HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbfval Structured version   Visualization version   GIF version

Theorem kbfval 31984
Description: The outer product of two vectors, expressed as 𝐴⟩⟨𝐵 in Dirac notation. See df-kb 31883. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
kbfval ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem kbfval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . 3 (𝑦 = 𝐴 → ((𝑥 ·ih 𝑧) · 𝑦) = ((𝑥 ·ih 𝑧) · 𝐴))
21mpteq2dv 5268 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) · 𝑦)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) · 𝐴)))
3 oveq2 7456 . . . 4 (𝑧 = 𝐵 → (𝑥 ·ih 𝑧) = (𝑥 ·ih 𝐵))
43oveq1d 7463 . . 3 (𝑧 = 𝐵 → ((𝑥 ·ih 𝑧) · 𝐴) = ((𝑥 ·ih 𝐵) · 𝐴))
54mpteq2dv 5268 . 2 (𝑧 = 𝐵 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) · 𝐴)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)))
6 df-kb 31883 . 2 ketbra = (𝑦 ∈ ℋ, 𝑧 ∈ ℋ ↦ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) · 𝑦)))
7 ax-hilex 31031 . . 3 ℋ ∈ V
87mptex 7260 . 2 (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)) ∈ V
92, 5, 6, 8ovmpo 7610 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cmpt 5249  (class class class)co 7448  chba 30951   · csm 30953   ·ih csp 30954   ketbra ck 30989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-hilex 31031
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-kb 31883
This theorem is referenced by:  kbop  31985  kbval  31986  kbmul  31987
  Copyright terms: Public domain W3C validator