Step | Hyp | Ref
| Expression |
1 | | clbs 20678 |
. 2
class
LBasis |
2 | | vw |
. . 3
setvar π€ |
3 | | cvv 3475 |
. . 3
class
V |
4 | | vb |
. . . . . . . . . 10
setvar π |
5 | 4 | cv 1541 |
. . . . . . . . 9
class π |
6 | | vn |
. . . . . . . . . 10
setvar π |
7 | 6 | cv 1541 |
. . . . . . . . 9
class π |
8 | 5, 7 | cfv 6541 |
. . . . . . . 8
class (πβπ) |
9 | 2 | cv 1541 |
. . . . . . . . 9
class π€ |
10 | | cbs 17141 |
. . . . . . . . 9
class
Base |
11 | 9, 10 | cfv 6541 |
. . . . . . . 8
class
(Baseβπ€) |
12 | 8, 11 | wceq 1542 |
. . . . . . 7
wff (πβπ) = (Baseβπ€) |
13 | | vy |
. . . . . . . . . . . . 13
setvar π¦ |
14 | 13 | cv 1541 |
. . . . . . . . . . . 12
class π¦ |
15 | | vx |
. . . . . . . . . . . . 13
setvar π₯ |
16 | 15 | cv 1541 |
. . . . . . . . . . . 12
class π₯ |
17 | | cvsca 17198 |
. . . . . . . . . . . . 13
class
Β·π |
18 | 9, 17 | cfv 6541 |
. . . . . . . . . . . 12
class (
Β·π βπ€) |
19 | 14, 16, 18 | co 7406 |
. . . . . . . . . . 11
class (π¦(
Β·π βπ€)π₯) |
20 | 16 | csn 4628 |
. . . . . . . . . . . . 13
class {π₯} |
21 | 5, 20 | cdif 3945 |
. . . . . . . . . . . 12
class (π β {π₯}) |
22 | 21, 7 | cfv 6541 |
. . . . . . . . . . 11
class (πβ(π β {π₯})) |
23 | 19, 22 | wcel 2107 |
. . . . . . . . . 10
wff (π¦(
Β·π βπ€)π₯) β (πβ(π β {π₯})) |
24 | 23 | wn 3 |
. . . . . . . . 9
wff Β¬
(π¦(
Β·π βπ€)π₯) β (πβ(π β {π₯})) |
25 | | vs |
. . . . . . . . . . . 12
setvar π |
26 | 25 | cv 1541 |
. . . . . . . . . . 11
class π |
27 | 26, 10 | cfv 6541 |
. . . . . . . . . 10
class
(Baseβπ ) |
28 | | c0g 17382 |
. . . . . . . . . . . 12
class
0g |
29 | 26, 28 | cfv 6541 |
. . . . . . . . . . 11
class
(0gβπ ) |
30 | 29 | csn 4628 |
. . . . . . . . . 10
class
{(0gβπ )} |
31 | 27, 30 | cdif 3945 |
. . . . . . . . 9
class
((Baseβπ )
β {(0gβπ )}) |
32 | 24, 13, 31 | wral 3062 |
. . . . . . . 8
wff
βπ¦ β
((Baseβπ ) β
{(0gβπ )})
Β¬ (π¦(
Β·π βπ€)π₯) β (πβ(π β {π₯})) |
33 | 32, 15, 5 | wral 3062 |
. . . . . . 7
wff
βπ₯ β
π βπ¦ β ((Baseβπ ) β
{(0gβπ )})
Β¬ (π¦(
Β·π βπ€)π₯) β (πβ(π β {π₯})) |
34 | 12, 33 | wa 397 |
. . . . . 6
wff ((πβπ) = (Baseβπ€) β§ βπ₯ β π βπ¦ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π¦( Β·π
βπ€)π₯) β (πβ(π β {π₯}))) |
35 | | csca 17197 |
. . . . . . 7
class
Scalar |
36 | 9, 35 | cfv 6541 |
. . . . . 6
class
(Scalarβπ€) |
37 | 34, 25, 36 | wsbc 3777 |
. . . . 5
wff
[(Scalarβπ€) / π ]((πβπ) = (Baseβπ€) β§ βπ₯ β π βπ¦ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π¦( Β·π
βπ€)π₯) β (πβ(π β {π₯}))) |
38 | | clspn 20575 |
. . . . . 6
class
LSpan |
39 | 9, 38 | cfv 6541 |
. . . . 5
class
(LSpanβπ€) |
40 | 37, 6, 39 | wsbc 3777 |
. . . 4
wff
[(LSpanβπ€) / π][(Scalarβπ€) / π ]((πβπ) = (Baseβπ€) β§ βπ₯ β π βπ¦ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π¦( Β·π
βπ€)π₯) β (πβ(π β {π₯}))) |
41 | 11 | cpw 4602 |
. . . 4
class π«
(Baseβπ€) |
42 | 40, 4, 41 | crab 3433 |
. . 3
class {π β π«
(Baseβπ€) β£
[(LSpanβπ€) /
π][(Scalarβπ€) / π ]((πβπ) = (Baseβπ€) β§ βπ₯ β π βπ¦ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π¦( Β·π
βπ€)π₯) β (πβ(π β {π₯})))} |
43 | 2, 3, 42 | cmpt 5231 |
. 2
class (π€ β V β¦ {π β π«
(Baseβπ€) β£
[(LSpanβπ€) /
π][(Scalarβπ€) / π ]((πβπ) = (Baseβπ€) β§ βπ₯ β π βπ¦ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π¦( Β·π
βπ€)π₯) β (πβ(π β {π₯})))}) |
44 | 1, 43 | wceq 1542 |
1
wff LBasis =
(π€ β V β¦ {π β π«
(Baseβπ€) β£
[(LSpanβπ€) /
π][(Scalarβπ€) / π ]((πβπ) = (Baseβπ€) β§ βπ₯ β π βπ¦ β ((Baseβπ ) β {(0gβπ )}) Β¬ (π¦( Β·π
βπ€)π₯) β (πβ(π β {π₯})))}) |