![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > kbfval | Structured version Visualization version GIF version |
Description: The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation. See df-kb 31883. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
kbfval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ·ih 𝑧) ·ℎ 𝑦) = ((𝑥 ·ih 𝑧) ·ℎ 𝐴)) | |
2 | 1 | mpteq2dv 5268 | . 2 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝑦)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝐴))) |
3 | oveq2 7456 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑥 ·ih 𝑧) = (𝑥 ·ih 𝐵)) | |
4 | 3 | oveq1d 7463 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝑥 ·ih 𝑧) ·ℎ 𝐴) = ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) |
5 | 4 | mpteq2dv 5268 | . 2 ⊢ (𝑧 = 𝐵 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝐴)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
6 | df-kb 31883 | . 2 ⊢ ketbra = (𝑦 ∈ ℋ, 𝑧 ∈ ℋ ↦ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝑦))) | |
7 | ax-hilex 31031 | . . 3 ⊢ ℋ ∈ V | |
8 | 7 | mptex 7260 | . 2 ⊢ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) ∈ V |
9 | 2, 5, 6, 8 | ovmpo 7610 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 (class class class)co 7448 ℋchba 30951 ·ℎ csm 30953 ·ih csp 30954 ketbra ck 30989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-kb 31883 |
This theorem is referenced by: kbop 31985 kbval 31986 kbmul 31987 |
Copyright terms: Public domain | W3C validator |