MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lbs Structured version   Visualization version   GIF version

Definition df-lbs 20679
Description: Define the set of bases to a left module or left vector space. (Contributed by Mario Carneiro, 24-Jun-2014.)
Assertion
Ref Expression
df-lbs LBasis = (𝑀 ∈ V ↦ {𝑏 ∈ 𝒫 (Baseβ€˜π‘€) ∣ [(LSpanβ€˜π‘€) / 𝑛][(Scalarβ€˜π‘€) / 𝑠]((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})))})
Distinct variable group:   𝑛,𝑏,𝑠,𝑀,π‘₯,𝑦

Detailed syntax breakdown of Definition df-lbs
StepHypRef Expression
1 clbs 20678 . 2 class LBasis
2 vw . . 3 setvar 𝑀
3 cvv 3475 . . 3 class V
4 vb . . . . . . . . . 10 setvar 𝑏
54cv 1541 . . . . . . . . 9 class 𝑏
6 vn . . . . . . . . . 10 setvar 𝑛
76cv 1541 . . . . . . . . 9 class 𝑛
85, 7cfv 6541 . . . . . . . 8 class (π‘›β€˜π‘)
92cv 1541 . . . . . . . . 9 class 𝑀
10 cbs 17141 . . . . . . . . 9 class Base
119, 10cfv 6541 . . . . . . . 8 class (Baseβ€˜π‘€)
128, 11wceq 1542 . . . . . . 7 wff (π‘›β€˜π‘) = (Baseβ€˜π‘€)
13 vy . . . . . . . . . . . . 13 setvar 𝑦
1413cv 1541 . . . . . . . . . . . 12 class 𝑦
15 vx . . . . . . . . . . . . 13 setvar π‘₯
1615cv 1541 . . . . . . . . . . . 12 class π‘₯
17 cvsca 17198 . . . . . . . . . . . . 13 class ·𝑠
189, 17cfv 6541 . . . . . . . . . . . 12 class ( ·𝑠 β€˜π‘€)
1914, 16, 18co 7406 . . . . . . . . . . 11 class (𝑦( ·𝑠 β€˜π‘€)π‘₯)
2016csn 4628 . . . . . . . . . . . . 13 class {π‘₯}
215, 20cdif 3945 . . . . . . . . . . . 12 class (𝑏 βˆ– {π‘₯})
2221, 7cfv 6541 . . . . . . . . . . 11 class (π‘›β€˜(𝑏 βˆ– {π‘₯}))
2319, 22wcel 2107 . . . . . . . . . 10 wff (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯}))
2423wn 3 . . . . . . . . 9 wff Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯}))
25 vs . . . . . . . . . . . 12 setvar 𝑠
2625cv 1541 . . . . . . . . . . 11 class 𝑠
2726, 10cfv 6541 . . . . . . . . . 10 class (Baseβ€˜π‘ )
28 c0g 17382 . . . . . . . . . . . 12 class 0g
2926, 28cfv 6541 . . . . . . . . . . 11 class (0gβ€˜π‘ )
3029csn 4628 . . . . . . . . . 10 class {(0gβ€˜π‘ )}
3127, 30cdif 3945 . . . . . . . . 9 class ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )})
3224, 13, 31wral 3062 . . . . . . . 8 wff βˆ€π‘¦ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯}))
3332, 15, 5wral 3062 . . . . . . 7 wff βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯}))
3412, 33wa 397 . . . . . 6 wff ((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})))
35 csca 17197 . . . . . . 7 class Scalar
369, 35cfv 6541 . . . . . 6 class (Scalarβ€˜π‘€)
3734, 25, 36wsbc 3777 . . . . 5 wff [(Scalarβ€˜π‘€) / 𝑠]((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})))
38 clspn 20575 . . . . . 6 class LSpan
399, 38cfv 6541 . . . . 5 class (LSpanβ€˜π‘€)
4037, 6, 39wsbc 3777 . . . 4 wff [(LSpanβ€˜π‘€) / 𝑛][(Scalarβ€˜π‘€) / 𝑠]((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})))
4111cpw 4602 . . . 4 class 𝒫 (Baseβ€˜π‘€)
4240, 4, 41crab 3433 . . 3 class {𝑏 ∈ 𝒫 (Baseβ€˜π‘€) ∣ [(LSpanβ€˜π‘€) / 𝑛][(Scalarβ€˜π‘€) / 𝑠]((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})))}
432, 3, 42cmpt 5231 . 2 class (𝑀 ∈ V ↦ {𝑏 ∈ 𝒫 (Baseβ€˜π‘€) ∣ [(LSpanβ€˜π‘€) / 𝑛][(Scalarβ€˜π‘€) / 𝑠]((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})))})
441, 43wceq 1542 1 wff LBasis = (𝑀 ∈ V ↦ {𝑏 ∈ 𝒫 (Baseβ€˜π‘€) ∣ [(LSpanβ€˜π‘€) / 𝑛][(Scalarβ€˜π‘€) / 𝑠]((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘ ) βˆ– {(0gβ€˜π‘ )}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})))})
Colors of variables: wff setvar class
This definition is referenced by:  islbs  20680
  Copyright terms: Public domain W3C validator