Home | Metamath
Proof Explorer Theorem List (p. 209 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | psgnevpmb 20801 | A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) | ||
Theorem | psgnodpm 20802 | A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) = -1) | ||
Theorem | psgnevpm 20803 | A permutation which is even has sign 1. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝐷)) → (𝑁‘𝐹) = 1) | ||
Theorem | psgnodpmr 20804 | If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) | ||
Theorem | zrhpsgnevpm 20805 | The sign of an even permutation embedded into a ring is the multiplicative neutral element of the ring. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → ((𝑌 ∘ 𝑆)‘𝐹) = 1 ) | ||
Theorem | zrhpsgnodpm 20806 | The sign of an odd permutation embedded into a ring is the additive inverse of the multiplicative neutral element of the ring. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐼 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) | ||
Theorem | cofipsgn 20807 | Composition of any class 𝑌 and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018.) (Revised by AV, 3-Jul-2022.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) | ||
Theorem | zrhpsgnelbas 20808 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅)) | ||
Theorem | zrhcopsgnelbas 20809 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) (Proof shortened by AV, 3-Jul-2022.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅)) | ||
Theorem | evpmodpmf1o 20810* | The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷))) | ||
Theorem | pmtrodpm 20811 | A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) | ||
Theorem | psgnfix1 20812* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑇(𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑤))) | ||
Theorem | psgnfix2 20813* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤))) | ||
Theorem | psgndiflemB 20814* | Lemma 1 for psgndif 20816. (Contributed by AV, 27-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈)))) | ||
Theorem | psgndiflemA 20815* | Lemma 2 for psgndif 20816. (Contributed by AV, 31-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈))))) | ||
Theorem | psgndif 20816* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆‘𝑄))) | ||
Theorem | copsgndif 20817* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) (Revised by AV, 5-Jul-2022.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑄))) | ||
Syntax | crefld 20818 | Extend class notation with the field of real numbers. |
class ℝfld | ||
Definition | df-refld 20819 | The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ ℝfld = (ℂfld ↾s ℝ) | ||
Theorem | rebase 20820 | The base of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ ℝ = (Base‘ℝfld) | ||
Theorem | remulg 20821 | The multiplication (group power) operation of the group of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑁(.g‘ℝfld)𝐴) = (𝑁 · 𝐴)) | ||
Theorem | resubdrg 20822 | The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | ||
Theorem | resubgval 20823 | Subtraction in the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ − = (-g‘ℝfld) ⇒ ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
Theorem | replusg 20824 | The addition operation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ + = (+g‘ℝfld) | ||
Theorem | remulr 20825 | The multiplication operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ · = (.r‘ℝfld) | ||
Theorem | re0g 20826 | The neutral element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ 0 = (0g‘ℝfld) | ||
Theorem | re1r 20827 | The multiplicative neutral element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ 1 = (1r‘ℝfld) | ||
Theorem | rele2 20828 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ ≤ = (le‘ℝfld) | ||
Theorem | relt 20829 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ < = (lt‘ℝfld) | ||
Theorem | reds 20830 | The distance of the field of reals. (Contributed by Thierry Arnoux, 20-Jun-2019.) |
⊢ (abs ∘ − ) = (dist‘ℝfld) | ||
Theorem | redvr 20831 | The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴(/r‘ℝfld)𝐵) = (𝐴 / 𝐵)) | ||
Theorem | retos 20832 | The real numbers are a totally ordered set. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ ℝfld ∈ Toset | ||
Theorem | refld 20833 | The real numbers form a field. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ ℝfld ∈ Field | ||
Theorem | refldcj 20834 | The conjugation operation of the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ ∗ = (*𝑟‘ℝfld) | ||
Theorem | recrng 20835 | The real numbers form a star ring. (Contributed by Thierry Arnoux, 19-Apr-2019.) |
⊢ ℝfld ∈ *-Ring | ||
Theorem | regsumsupp 20836* | The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.) |
⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) | ||
Theorem | rzgrp 20837 | The quotient group ℝ / ℤ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝑅 = (ℝfld /s (ℝfld ~QG ℤ)) ⇒ ⊢ 𝑅 ∈ Grp | ||
Syntax | cphl 20838 | Extend class notation with class of all pre-Hilbert spaces. |
class PreHil | ||
Syntax | cipf 20839 | Extend class notation with inner product function. |
class ·if | ||
Definition | df-phl 20840* | Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011.) |
⊢ PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)))} | ||
Definition | df-ipf 20841* | Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 20865), while ·𝑖 only has closure (ipcl 20847). (Contributed by Mario Carneiro, 12-Aug-2015.) |
⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) | ||
Theorem | isphl 20842* | The predicate "is a generalized pre-Hilbert (inner product) space". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ∗ = (*𝑟‘𝐹) & ⊢ 𝑍 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))) | ||
Theorem | phllvec 20843 | A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | ||
Theorem | phllmod 20844 | A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | ||
Theorem | phlsrng 20845 | The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) | ||
Theorem | phllmhm 20846* | The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) | ||
Theorem | ipcl 20847 | Closure of the inner product operation in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ 𝐾) | ||
Theorem | ipcj 20848 | Conjugate of an inner product in a pre-Hilbert space. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ( ∗ ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) | ||
Theorem | iporthcom 20849 | Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) | ||
Theorem | ip0l 20850 | Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) | ||
Theorem | ip0r 20851 | Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 , 0 ) = 𝑍) | ||
Theorem | ipeq0 20852 | The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 ↔ 𝐴 = 0 )) | ||
Theorem | ipdir 20853 | Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) | ||
Theorem | ipdi 20854 | Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) | ||
Theorem | ip2di 20855 | Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) | ||
Theorem | ipsubdir 20856 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶))) | ||
Theorem | ipsubdi 20857 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶))) | ||
Theorem | ip2subdi 20858 | Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) & ⊢ + = (+g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) , (𝐶 − 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶)))) | ||
Theorem | ipass 20859 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶))) | ||
Theorem | ipassr 20860 | "Associative" law for second argument of inner product (compare ipass 20859). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝐹) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) | ||
Theorem | ipassr2 20861 | "Associative" law for inner product. Conjugate version of ipassr 20860. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝐹) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( ∗ ‘𝐶) · 𝐵))) | ||
Theorem | ipffval 20862* | The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ · = (·if‘𝑊) ⇒ ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) | ||
Theorem | ipfval 20863 | The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ · = (·if‘𝑊) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) = (𝑋 , 𝑌)) | ||
Theorem | ipfeq 20864 | If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ · = (·if‘𝑊) ⇒ ⊢ ( , Fn (𝑉 × 𝑉) → · = , ) | ||
Theorem | ipffn 20865 | The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·if‘𝑊) ⇒ ⊢ , Fn (𝑉 × 𝑉) | ||
Theorem | phlipf 20866 | The inner product operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·if‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑊 ∈ PreHil → , :(𝑉 × 𝑉)⟶𝐾) | ||
Theorem | ip2eq 20867* | Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ 𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵))) | ||
Theorem | isphld 20868* | Properties that determine a pre-Hilbert (inner product) space. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + = (+g‘𝑊)) & ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝐼 = (·𝑖‘𝑊)) & ⊢ (𝜑 → 0 = (0g‘𝑊)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐾 = (Base‘𝐹)) & ⊢ (𝜑 → ⨣ = (+g‘𝐹)) & ⊢ (𝜑 → × = (.r‘𝐹)) & ⊢ (𝜑 → ∗ = (*𝑟‘𝐹)) & ⊢ (𝜑 → 𝑂 = (0g‘𝐹)) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐹 ∈ *-Ring) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥𝐼𝑦) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐾 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝑞 · 𝑥) + 𝑦)𝐼𝑧) = ((𝑞 × (𝑥𝐼𝑧)) ⨣ (𝑦𝐼𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ (𝑥𝐼𝑥) = 𝑂) → 𝑥 = 0 ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ( ∗ ‘(𝑥𝐼𝑦)) = (𝑦𝐼𝑥)) ⇒ ⊢ (𝜑 → 𝑊 ∈ PreHil) | ||
Theorem | phlpropd 20869* | If two structures have the same components (properties), one is a pre-Hilbert space iff the other one is. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(·𝑖‘𝐾)𝑦) = (𝑥(·𝑖‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ PreHil ↔ 𝐿 ∈ PreHil)) | ||
Theorem | ssipeq 20870 | The inner product on a subspace equals the inner product on the parent space. (Contributed by AV, 19-Oct-2021.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑃 = (·𝑖‘𝑋) ⇒ ⊢ (𝑈 ∈ 𝑆 → 𝑃 = , ) | ||
Theorem | phssipval 20871 | The inner product on a subspace in terms of the inner product on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑃 = (·𝑖‘𝑋) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈)) → (𝐴𝑃𝐵) = (𝐴 , 𝐵)) | ||
Theorem | phssip 20872 | The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ · = (·if‘𝑊) & ⊢ 𝑃 = (·if‘𝑋) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) | ||
Theorem | phlssphl 20873 | A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ PreHil) | ||
Syntax | cocv 20874 | Extend class notation with orthocomplement of a subset. |
class ocv | ||
Syntax | ccss 20875 | Extend class notation with set of closed subspaces. |
class ClSubSp | ||
Syntax | cthl 20876 | Extend class notation with the Hilbert lattice. |
class toHL | ||
Definition | df-ocv 20877* | Define the orthocomplement function in a given set (which usually is a pre-Hilbert space): it associates with a subset its orthogonal subset (which in the case of a closed linear subspace is its orthocomplement). (Contributed by NM, 7-Oct-2011.) |
⊢ ocv = (ℎ ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘ℎ) ↦ {𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))})) | ||
Definition | df-css 20878* | Define the set of closed (linear) subspaces of a given pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) |
⊢ ClSubSp = (ℎ ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocv‘ℎ)‘((ocv‘ℎ)‘𝑠))}) | ||
Definition | df-thl 20879 | Define the Hilbert lattice of closed subspaces of a given pre-Hilbert space. (Contributed by Mario Carneiro, 25-Oct-2015.) |
⊢ toHL = (ℎ ∈ V ↦ ((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉)) | ||
Theorem | ocvfval 20880* | The orthocomplement operation. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐹) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → ⊥ = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 })) | ||
Theorem | ocvval 20881* | Value of the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐹) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ (𝑆 ⊆ 𝑉 → ( ⊥ ‘𝑆) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑆 (𝑥 , 𝑦) = 0 }) | ||
Theorem | elocv 20882* | Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐹) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) | ||
Theorem | ocvi 20883 | Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐹) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) | ||
Theorem | ocvss 20884 | The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 | ||
Theorem | ocvocv 20885 | A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) | ||
Theorem | ocvlss 20886 | The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ∈ 𝐿) | ||
Theorem | ocv2ss 20887 | Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) | ||
Theorem | ocvin 20888 | An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) = { 0 }) | ||
Theorem | ocvsscon 20889 | Two ways to say that 𝑆 and 𝑇 are orthogonal subspaces. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉) → (𝑆 ⊆ ( ⊥ ‘𝑇) ↔ 𝑇 ⊆ ( ⊥ ‘𝑆))) | ||
Theorem | ocvlsp 20890 | The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘(𝑁‘𝑆)) = ( ⊥ ‘𝑆)) | ||
Theorem | ocv0 20891 | The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ( ⊥ ‘∅) = 𝑉 | ||
Theorem | ocvz 20892 | The orthocomplement of the zero subspace. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → ( ⊥ ‘{ 0 }) = 𝑉) | ||
Theorem | ocv1 20893 | The orthocomplement of the base set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → ( ⊥ ‘𝑉) = { 0 }) | ||
Theorem | unocv 20894 | The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ( ⊥ ‘(𝐴 ∪ 𝐵)) = (( ⊥ ‘𝐴) ∩ ( ⊥ ‘𝐵)) | ||
Theorem | iunocv 20895* | The orthocomplement of an indexed union. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ( ⊥ ‘∪ 𝑥 ∈ 𝐴 𝐵) = (𝑉 ∩ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘𝐵)) | ||
Theorem | cssval 20896* | The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) | ||
Theorem | iscss 20897 | The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) | ||
Theorem | cssi 20898 | Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑆 ∈ 𝐶 → 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) | ||
Theorem | cssss 20899 | A closed subspace is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑉) | ||
Theorem | iscss2 20900 | It is sufficient to prove that the double orthocomplement is a subset of the target set to show that the set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |