MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs Structured version   Visualization version   GIF version

Theorem islbs 20998
Description: The predicate "𝐵 is a basis for the left module or vector space 𝑊". A subset of the base set is a basis if zero is not in the set, it spans the set, and no nonzero multiple of an element of the basis is in the span of the rest of the family. (Contributed by Mario Carneiro, 24-Jun-2014.) (Revised by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
islbs.v 𝑉 = (Base‘𝑊)
islbs.f 𝐹 = (Scalar‘𝑊)
islbs.s · = ( ·𝑠𝑊)
islbs.k 𝐾 = (Base‘𝐹)
islbs.j 𝐽 = (LBasis‘𝑊)
islbs.n 𝑁 = (LSpan‘𝑊)
islbs.z 0 = (0g𝐹)
Assertion
Ref Expression
islbs (𝑊𝑋 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝐾   𝑥,𝑁,𝑦   𝑥,𝑊,𝑦   𝑥,𝐹,𝑦   𝑦, 0
Allowed substitution hints:   · (𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥)   𝑉(𝑥,𝑦)   𝑋(𝑥,𝑦)   0 (𝑥)

Proof of Theorem islbs
Dummy variables 𝑏 𝑓 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . . . 4 (𝑊𝑋𝑊 ∈ V)
2 islbs.j . . . . 5 𝐽 = (LBasis‘𝑊)
3 fveq2 6826 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 islbs.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2782 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 4570 . . . . . . 7 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
7 fvexd 6841 . . . . . . . 8 (𝑤 = 𝑊 → (LSpan‘𝑤) ∈ V)
8 fveq2 6826 . . . . . . . . 9 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
9 islbs.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
108, 9eqtr4di 2782 . . . . . . . 8 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁)
11 fvexd 6841 . . . . . . . . 9 ((𝑤 = 𝑊𝑛 = 𝑁) → (Scalar‘𝑤) ∈ V)
12 fveq2 6826 . . . . . . . . . . 11 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
1312adantr 480 . . . . . . . . . 10 ((𝑤 = 𝑊𝑛 = 𝑁) → (Scalar‘𝑤) = (Scalar‘𝑊))
14 islbs.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
1513, 14eqtr4di 2782 . . . . . . . . 9 ((𝑤 = 𝑊𝑛 = 𝑁) → (Scalar‘𝑤) = 𝐹)
16 simplr 768 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → 𝑛 = 𝑁)
1716fveq1d 6828 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (𝑛𝑏) = (𝑁𝑏))
185ad2antrr 726 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (Base‘𝑤) = 𝑉)
1917, 18eqeq12d 2745 . . . . . . . . . 10 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ((𝑛𝑏) = (Base‘𝑤) ↔ (𝑁𝑏) = 𝑉))
20 simpr 484 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
2120fveq2d 6830 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
22 islbs.k . . . . . . . . . . . . . 14 𝐾 = (Base‘𝐹)
2321, 22eqtr4di 2782 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (Base‘𝑓) = 𝐾)
2420fveq2d 6830 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (0g𝑓) = (0g𝐹))
25 islbs.z . . . . . . . . . . . . . . 15 0 = (0g𝐹)
2624, 25eqtr4di 2782 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (0g𝑓) = 0 )
2726sneqd 4591 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → {(0g𝑓)} = { 0 })
2823, 27difeq12d 4080 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ((Base‘𝑓) ∖ {(0g𝑓)}) = (𝐾 ∖ { 0 }))
29 fveq2 6826 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
30 islbs.s . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑊)
3129, 30eqtr4di 2782 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
3231ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ( ·𝑠𝑤) = · )
3332oveqd 7370 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (𝑦( ·𝑠𝑤)𝑥) = (𝑦 · 𝑥))
3416fveq1d 6828 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (𝑛‘(𝑏 ∖ {𝑥})) = (𝑁‘(𝑏 ∖ {𝑥})))
3533, 34eleq12d 2822 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ((𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3635notbid 318 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3728, 36raleqbidv 3310 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3837ralbidv 3152 . . . . . . . . . 10 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3919, 38anbi12d 632 . . . . . . . . 9 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))))
4011, 15, 39sbcied2 3789 . . . . . . . 8 ((𝑤 = 𝑊𝑛 = 𝑁) → ([(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))))
417, 10, 40sbcied2 3789 . . . . . . 7 (𝑤 = 𝑊 → ([(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))))
426, 41rabeqbidv 3415 . . . . . 6 (𝑤 = 𝑊 → {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))} = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
43 df-lbs 20997 . . . . . 6 LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))})
444fvexi 6840 . . . . . . . 8 𝑉 ∈ V
4544pwex 5322 . . . . . . 7 𝒫 𝑉 ∈ V
4645rabex 5281 . . . . . 6 {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))} ∈ V
4742, 43, 46fvmpt 6934 . . . . 5 (𝑊 ∈ V → (LBasis‘𝑊) = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
482, 47eqtrid 2776 . . . 4 (𝑊 ∈ V → 𝐽 = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
491, 48syl 17 . . 3 (𝑊𝑋𝐽 = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
5049eleq2d 2814 . 2 (𝑊𝑋 → (𝐵𝐽𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))}))
5144elpw2 5276 . . . 4 (𝐵 ∈ 𝒫 𝑉𝐵𝑉)
5251anbi1i 624 . . 3 ((𝐵 ∈ 𝒫 𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ↔ (𝐵𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
53 fveqeq2 6835 . . . . 5 (𝑏 = 𝐵 → ((𝑁𝑏) = 𝑉 ↔ (𝑁𝐵) = 𝑉))
54 difeq1 4072 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏 ∖ {𝑥}) = (𝐵 ∖ {𝑥}))
5554fveq2d 6830 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑁‘(𝑏 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝑥})))
5655eleq2d 2814 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
5756notbid 318 . . . . . . 7 (𝑏 = 𝐵 → (¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
5857ralbidv 3152 . . . . . 6 (𝑏 = 𝐵 → (∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
5958raleqbi1dv 3302 . . . . 5 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
6053, 59anbi12d 632 . . . 4 (𝑏 = 𝐵 → (((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
6160elrab 3650 . . 3 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))} ↔ (𝐵 ∈ 𝒫 𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
62 3anass 1094 . . 3 ((𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))) ↔ (𝐵𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
6352, 61, 623bitr4i 303 . 2 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))} ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
6450, 63bitrdi 287 1 (𝑊𝑋 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  [wsbc 3744  cdif 3902  wss 3905  𝒫 cpw 4553  {csn 4579  cfv 6486  (class class class)co 7353  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  LSpanclspn 20892  LBasisclbs 20996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-lbs 20997
This theorem is referenced by:  lbsss  20999  lbssp  21001  lbsind  21002  lbspropd  21021  islbs2  21079  frlmlbs  21722  islbs4  21757
  Copyright terms: Public domain W3C validator