Detailed syntax breakdown of Definition df-leop
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cleo 30978 | . 2
class 
≤op | 
| 2 |  | vu | . . . . . . 7
setvar 𝑢 | 
| 3 | 2 | cv 1538 | . . . . . 6
class 𝑢 | 
| 4 |  | vt | . . . . . . 7
setvar 𝑡 | 
| 5 | 4 | cv 1538 | . . . . . 6
class 𝑡 | 
| 6 |  | chod 30960 | . . . . . 6
class 
−op | 
| 7 | 3, 5, 6 | co 7432 | . . . . 5
class (𝑢 −op 𝑡) | 
| 8 |  | cho 30970 | . . . . 5
class
HrmOp | 
| 9 | 7, 8 | wcel 2107 | . . . 4
wff (𝑢 −op 𝑡) ∈ HrmOp | 
| 10 |  | cc0 11156 | . . . . . 6
class
0 | 
| 11 |  | vx | . . . . . . . . 9
setvar 𝑥 | 
| 12 | 11 | cv 1538 | . . . . . . . 8
class 𝑥 | 
| 13 | 12, 7 | cfv 6560 | . . . . . . 7
class ((𝑢 −op 𝑡)‘𝑥) | 
| 14 |  | csp 30942 | . . . . . . 7
class 
·ih | 
| 15 | 13, 12, 14 | co 7432 | . . . . . 6
class (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥) | 
| 16 |  | cle 11297 | . . . . . 6
class 
≤ | 
| 17 | 10, 15, 16 | wbr 5142 | . . . . 5
wff 0 ≤
(((𝑢 −op
𝑡)‘𝑥) ·ih 𝑥) | 
| 18 |  | chba 30939 | . . . . 5
class 
ℋ | 
| 19 | 17, 11, 18 | wral 3060 | . . . 4
wff
∀𝑥 ∈
ℋ 0 ≤ (((𝑢
−op 𝑡)‘𝑥) ·ih 𝑥) | 
| 20 | 9, 19 | wa 395 | . . 3
wff ((𝑢 −op 𝑡) ∈ HrmOp ∧
∀𝑥 ∈ ℋ 0
≤ (((𝑢
−op 𝑡)‘𝑥) ·ih 𝑥)) | 
| 21 | 20, 4, 2 | copab 5204 | . 2
class
{〈𝑡, 𝑢〉 ∣ ((𝑢 −op 𝑡) ∈ HrmOp ∧
∀𝑥 ∈ ℋ 0
≤ (((𝑢
−op 𝑡)‘𝑥) ·ih 𝑥))} | 
| 22 | 1, 21 | wceq 1539 | 1
wff 
≤op = {〈𝑡, 𝑢〉 ∣ ((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥))} |