![]() |
Metamath
Proof Explorer Theorem List (p. 209 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cnfldadd 20801 | The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
⊢ + = (+g‘ℂfld) | ||
Theorem | cnfldmul 20802 | The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
⊢ · = (.r‘ℂfld) | ||
Theorem | cnfldcj 20803 | The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
⊢ ∗ = (*𝑟‘ℂfld) | ||
Theorem | cnfldtset 20804 | The topology component of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
⊢ (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld) | ||
Theorem | cnfldle 20805 | The ordering of the field of complex numbers. Note that this is not actually an ordering on ℂ, but we put it in the structure anyway because restricting to ℝ does not affect this component, so that (ℂfld ↾s ℝ) is an ordered field even though ℂfld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
⊢ ≤ = (le‘ℂfld) | ||
Theorem | cnfldds 20806 | The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
⊢ (abs ∘ − ) = (dist‘ℂfld) | ||
Theorem | cnfldunif 20807 | The uniform structure component of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
⊢ (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld) | ||
Theorem | cnfldfun 20808 | The field of complex numbers is a function. The proof is much shorter than the proof of cnfldfunALT 20809 by using cnfldstr 20798 and structn0fun 17023: in addition, it must be shown that ∅ ∉ ℂfld. (Contributed by AV, 18-Nov-2021.) |
⊢ Fun ℂfld | ||
Theorem | cnfldfunALT 20809 | The field of complex numbers is a function. Alternate proof of cnfldfun 20808 not requiring that the index set of the components is ordered, but using quadratically many inequalities for the indices. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 11-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Fun ℂfld | ||
Theorem | cnfldfunALTOLD 20810 | Obsolete proof of cnfldfunALT 20809 as of 10-Nov-2024. The field of complex numbers is a function. (Contributed by AV, 14-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Fun ℂfld | ||
Theorem | xrsstr 20811 | The extended real structure is a structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ*𝑠 Struct 〈1, ;12〉 | ||
Theorem | xrsex 20812 | The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ*𝑠 ∈ V | ||
Theorem | xrsbas 20813 | The base set of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ* = (Base‘ℝ*𝑠) | ||
Theorem | xrsadd 20814 | The addition operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ +𝑒 = (+g‘ℝ*𝑠) | ||
Theorem | xrsmul 20815 | The multiplication operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ·e = (.r‘ℝ*𝑠) | ||
Theorem | xrstset 20816 | The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠) | ||
Theorem | xrsle 20817 | The ordering of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ≤ = (le‘ℝ*𝑠) | ||
Theorem | cncrng 20818 | The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.) |
⊢ ℂfld ∈ CRing | ||
Theorem | cnring 20819 | The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ ℂfld ∈ Ring | ||
Theorem | xrsmcmn 20820 | The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp 20834.) (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (mulGrp‘ℝ*𝑠) ∈ CMnd | ||
Theorem | cnfld0 20821 | Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 0 = (0g‘ℂfld) | ||
Theorem | cnfld1 20822 | One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 1 = (1r‘ℂfld) | ||
Theorem | cnfldneg 20823 | The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ (𝑋 ∈ ℂ → ((invg‘ℂfld)‘𝑋) = -𝑋) | ||
Theorem | cnfldplusf 20824 | The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ + = (+𝑓‘ℂfld) | ||
Theorem | cnfldsub 20825 | The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ − = (-g‘ℂfld) | ||
Theorem | cndrng 20826 | The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ ℂfld ∈ DivRing | ||
Theorem | cnflddiv 20827 | The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
⊢ / = (/r‘ℂfld) | ||
Theorem | cnfldinv 20828 | The multiplicative inverse in the field of complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) | ||
Theorem | cnfldmulg 20829 | The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)) | ||
Theorem | cnfldexp 20830 | The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝐵)) | ||
Theorem | cnsrng 20831 | The complex numbers form a *-ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ℂfld ∈ *-Ring | ||
Theorem | xrsmgm 20832 | The "additive group" of the extended reals is a magma. (Contributed by AV, 30-Jan-2020.) |
⊢ ℝ*𝑠 ∈ Mgm | ||
Theorem | xrsnsgrp 20833 | The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.) |
⊢ ℝ*𝑠 ∉ Smgrp | ||
Theorem | xrsmgmdifsgrp 20834 | The "additive group" of the extended reals is a magma but not a semigroup, and therefore also not a monoid nor a group, in contrast to the "multiplicative group", see xrsmcmn 20820. (Contributed by AV, 30-Jan-2020.) |
⊢ ℝ*𝑠 ∈ (Mgm ∖ Smgrp) | ||
Theorem | xrs1mnd 20835 | The extended real numbers, restricted to ℝ* ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 20834. (Contributed by Mario Carneiro, 27-Nov-2014.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 𝑅 ∈ Mnd | ||
Theorem | xrs10 20836 | The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 0 = (0g‘𝑅) | ||
Theorem | xrs1cmn 20837 | The extended real numbers restricted to ℝ* ∖ {-∞} form a commutative monoid. They are not a group because 1 + +∞ = 2 + +∞ even though 1 ≠ 2. (Contributed by Mario Carneiro, 27-Nov-2014.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 𝑅 ∈ CMnd | ||
Theorem | xrge0subm 20838 | The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) | ||
Theorem | xrge0cmn 20839 | The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | ||
Theorem | xrsds 20840* | The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) | ||
Theorem | xrsdsval 20841 | The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) | ||
Theorem | xrsdsreval 20842 | The metric of the extended real number structure coincides with the real number metric on the reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
Theorem | xrsdsreclblem 20843 | Lemma for xrsdsreclb 20844. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 ≤ 𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) | ||
Theorem | xrsdsreclb 20844 | The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) | ||
Theorem | cnsubmlem 20845* | Lemma for nn0subm 20852 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ 0 ∈ 𝐴 ⇒ ⊢ 𝐴 ∈ (SubMnd‘ℂfld) | ||
Theorem | cnsubglem 20846* | Lemma for resubdrg 21012 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 𝐵 ∈ 𝐴 ⇒ ⊢ 𝐴 ∈ (SubGrp‘ℂfld) | ||
Theorem | cnsubrglem 20847* | Lemma for resubdrg 21012 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubRing‘ℂfld) | ||
Theorem | cnsubdrglem 20848* | Lemma for resubdrg 21012 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐴) ∈ DivRing) | ||
Theorem | qsubdrg 20849 | The rational numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | ||
Theorem | zsubrg 20850 | The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ ℤ ∈ (SubRing‘ℂfld) | ||
Theorem | gzsubrg 20851 | The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ ℤ[i] ∈ (SubRing‘ℂfld) | ||
Theorem | nn0subm 20852 | The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ ℕ0 ∈ (SubMnd‘ℂfld) | ||
Theorem | rege0subm 20853 | The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (0[,)+∞) ∈ (SubMnd‘ℂfld) | ||
Theorem | absabv 20854 | The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ abs ∈ (AbsVal‘ℂfld) | ||
Theorem | zsssubrg 20855 | The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅) | ||
Theorem | qsssubdrg 20856 | The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅) | ||
Theorem | cnsubrg 20857 | There are no subrings of the complex numbers strictly between ℝ and ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ}) | ||
Theorem | cnmgpabl 20858 | The unit group of the complex numbers is an abelian group. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ 𝑀 ∈ Abel | ||
Theorem | cnmgpid 20859 | The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007.) (Revised by AV, 26-Aug-2021.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ (0g‘𝑀) = 1 | ||
Theorem | cnmsubglem 20860* | Lemma for rpmsubg 20861 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubGrp‘𝑀) | ||
Theorem | rpmsubg 20861 | The positive reals form a multiplicative subgroup of the complex numbers. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ ℝ+ ∈ (SubGrp‘𝑀) | ||
Theorem | gzrngunitlem 20862 | Lemma for gzrngunit 20863. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑍 = (ℂfld ↾s ℤ[i]) ⇒ ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) | ||
Theorem | gzrngunit 20863 | The units on ℤ[i] are the gaussian integers with norm 1. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑍 = (ℂfld ↾s ℤ[i]) ⇒ ⊢ (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1)) | ||
Theorem | gsumfsum 20864* | Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | regsumfsum 20865* | Relate a group sum on (ℂfld ↾s ℝ) to a finite sum on the reals. Cf. gsumfsum 20864. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((ℂfld ↾s ℝ) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | expmhm 20866* | Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝑁 = (ℂfld ↾s ℕ0) & ⊢ 𝑀 = (mulGrp‘ℂfld) ⇒ ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴↑𝑥)) ∈ (𝑁 MndHom 𝑀)) | ||
Theorem | nn0srg 20867 | The nonnegative integers form a semiring (commutative by subcmn 19615). (Contributed by Thierry Arnoux, 1-May-2018.) |
⊢ (ℂfld ↾s ℕ0) ∈ SRing | ||
Theorem | rge0srg 20868 | The nonnegative real numbers form a semiring (commutative by subcmn 19615). (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ (ℂfld ↾s (0[,)+∞)) ∈ SRing | ||
According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring 𝑍." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by (ℂfld ↾s ℤ), the field of complex numbers restricted to the integers. In zringring 20872 it is shown that this restriction is a ring (it is actually a principal ideal ring as shown in zringlpir 20888), and zringbas 20875 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 20870 of the ring of integers. Remark: Instead of using the symbol "ZZrng" analogous to ℂfld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 20870). | ||
Syntax | czring 20869 | Extend class notation with the (unital) ring of integers. |
class ℤring | ||
Definition | df-zring 20870 | The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
⊢ ℤring = (ℂfld ↾s ℤ) | ||
Theorem | zringcrng 20871 | The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.) |
⊢ ℤring ∈ CRing | ||
Theorem | zringring 20872 | The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.) |
⊢ ℤring ∈ Ring | ||
Theorem | zringabl 20873 | The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.) |
⊢ ℤring ∈ Abel | ||
Theorem | zringgrp 20874 | The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.) |
⊢ ℤring ∈ Grp | ||
Theorem | zringbas 20875 | The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ ℤ = (Base‘ℤring) | ||
Theorem | zringplusg 20876 | The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ + = (+g‘ℤring) | ||
Theorem | zringmulg 20877 | The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(.g‘ℤring)𝐵) = (𝐴 · 𝐵)) | ||
Theorem | zringmulr 20878 | The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ · = (.r‘ℤring) | ||
Theorem | zring0 20879 | The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ 0 = (0g‘ℤring) | ||
Theorem | zring1 20880 | The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ 1 = (1r‘ℤring) | ||
Theorem | zringnzr 20881 | The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.) |
⊢ ℤring ∈ NzRing | ||
Theorem | dvdsrzring 20882 | Ring divisibility in the ring of integers corresponds to ordinary divisibility in ℤ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
⊢ ∥ = (∥r‘ℤring) | ||
Theorem | zringlpirlem1 20883 | Lemma for zringlpir 20888. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) ⇒ ⊢ (𝜑 → (𝐼 ∩ ℕ) ≠ ∅) | ||
Theorem | zringlpirlem2 20884 | Lemma for zringlpir 20888. A nonzero ideal of integers contains the least positive element. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Revised by AV, 27-Sep-2020.) |
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) & ⊢ 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐼) | ||
Theorem | zringlpirlem3 20885 | Lemma for zringlpir 20888. All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) & ⊢ 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < ) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝐺 ∥ 𝑋) | ||
Theorem | zringinvg 20886 | The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ (𝐴 ∈ ℤ → -𝐴 = ((invg‘ℤring)‘𝐴)) | ||
Theorem | zringunit 20887 | The units of ℤ are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1)) | ||
Theorem | zringlpir 20888 | The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ ℤring ∈ LPIR | ||
Theorem | zringndrg 20889 | The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021.) |
⊢ ℤring ∉ DivRing | ||
Theorem | zringcyg 20890 | The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 9-Jun-2019.) |
⊢ ℤring ∈ CycGrp | ||
Theorem | zringsubgval 20891 | Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.) |
⊢ − = (-g‘ℤring) ⇒ ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
Theorem | zringmpg 20892 | The multiplication group of the ring of integers is the restriction of the multiplication group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.) |
⊢ ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring) | ||
Theorem | prmirredlem 20893 | A positive integer is irreducible over ℤ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) | ||
Theorem | dfprm2 20894 | The positive irreducible elements of ℤ are the prime numbers. This is an alternative way to define ℙ. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ ℙ = (ℕ ∩ 𝐼) | ||
Theorem | prmirred 20895 | The irreducible elements of ℤ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) | ||
Theorem | expghm 20896* | Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) | ||
Theorem | mulgghm2 20897* | The powers of a group element give a homomorphism from ℤ to a group. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) | ||
Theorem | mulgrhm 20898* | The powers of the element 1 give a ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅)) | ||
Theorem | mulgrhm2 20899* | The powers of the element 1 give the unique ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) | ||
Syntax | czrh 20900 | Map the rationals into a field, or the integers into a ring. |
class ℤRHom |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |