equal to
the inner
product (𝐵 ·ih 𝐴). But physicists like
to talk about the
individual components 〈𝐴 ∣ and ∣
𝐵〉, called bra
and ket
respectively. In order for their properties to make sense formally, we
define the ket ∣ 𝐵〉 as the vector 𝐵 itself,
and the bra
〈𝐴 ∣ as a functional from ℋ to ℂ. We represent the
Dirac notation 〈𝐴 ∣ 𝐵〉 by ((bra‘𝐴)‘𝐵); see
braval 31873. The reversal of the inner product
arguments not only makes
the bra-ket behavior consistent with physics literature (see comments
under ax-his3 31013) but is also required in order for the
associative law
kbass2 32046 to work.
Our definition of bra and the associated outer product df-kb 31780 differs from, but is equivalent to, a common approach in the literature that makes use of mappings to a dual space. Our approach eliminates the need to have a parallel development of this dual space and instead keeps everything in Hilbert space. For an extensive discussion about how our notation maps to the bra-ket notation in physics textbooks, see mmnotes.txt 31780, under the 17-May-2006 entry. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
| ⊢ bra = (𝑥 ∈ ℋ ↦ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥))) | ||
| Definition | df-kb 31780* | Define a commuted bra and ket juxtaposition used by Dirac notation. In Dirac notation, ∣ 𝐴〉〈𝐵 ∣ is an operator known as the outer product of 𝐴 and 𝐵, which we represent by (𝐴 ketbra 𝐵). Based on Equation 8.1 of [Prugovecki] p. 376. This definition, combined with Definition df-bra 31779, allows any legal juxtaposition of bras and kets to make sense formally and also to obey the associative law when mapped back to Dirac notation. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
| ⊢ ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) ·ℎ 𝑥))) | ||
| Definition | df-leop 31781* | Define positive operator ordering. Definition VI.1 of [Retherford] p. 49. Note that ( ℋ × 0ℋ) ≤op 𝑇 means that 𝑇 is a positive operator. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ≤op = {〈𝑡, 𝑢〉 ∣ ((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥))} | ||
| Definition | df-eigvec 31782* | Define the eigenvector function. Theorem eleigveccl 31888 shows that eigvec‘𝑇, the set of eigenvectors of Hilbert space operator 𝑇, are Hilbert space vectors. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ eigvec = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑧 ∈ ℂ (𝑡‘𝑥) = (𝑧 ·ℎ 𝑥)}) | ||
| Definition | df-eigval 31783* | Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 31890 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | ||
| Definition | df-spec 31784* | Define the spectrum of an operator. Definition of spectrum in [Halmos] p. 50. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
| ⊢ Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | ||
| Theorem | nmopval 31785* | Value of the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) | ||
| Theorem | elcnop 31786* | Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) | ||
| Theorem | ellnop 31787* | Property defining a linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) | ||
| Theorem | lnopf 31788 | A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | ||
| Theorem | elbdop 31789 | Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) | ||
| Theorem | bdopln 31790 | A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | ||
| Theorem | bdopf 31791 | A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | ||
| Theorem | nmopsetretALT 31792* | The set in the supremum of the operator norm definition df-nmop 31768 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) | ||
| Theorem | nmopsetretHIL 31793* | The set in the supremum of the operator norm definition df-nmop 31768 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) | ||
| Theorem | nmopsetn0 31794* | The set in the supremum of the operator norm definition df-nmop 31768 is nonempty. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
| ⊢ (normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} | ||
| Theorem | nmopxr 31795 | The norm of a Hilbert space operator is an extended real. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) ∈ ℝ*) | ||
| Theorem | nmoprepnf 31796 | The norm of a Hilbert space operator is either real or plus infinity. (Contributed by NM, 5-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) ≠ +∞)) | ||
| Theorem | nmopgtmnf 31797 | The norm of a Hilbert space operator is not minus infinity. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → -∞ < (normop‘𝑇)) | ||
| Theorem | nmopreltpnf 31798 | The norm of a Hilbert space operator is real iff it is less than infinity. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) < +∞)) | ||
| Theorem | nmopre 31799 | The norm of a bounded operator is a real number. (Contributed by NM, 29-Jan-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | ||
| Theorem | elbdop2 31800 | Property defining a bounded linear Hilbert space operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) ∈ ℝ)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |