HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbfval Structured version   Visualization version   GIF version

Theorem kbfval 31934
Description: The outer product of two vectors, expressed as 𝐴⟩⟨𝐵 in Dirac notation. See df-kb 31833. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
kbfval ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem kbfval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7360 . . 3 (𝑦 = 𝐴 → ((𝑥 ·ih 𝑧) · 𝑦) = ((𝑥 ·ih 𝑧) · 𝐴))
21mpteq2dv 5187 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) · 𝑦)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) · 𝐴)))
3 oveq2 7360 . . . 4 (𝑧 = 𝐵 → (𝑥 ·ih 𝑧) = (𝑥 ·ih 𝐵))
43oveq1d 7367 . . 3 (𝑧 = 𝐵 → ((𝑥 ·ih 𝑧) · 𝐴) = ((𝑥 ·ih 𝐵) · 𝐴))
54mpteq2dv 5187 . 2 (𝑧 = 𝐵 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) · 𝐴)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)))
6 df-kb 31833 . 2 ketbra = (𝑦 ∈ ℋ, 𝑧 ∈ ℋ ↦ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) · 𝑦)))
7 ax-hilex 30981 . . 3 ℋ ∈ V
87mptex 7163 . 2 (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)) ∈ V
92, 5, 6, 8ovmpo 7512 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cmpt 5174  (class class class)co 7352  chba 30901   · csm 30903   ·ih csp 30904   ketbra ck 30939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-hilex 30981
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-kb 31833
This theorem is referenced by:  kbop  31935  kbval  31936  kbmul  31937
  Copyright terms: Public domain W3C validator