MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs Structured version   Visualization version   GIF version

Theorem islbs 21098
Description: The predicate "𝐵 is a basis for the left module or vector space 𝑊". A subset of the base set is a basis if zero is not in the set, it spans the set, and no nonzero multiple of an element of the basis is in the span of the rest of the family. (Contributed by Mario Carneiro, 24-Jun-2014.) (Revised by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
islbs.v 𝑉 = (Base‘𝑊)
islbs.f 𝐹 = (Scalar‘𝑊)
islbs.s · = ( ·𝑠𝑊)
islbs.k 𝐾 = (Base‘𝐹)
islbs.j 𝐽 = (LBasis‘𝑊)
islbs.n 𝑁 = (LSpan‘𝑊)
islbs.z 0 = (0g𝐹)
Assertion
Ref Expression
islbs (𝑊𝑋 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝐾   𝑥,𝑁,𝑦   𝑥,𝑊,𝑦   𝑥,𝐹,𝑦   𝑦, 0
Allowed substitution hints:   · (𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥)   𝑉(𝑥,𝑦)   𝑋(𝑥,𝑦)   0 (𝑥)

Proof of Theorem islbs
Dummy variables 𝑏 𝑓 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3509 . . . 4 (𝑊𝑋𝑊 ∈ V)
2 islbs.j . . . . 5 𝐽 = (LBasis‘𝑊)
3 fveq2 6920 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 islbs.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2798 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 4639 . . . . . . 7 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
7 fvexd 6935 . . . . . . . 8 (𝑤 = 𝑊 → (LSpan‘𝑤) ∈ V)
8 fveq2 6920 . . . . . . . . 9 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
9 islbs.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
108, 9eqtr4di 2798 . . . . . . . 8 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁)
11 fvexd 6935 . . . . . . . . 9 ((𝑤 = 𝑊𝑛 = 𝑁) → (Scalar‘𝑤) ∈ V)
12 fveq2 6920 . . . . . . . . . . 11 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
1312adantr 480 . . . . . . . . . 10 ((𝑤 = 𝑊𝑛 = 𝑁) → (Scalar‘𝑤) = (Scalar‘𝑊))
14 islbs.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
1513, 14eqtr4di 2798 . . . . . . . . 9 ((𝑤 = 𝑊𝑛 = 𝑁) → (Scalar‘𝑤) = 𝐹)
16 simplr 768 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → 𝑛 = 𝑁)
1716fveq1d 6922 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (𝑛𝑏) = (𝑁𝑏))
185ad2antrr 725 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (Base‘𝑤) = 𝑉)
1917, 18eqeq12d 2756 . . . . . . . . . 10 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ((𝑛𝑏) = (Base‘𝑤) ↔ (𝑁𝑏) = 𝑉))
20 simpr 484 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
2120fveq2d 6924 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
22 islbs.k . . . . . . . . . . . . . 14 𝐾 = (Base‘𝐹)
2321, 22eqtr4di 2798 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (Base‘𝑓) = 𝐾)
2420fveq2d 6924 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (0g𝑓) = (0g𝐹))
25 islbs.z . . . . . . . . . . . . . . 15 0 = (0g𝐹)
2624, 25eqtr4di 2798 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (0g𝑓) = 0 )
2726sneqd 4660 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → {(0g𝑓)} = { 0 })
2823, 27difeq12d 4150 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ((Base‘𝑓) ∖ {(0g𝑓)}) = (𝐾 ∖ { 0 }))
29 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
30 islbs.s . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑊)
3129, 30eqtr4di 2798 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
3231ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ( ·𝑠𝑤) = · )
3332oveqd 7465 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (𝑦( ·𝑠𝑤)𝑥) = (𝑦 · 𝑥))
3416fveq1d 6922 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (𝑛‘(𝑏 ∖ {𝑥})) = (𝑁‘(𝑏 ∖ {𝑥})))
3533, 34eleq12d 2838 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ((𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3635notbid 318 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3728, 36raleqbidv 3354 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3837ralbidv 3184 . . . . . . . . . 10 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3919, 38anbi12d 631 . . . . . . . . 9 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))))
4011, 15, 39sbcied2 3852 . . . . . . . 8 ((𝑤 = 𝑊𝑛 = 𝑁) → ([(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))))
417, 10, 40sbcied2 3852 . . . . . . 7 (𝑤 = 𝑊 → ([(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))))
426, 41rabeqbidv 3462 . . . . . 6 (𝑤 = 𝑊 → {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))} = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
43 df-lbs 21097 . . . . . 6 LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))})
444fvexi 6934 . . . . . . . 8 𝑉 ∈ V
4544pwex 5398 . . . . . . 7 𝒫 𝑉 ∈ V
4645rabex 5357 . . . . . 6 {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))} ∈ V
4742, 43, 46fvmpt 7029 . . . . 5 (𝑊 ∈ V → (LBasis‘𝑊) = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
482, 47eqtrid 2792 . . . 4 (𝑊 ∈ V → 𝐽 = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
491, 48syl 17 . . 3 (𝑊𝑋𝐽 = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
5049eleq2d 2830 . 2 (𝑊𝑋 → (𝐵𝐽𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))}))
5144elpw2 5352 . . . 4 (𝐵 ∈ 𝒫 𝑉𝐵𝑉)
5251anbi1i 623 . . 3 ((𝐵 ∈ 𝒫 𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ↔ (𝐵𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
53 fveqeq2 6929 . . . . 5 (𝑏 = 𝐵 → ((𝑁𝑏) = 𝑉 ↔ (𝑁𝐵) = 𝑉))
54 difeq1 4142 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏 ∖ {𝑥}) = (𝐵 ∖ {𝑥}))
5554fveq2d 6924 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑁‘(𝑏 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝑥})))
5655eleq2d 2830 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
5756notbid 318 . . . . . . 7 (𝑏 = 𝐵 → (¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
5857ralbidv 3184 . . . . . 6 (𝑏 = 𝐵 → (∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
5958raleqbi1dv 3346 . . . . 5 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
6053, 59anbi12d 631 . . . 4 (𝑏 = 𝐵 → (((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
6160elrab 3708 . . 3 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))} ↔ (𝐵 ∈ 𝒫 𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
62 3anass 1095 . . 3 ((𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))) ↔ (𝐵𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
6352, 61, 623bitr4i 303 . 2 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))} ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
6450, 63bitrdi 287 1 (𝑊𝑋 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  [wsbc 3804  cdif 3973  wss 3976  𝒫 cpw 4622  {csn 4648  cfv 6573  (class class class)co 7448  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  LSpanclspn 20992  LBasisclbs 21096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-lbs 21097
This theorem is referenced by:  lbsss  21099  lbssp  21101  lbsind  21102  lbspropd  21121  islbs2  21179  frlmlbs  21840  islbs4  21875
  Copyright terms: Public domain W3C validator