![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > kbfval | Structured version Visualization version GIF version |
Description: The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation. See df-kb 30967. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
kbfval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7401 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ·ih 𝑧) ·ℎ 𝑦) = ((𝑥 ·ih 𝑧) ·ℎ 𝐴)) | |
2 | 1 | mpteq2dv 5243 | . 2 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝑦)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝐴))) |
3 | oveq2 7401 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑥 ·ih 𝑧) = (𝑥 ·ih 𝐵)) | |
4 | 3 | oveq1d 7408 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝑥 ·ih 𝑧) ·ℎ 𝐴) = ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) |
5 | 4 | mpteq2dv 5243 | . 2 ⊢ (𝑧 = 𝐵 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝐴)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
6 | df-kb 30967 | . 2 ⊢ ketbra = (𝑦 ∈ ℋ, 𝑧 ∈ ℋ ↦ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝑦))) | |
7 | ax-hilex 30115 | . . 3 ⊢ ℋ ∈ V | |
8 | 7 | mptex 7209 | . 2 ⊢ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) ∈ V |
9 | 2, 5, 6, 8 | ovmpo 7551 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ↦ cmpt 5224 (class class class)co 7393 ℋchba 30035 ·ℎ csm 30037 ·ih csp 30038 ketbra ck 30073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-hilex 30115 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-kb 30967 |
This theorem is referenced by: kbop 31069 kbval 31070 kbmul 31071 |
Copyright terms: Public domain | W3C validator |