![]() |
Metamath
Proof Explorer Theorem List (p. 209 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fldc 20801* | The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) |
⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) | ||
Theorem | fldhmsubc 20802* | According to df-subc 17859, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17890 and subcss2 17893). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) |
⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽))) | ||
Syntax | csdrg 20803 | Syntax for subfields (sub-division-rings). |
class SubDRing | ||
Definition | df-sdrg 20804* | Define the function associating with a ring the set of its sub-division-rings. A sub-division-ring of a ring is a subset of its base set which is a division ring when equipped with the induced structure (sum, multiplication, zero, and unity). If a ring is commutative (resp., a field), then its sub-division-rings are commutative (resp., are fields) (fldsdrgfld 20815), so we do not make a specific definition for subfields. (Contributed by Stefan O'Rear, 3-Oct-2015.) TODO: extend this definition to a function with domain V or at least Ring and not only DivRing. |
⊢ SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing}) | ||
Theorem | issdrg 20805 | Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.) |
⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) | ||
Theorem | sdrgrcl 20806 | Reverse closure for a sub-division-ring predicate. (Contributed by SN, 19-Feb-2025.) |
⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing) | ||
Theorem | sdrgdrng 20807 | A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) | ||
Theorem | sdrgsubrg 20808 | A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025.) |
⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) | ||
Theorem | sdrgid 20809 | Every division ring is a division subring of itself. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝑅)) | ||
Theorem | sdrgss 20810 | A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) | ||
Theorem | sdrgbas 20811 | Base set of a sub-division-ring structure. (Contributed by SN, 19-Feb-2025.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 = (Base‘𝑆)) | ||
Theorem | issdrg2 20812* | Property of a division subring (closure version). (Contributed by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝐼 = (invr‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑆 ∖ { 0 })(𝐼‘𝑥) ∈ 𝑆)) | ||
Theorem | sdrgunit 20813 | A unit of a sub-division-ring is a nonzero element of the subring. (Contributed by SN, 19-Feb-2025.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ))) | ||
Theorem | imadrhmcl 20814 | The image of a (nontrivial) division ring homomorphism is a division ring. (Contributed by SN, 17-Feb-2025.) |
⊢ 𝑅 = (𝑁 ↾s (𝐹 “ 𝑆)) & ⊢ 0 = (0g‘𝑁) & ⊢ (𝜑 → 𝐹 ∈ (𝑀 RingHom 𝑁)) & ⊢ (𝜑 → 𝑆 ∈ (SubDRing‘𝑀)) & ⊢ (𝜑 → ran 𝐹 ≠ { 0 }) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
Theorem | fldsdrgfld 20815 | A sub-division-ring of a field is itself a field, so it is a subfield. We can therefore use SubDRing to express subfields. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ Field) | ||
Theorem | acsfn1p 20816* | Construction of a closure rule from a one-parameter partial operation. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
Theorem | subrgacs 20817 | Closure property of subrings. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵)) | ||
Theorem | sdrgacs 20818 | Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵)) | ||
Theorem | cntzsdrg 20819 | Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubDRing‘𝑅)) | ||
Theorem | subdrgint 20820* | The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ 𝐿 = (𝑅 ↾s ∩ 𝑆) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → (𝑅 ↾s 𝑠) ∈ DivRing) ⇒ ⊢ (𝜑 → 𝐿 ∈ DivRing) | ||
Theorem | sdrgint 20821 | The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubDRing‘𝑅)) | ||
Theorem | primefld 20822 | The smallest sub division ring of a division ring, here named 𝑃, is a field, called the Prime Field of 𝑅. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ 𝑃 = (𝑅 ↾s ∩ (SubDRing‘𝑅)) ⇒ ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ Field) | ||
Theorem | primefld0cl 20823 | The prime field contains the zero element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.) |
⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 0 ∈ ∩ (SubDRing‘𝑅)) | ||
Theorem | primefld1cl 20824 | The prime field contains the unity element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.) |
⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 1 ∈ ∩ (SubDRing‘𝑅)) | ||
Syntax | cabv 20825 | The set of absolute values on a ring. |
class AbsVal | ||
Definition | df-abv 20826* | Define the set of absolute values on a ring. An absolute value is a generalization of the usual absolute value function df-abs 15271 to arbitrary rings. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | ||
Theorem | abvfval 20827* | Value of the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | ||
Theorem | isabv 20828* | Elementhood in the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) | ||
Theorem | isabvd 20829* | Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 4-Dec-2014.) |
⊢ (𝜑 → 𝐴 = (AbsVal‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 0 = (0g‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ) & ⊢ (𝜑 → (𝐹‘ 0 ) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 0 < (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐴) | ||
Theorem | abvrcl 20830 | Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) | ||
Theorem | abvfge0 20831 | An absolute value is a function from the ring to the nonnegative real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶(0[,)+∞)) | ||
Theorem | abvf 20832 | An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶ℝ) | ||
Theorem | abvcl 20833 | An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) | ||
Theorem | abvge0 20834 | The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 0 ≤ (𝐹‘𝑋)) | ||
Theorem | abveq0 20835 | The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) | ||
Theorem | abvne0 20836 | The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ≠ 0) | ||
Theorem | abvgt0 20837 | The absolute value of a nonzero number is strictly positive. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 0 < (𝐹‘𝑋)) | ||
Theorem | abvmul 20838 | An absolute value distributes under multiplication. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) · (𝐹‘𝑌))) | ||
Theorem | abvtri 20839 | An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) | ||
Theorem | abv0 20840 | The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) | ||
Theorem | abv1z 20841 | The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) | ||
Theorem | abv1 20842 | The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) → (𝐹‘ 1 ) = 1) | ||
Theorem | abvneg 20843 | The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁‘𝑋)) = (𝐹‘𝑋)) | ||
Theorem | abvsubtri 20844 | An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ − = (-g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) | ||
Theorem | abvrec 20845 | The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) = (1 / (𝐹‘𝑋))) | ||
Theorem | abvdiv 20846 | The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹‘𝑋) / (𝐹‘𝑌))) | ||
Theorem | abvdom 20847 | Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) | ||
Theorem | abvres 20848 | The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝑆 = (𝑅 ↾s 𝐶) & ⊢ 𝐵 = (AbsVal‘𝑆) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝐶 ∈ (SubRing‘𝑅)) → (𝐹 ↾ 𝐶) ∈ 𝐵) | ||
Theorem | abvtrivd 20849* | The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦 · 𝑧) ≠ 0 ) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐴) | ||
Theorem | abvtrivg 20850* | The trivial absolute value. This theorem is not true for rings with zero divisors, which violate the multiplication axiom; abvdom 20847 is the converse of this theorem. (Contributed by SN, 25-Jun-2025.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) ⇒ ⊢ (𝑅 ∈ Domn → 𝐹 ∈ 𝐴) | ||
Theorem | abvtriv 20851* | The trivial absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) ⇒ ⊢ (𝑅 ∈ DivRing → 𝐹 ∈ 𝐴) | ||
Theorem | abvpropd 20852* | If two structures have the same ring components, they have the same collection of absolute values. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿)) | ||
Theorem | abvn0b 20853 | Another characterization of domains, hinted at in abvtrivg 20850: a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ 𝐴 = (AbsVal‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) | ||
Syntax | cstf 20854 | Extend class notation with the functionalization of the *-ring involution. |
class *rf | ||
Syntax | csr 20855 | Extend class notation with class of all *-rings. |
class *-Ring | ||
Definition | df-staf 20856* | Define the functionalization of the involution in a star ring. This is not strictly necessary but by having *𝑟 as an actual function we can state the principal properties of an involution much more cleanly. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ *rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟‘𝑓)‘𝑥))) | ||
Definition | df-srng 20857* | Define class of all star rings. A star ring is a ring with an involution (conjugation) function. Involution (unlike say the ring zero) is not unique and therefore must be added as a new component to the ring. For example, two possible involutions for complex numbers are the identity function and complex conjugation. Definition of involution in [Holland95] p. 204. (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
⊢ *-Ring = {𝑓 ∣ [(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖)} | ||
Theorem | staffval 20858* | The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ ∙ = (*rf‘𝑅) ⇒ ⊢ ∙ = (𝑥 ∈ 𝐵 ↦ ( ∗ ‘𝑥)) | ||
Theorem | stafval 20859 | The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ ∙ = (*rf‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝐵 → ( ∙ ‘𝐴) = ( ∗ ‘𝐴)) | ||
Theorem | staffn 20860 | The functionalization is equal to the original function, if it is a function on the right base set. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ ∙ = (*rf‘𝑅) ⇒ ⊢ ( ∗ Fn 𝐵 → ∙ = ∗ ) | ||
Theorem | issrng 20861 | The predicate "is a star ring". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∗ = (*rf‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) | ||
Theorem | srngrhm 20862 | The involution function in a star ring is an antiautomorphism. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∗ = (*rf‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ∗ ∈ (𝑅 RingHom 𝑂)) | ||
Theorem | srngring 20863 | A star ring is a ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ (𝑅 ∈ *-Ring → 𝑅 ∈ Ring) | ||
Theorem | srngcnv 20864 | The involution function in a star ring is its own inverse function. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*rf‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ∗ = ◡ ∗ ) | ||
Theorem | srngf1o 20865 | The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*rf‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ∗ :𝐵–1-1-onto→𝐵) | ||
Theorem | srngcl 20866 | The involution function in a star ring is closed in the ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘𝑋) ∈ 𝐵) | ||
Theorem | srngnvl 20867 | The involution function in a star ring is an involution. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘( ∗ ‘𝑋)) = 𝑋) | ||
Theorem | srngadd 20868 | The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 + 𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) | ||
Theorem | srngmul 20869 | The involution function in a star ring distributes over multiplication, with a change in the order of the factors. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 · 𝑌)) = (( ∗ ‘𝑌) · ( ∗ ‘𝑋))) | ||
Theorem | srng1 20870 | The conjugate of the ring identity is the identity. (This is sometimes taken as an axiom, and indeed the proof here follows because we defined *𝑟 to be a ring homomorphism, which preserves 1; nevertheless, it is redundant, as can be seen from the proof of issrngd 20872.) (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ∗ = (*𝑟‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ( ∗ ‘ 1 ) = 1 ) | ||
Theorem | srng0 20871 | The conjugate of the ring zero is zero. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ ∗ = (*𝑟‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ( ∗ ‘ 0 ) = 0 ) | ||
Theorem | issrngd 20872* | Properties that determine a star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2015.) |
⊢ (𝜑 → 𝐾 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → ∗ = (*𝑟‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → ( ∗ ‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → ( ∗ ‘(𝑥 + 𝑦)) = (( ∗ ‘𝑥) + ( ∗ ‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → ( ∗ ‘(𝑥 · 𝑦)) = (( ∗ ‘𝑦) · ( ∗ ‘𝑥))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → ( ∗ ‘( ∗ ‘𝑥)) = 𝑥) ⇒ ⊢ (𝜑 → 𝑅 ∈ *-Ring) | ||
Theorem | idsrngd 20873* | A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( ∗ ‘𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝑅 ∈ *-Ring) | ||
Syntax | clmod 20874 | Extend class notation with class of all left modules. |
class LMod | ||
Syntax | cscaf 20875 | The functionalization of the scalar multiplication operation. |
class ·sf | ||
Definition | df-lmod 20876* | Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013.) |
⊢ LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][( ·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))} | ||
Definition | df-scaf 20877* | Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠 ‘𝑔)𝑦))) | ||
Theorem | islmod 20878* | The predicate "is a left module". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) | ||
Theorem | lmodlema 20879 | Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌))) | ||
Theorem | islmodd 20880* | Properties that determine a left module. See note in isgrpd2 18986 regarding the 𝜑 on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014.) |
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + = (+g‘𝑊)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → ⨣ = (+g‘𝐹)) & ⊢ (𝜑 → × = (.r‘𝐹)) & ⊢ (𝜑 → 1 = (1r‘𝐹)) & ⊢ (𝜑 → 𝐹 ∈ Ring) & ⊢ (𝜑 → 𝑊 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉) → (𝑥 · 𝑦) ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 1 · 𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝑊 ∈ LMod) | ||
Theorem | lmodgrp 20881 | A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | ||
Theorem | lmodring 20882 | The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) | ||
Theorem | lmodfgrp 20883 | The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) | ||
Theorem | lmodgrpd 20884 | A left module is a group. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑊 ∈ Grp) | ||
Theorem | lmodbn0 20885 | The base set of a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) | ||
Theorem | lmodacl 20886 | Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ + = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) | ||
Theorem | lmodmcl 20887 | Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 · 𝑌) ∈ 𝐾) | ||
Theorem | lmodsn0 20888 | The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) | ||
Theorem | lmodvacl 20889 | Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) | ||
Theorem | lmodass 20890 | Left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
Theorem | lmodlcan 20891 | Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | lmodvscl 20892 | Closure of scalar product for a left module. (hvmulcl 31041 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) | ||
Theorem | lmodvscld 20893 | Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) | ||
Theorem | scaffval 20894* | The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦)) | ||
Theorem | scafval 20895 | The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) | ||
Theorem | scafeq 20896 | If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ( · Fn (𝐾 × 𝐵) → ∙ = · ) | ||
Theorem | scaffn 20897 | The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) ⇒ ⊢ ∙ Fn (𝐾 × 𝐵) | ||
Theorem | lmodscaf 20898 | The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) | ||
Theorem | lmodvsdi 20899 | Distributive law for scalar product (left-distributivity). (ax-hvdistr1 31036 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) | ||
Theorem | lmodvsdir 20900 | Distributive law for scalar product (right-distributivity). (ax-hvdistr1 31036 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |