| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > kbfval | Structured version Visualization version GIF version | ||
| Description: The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation. See df-kb 31826. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| kbfval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ·ih 𝑧) ·ℎ 𝑦) = ((𝑥 ·ih 𝑧) ·ℎ 𝐴)) | |
| 2 | 1 | mpteq2dv 5185 | . 2 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝑦)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝐴))) |
| 3 | oveq2 7354 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑥 ·ih 𝑧) = (𝑥 ·ih 𝐵)) | |
| 4 | 3 | oveq1d 7361 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝑥 ·ih 𝑧) ·ℎ 𝐴) = ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) |
| 5 | 4 | mpteq2dv 5185 | . 2 ⊢ (𝑧 = 𝐵 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝐴)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
| 6 | df-kb 31826 | . 2 ⊢ ketbra = (𝑦 ∈ ℋ, 𝑧 ∈ ℋ ↦ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝑦))) | |
| 7 | ax-hilex 30974 | . . 3 ⊢ ℋ ∈ V | |
| 8 | 7 | mptex 7157 | . 2 ⊢ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) ∈ V |
| 9 | 2, 5, 6, 8 | ovmpo 7506 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5172 (class class class)co 7346 ℋchba 30894 ·ℎ csm 30896 ·ih csp 30897 ketbra ck 30932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-hilex 30974 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-kb 31826 |
| This theorem is referenced by: kbop 31928 kbval 31929 kbmul 31930 |
| Copyright terms: Public domain | W3C validator |