![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > kbfval | Structured version Visualization version GIF version |
Description: The outer product of two vectors, expressed as ∣ 𝐴〉 〈𝐵 ∣ in Dirac notation. See df-kb 29307. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
kbfval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7015 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ·ih 𝑧) ·ℎ 𝑦) = ((𝑥 ·ih 𝑧) ·ℎ 𝐴)) | |
2 | 1 | mpteq2dv 5050 | . 2 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝑦)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝐴))) |
3 | oveq2 7015 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑥 ·ih 𝑧) = (𝑥 ·ih 𝐵)) | |
4 | 3 | oveq1d 7022 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝑥 ·ih 𝑧) ·ℎ 𝐴) = ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) |
5 | 4 | mpteq2dv 5050 | . 2 ⊢ (𝑧 = 𝐵 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝐴)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
6 | df-kb 29307 | . 2 ⊢ ketbra = (𝑦 ∈ ℋ, 𝑧 ∈ ℋ ↦ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝑦))) | |
7 | ax-hilex 28455 | . . 3 ⊢ ℋ ∈ V | |
8 | 7 | mptex 6843 | . 2 ⊢ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) ∈ V |
9 | 2, 5, 6, 8 | ovmpo 7157 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ↦ cmpt 5035 (class class class)co 7007 ℋchba 28375 ·ℎ csm 28377 ·ih csp 28378 ketbra ck 28413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pr 5214 ax-hilex 28455 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-ov 7010 df-oprab 7011 df-mpo 7012 df-kb 29307 |
This theorem is referenced by: kbop 29409 kbval 29410 kbmul 29411 |
Copyright terms: Public domain | W3C validator |