HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbfval Structured version   Visualization version   GIF version

Theorem kbfval 29987
Description: The outer product of two vectors, expressed as 𝐴⟩⟨𝐵 in Dirac notation. See df-kb 29886. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
kbfval ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem kbfval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7199 . . 3 (𝑦 = 𝐴 → ((𝑥 ·ih 𝑧) · 𝑦) = ((𝑥 ·ih 𝑧) · 𝐴))
21mpteq2dv 5136 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) · 𝑦)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) · 𝐴)))
3 oveq2 7199 . . . 4 (𝑧 = 𝐵 → (𝑥 ·ih 𝑧) = (𝑥 ·ih 𝐵))
43oveq1d 7206 . . 3 (𝑧 = 𝐵 → ((𝑥 ·ih 𝑧) · 𝐴) = ((𝑥 ·ih 𝐵) · 𝐴))
54mpteq2dv 5136 . 2 (𝑧 = 𝐵 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) · 𝐴)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)))
6 df-kb 29886 . 2 ketbra = (𝑦 ∈ ℋ, 𝑧 ∈ ℋ ↦ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) · 𝑦)))
7 ax-hilex 29034 . . 3 ℋ ∈ V
87mptex 7017 . 2 (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)) ∈ V
92, 5, 6, 8ovmpo 7347 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cmpt 5120  (class class class)co 7191  chba 28954   · csm 28956   ·ih csp 28957   ketbra ck 28992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-hilex 29034
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-kb 29886
This theorem is referenced by:  kbop  29988  kbval  29989  kbmul  29990
  Copyright terms: Public domain W3C validator