MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs Structured version   Visualization version   GIF version

Theorem islbs 20983
Description: The predicate "𝐵 is a basis for the left module or vector space 𝑊". A subset of the base set is a basis if zero is not in the set, it spans the set, and no nonzero multiple of an element of the basis is in the span of the rest of the family. (Contributed by Mario Carneiro, 24-Jun-2014.) (Revised by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
islbs.v 𝑉 = (Base‘𝑊)
islbs.f 𝐹 = (Scalar‘𝑊)
islbs.s · = ( ·𝑠𝑊)
islbs.k 𝐾 = (Base‘𝐹)
islbs.j 𝐽 = (LBasis‘𝑊)
islbs.n 𝑁 = (LSpan‘𝑊)
islbs.z 0 = (0g𝐹)
Assertion
Ref Expression
islbs (𝑊𝑋 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝐾   𝑥,𝑁,𝑦   𝑥,𝑊,𝑦   𝑥,𝐹,𝑦   𝑦, 0
Allowed substitution hints:   · (𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥)   𝑉(𝑥,𝑦)   𝑋(𝑥,𝑦)   0 (𝑥)

Proof of Theorem islbs
Dummy variables 𝑏 𝑓 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3468 . . . 4 (𝑊𝑋𝑊 ∈ V)
2 islbs.j . . . . 5 𝐽 = (LBasis‘𝑊)
3 fveq2 6858 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 islbs.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2782 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 4580 . . . . . . 7 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
7 fvexd 6873 . . . . . . . 8 (𝑤 = 𝑊 → (LSpan‘𝑤) ∈ V)
8 fveq2 6858 . . . . . . . . 9 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
9 islbs.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
108, 9eqtr4di 2782 . . . . . . . 8 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁)
11 fvexd 6873 . . . . . . . . 9 ((𝑤 = 𝑊𝑛 = 𝑁) → (Scalar‘𝑤) ∈ V)
12 fveq2 6858 . . . . . . . . . . 11 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
1312adantr 480 . . . . . . . . . 10 ((𝑤 = 𝑊𝑛 = 𝑁) → (Scalar‘𝑤) = (Scalar‘𝑊))
14 islbs.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
1513, 14eqtr4di 2782 . . . . . . . . 9 ((𝑤 = 𝑊𝑛 = 𝑁) → (Scalar‘𝑤) = 𝐹)
16 simplr 768 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → 𝑛 = 𝑁)
1716fveq1d 6860 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (𝑛𝑏) = (𝑁𝑏))
185ad2antrr 726 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (Base‘𝑤) = 𝑉)
1917, 18eqeq12d 2745 . . . . . . . . . 10 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ((𝑛𝑏) = (Base‘𝑤) ↔ (𝑁𝑏) = 𝑉))
20 simpr 484 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
2120fveq2d 6862 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
22 islbs.k . . . . . . . . . . . . . 14 𝐾 = (Base‘𝐹)
2321, 22eqtr4di 2782 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (Base‘𝑓) = 𝐾)
2420fveq2d 6862 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (0g𝑓) = (0g𝐹))
25 islbs.z . . . . . . . . . . . . . . 15 0 = (0g𝐹)
2624, 25eqtr4di 2782 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (0g𝑓) = 0 )
2726sneqd 4601 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → {(0g𝑓)} = { 0 })
2823, 27difeq12d 4090 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ((Base‘𝑓) ∖ {(0g𝑓)}) = (𝐾 ∖ { 0 }))
29 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
30 islbs.s . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑊)
3129, 30eqtr4di 2782 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
3231ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ( ·𝑠𝑤) = · )
3332oveqd 7404 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (𝑦( ·𝑠𝑤)𝑥) = (𝑦 · 𝑥))
3416fveq1d 6860 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (𝑛‘(𝑏 ∖ {𝑥})) = (𝑁‘(𝑏 ∖ {𝑥})))
3533, 34eleq12d 2822 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ((𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3635notbid 318 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3728, 36raleqbidv 3319 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3837ralbidv 3156 . . . . . . . . . 10 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3919, 38anbi12d 632 . . . . . . . . 9 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))))
4011, 15, 39sbcied2 3798 . . . . . . . 8 ((𝑤 = 𝑊𝑛 = 𝑁) → ([(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))))
417, 10, 40sbcied2 3798 . . . . . . 7 (𝑤 = 𝑊 → ([(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))))
426, 41rabeqbidv 3424 . . . . . 6 (𝑤 = 𝑊 → {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))} = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
43 df-lbs 20982 . . . . . 6 LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))})
444fvexi 6872 . . . . . . . 8 𝑉 ∈ V
4544pwex 5335 . . . . . . 7 𝒫 𝑉 ∈ V
4645rabex 5294 . . . . . 6 {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))} ∈ V
4742, 43, 46fvmpt 6968 . . . . 5 (𝑊 ∈ V → (LBasis‘𝑊) = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
482, 47eqtrid 2776 . . . 4 (𝑊 ∈ V → 𝐽 = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
491, 48syl 17 . . 3 (𝑊𝑋𝐽 = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
5049eleq2d 2814 . 2 (𝑊𝑋 → (𝐵𝐽𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))}))
5144elpw2 5289 . . . 4 (𝐵 ∈ 𝒫 𝑉𝐵𝑉)
5251anbi1i 624 . . 3 ((𝐵 ∈ 𝒫 𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ↔ (𝐵𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
53 fveqeq2 6867 . . . . 5 (𝑏 = 𝐵 → ((𝑁𝑏) = 𝑉 ↔ (𝑁𝐵) = 𝑉))
54 difeq1 4082 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏 ∖ {𝑥}) = (𝐵 ∖ {𝑥}))
5554fveq2d 6862 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑁‘(𝑏 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝑥})))
5655eleq2d 2814 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
5756notbid 318 . . . . . . 7 (𝑏 = 𝐵 → (¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
5857ralbidv 3156 . . . . . 6 (𝑏 = 𝐵 → (∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
5958raleqbi1dv 3311 . . . . 5 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
6053, 59anbi12d 632 . . . 4 (𝑏 = 𝐵 → (((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
6160elrab 3659 . . 3 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))} ↔ (𝐵 ∈ 𝒫 𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
62 3anass 1094 . . 3 ((𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))) ↔ (𝐵𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
6352, 61, 623bitr4i 303 . 2 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))} ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
6450, 63bitrdi 287 1 (𝑊𝑋 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  [wsbc 3753  cdif 3911  wss 3914  𝒫 cpw 4563  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  LSpanclspn 20877  LBasisclbs 20981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-lbs 20982
This theorem is referenced by:  lbsss  20984  lbssp  20986  lbsind  20987  lbspropd  21006  islbs2  21064  frlmlbs  21706  islbs4  21741
  Copyright terms: Public domain W3C validator