MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs Structured version   Visualization version   GIF version

Theorem islbs 20409
Description: The predicate "𝐵 is a basis for the left module or vector space 𝑊". A subset of the base set is a basis if zero is not in the set, it spans the set, and no nonzero multiple of an element of the basis is in the span of the rest of the family. (Contributed by Mario Carneiro, 24-Jun-2014.) (Revised by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
islbs.v 𝑉 = (Base‘𝑊)
islbs.f 𝐹 = (Scalar‘𝑊)
islbs.s · = ( ·𝑠𝑊)
islbs.k 𝐾 = (Base‘𝐹)
islbs.j 𝐽 = (LBasis‘𝑊)
islbs.n 𝑁 = (LSpan‘𝑊)
islbs.z 0 = (0g𝐹)
Assertion
Ref Expression
islbs (𝑊𝑋 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝐾   𝑥,𝑁,𝑦   𝑥,𝑊,𝑦   𝑥,𝐹,𝑦   𝑦, 0
Allowed substitution hints:   · (𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥)   𝑉(𝑥,𝑦)   𝑋(𝑥,𝑦)   0 (𝑥)

Proof of Theorem islbs
Dummy variables 𝑏 𝑓 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . . . 4 (𝑊𝑋𝑊 ∈ V)
2 islbs.j . . . . 5 𝐽 = (LBasis‘𝑊)
3 fveq2 6809 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 islbs.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2795 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 4560 . . . . . . 7 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
7 fvexd 6824 . . . . . . . 8 (𝑤 = 𝑊 → (LSpan‘𝑤) ∈ V)
8 fveq2 6809 . . . . . . . . 9 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
9 islbs.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
108, 9eqtr4di 2795 . . . . . . . 8 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁)
11 fvexd 6824 . . . . . . . . 9 ((𝑤 = 𝑊𝑛 = 𝑁) → (Scalar‘𝑤) ∈ V)
12 fveq2 6809 . . . . . . . . . . 11 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
1312adantr 481 . . . . . . . . . 10 ((𝑤 = 𝑊𝑛 = 𝑁) → (Scalar‘𝑤) = (Scalar‘𝑊))
14 islbs.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
1513, 14eqtr4di 2795 . . . . . . . . 9 ((𝑤 = 𝑊𝑛 = 𝑁) → (Scalar‘𝑤) = 𝐹)
16 simplr 766 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → 𝑛 = 𝑁)
1716fveq1d 6811 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (𝑛𝑏) = (𝑁𝑏))
185ad2antrr 723 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (Base‘𝑤) = 𝑉)
1917, 18eqeq12d 2753 . . . . . . . . . 10 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ((𝑛𝑏) = (Base‘𝑤) ↔ (𝑁𝑏) = 𝑉))
20 simpr 485 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
2120fveq2d 6813 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
22 islbs.k . . . . . . . . . . . . . 14 𝐾 = (Base‘𝐹)
2321, 22eqtr4di 2795 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (Base‘𝑓) = 𝐾)
2420fveq2d 6813 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (0g𝑓) = (0g𝐹))
25 islbs.z . . . . . . . . . . . . . . 15 0 = (0g𝐹)
2624, 25eqtr4di 2795 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (0g𝑓) = 0 )
2726sneqd 4581 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → {(0g𝑓)} = { 0 })
2823, 27difeq12d 4068 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ((Base‘𝑓) ∖ {(0g𝑓)}) = (𝐾 ∖ { 0 }))
29 fveq2 6809 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
30 islbs.s . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑊)
3129, 30eqtr4di 2795 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
3231ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ( ·𝑠𝑤) = · )
3332oveqd 7330 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (𝑦( ·𝑠𝑤)𝑥) = (𝑦 · 𝑥))
3416fveq1d 6811 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (𝑛‘(𝑏 ∖ {𝑥})) = (𝑁‘(𝑏 ∖ {𝑥})))
3533, 34eleq12d 2832 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → ((𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3635notbid 317 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3728, 36raleqbidv 3316 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (∀𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3837ralbidv 3171 . . . . . . . . . 10 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})) ↔ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))))
3919, 38anbi12d 631 . . . . . . . . 9 (((𝑤 = 𝑊𝑛 = 𝑁) ∧ 𝑓 = 𝐹) → (((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))))
4011, 15, 39sbcied2 3772 . . . . . . . 8 ((𝑤 = 𝑊𝑛 = 𝑁) → ([(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))))
417, 10, 40sbcied2 3772 . . . . . . 7 (𝑤 = 𝑊 → ([(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))))
426, 41rabeqbidv 3419 . . . . . 6 (𝑤 = 𝑊 → {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))} = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
43 df-lbs 20408 . . . . . 6 LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑓]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑓) ∖ {(0g𝑓)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))})
444fvexi 6823 . . . . . . . 8 𝑉 ∈ V
4544pwex 5316 . . . . . . 7 𝒫 𝑉 ∈ V
4645rabex 5269 . . . . . 6 {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))} ∈ V
4742, 43, 46fvmpt 6912 . . . . 5 (𝑊 ∈ V → (LBasis‘𝑊) = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
482, 47eqtrid 2789 . . . 4 (𝑊 ∈ V → 𝐽 = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
491, 48syl 17 . . 3 (𝑊𝑋𝐽 = {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))})
5049eleq2d 2823 . 2 (𝑊𝑋 → (𝐵𝐽𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))}))
5144elpw2 5282 . . . 4 (𝐵 ∈ 𝒫 𝑉𝐵𝑉)
5251anbi1i 624 . . 3 ((𝐵 ∈ 𝒫 𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ↔ (𝐵𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
53 fveqeq2 6818 . . . . 5 (𝑏 = 𝐵 → ((𝑁𝑏) = 𝑉 ↔ (𝑁𝐵) = 𝑉))
54 difeq1 4060 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏 ∖ {𝑥}) = (𝐵 ∖ {𝑥}))
5554fveq2d 6813 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑁‘(𝑏 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝑥})))
5655eleq2d 2823 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
5756notbid 317 . . . . . . 7 (𝑏 = 𝐵 → (¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
5857ralbidv 3171 . . . . . 6 (𝑏 = 𝐵 → (∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
5958raleqbi1dv 3304 . . . . 5 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})) ↔ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
6053, 59anbi12d 631 . . . 4 (𝑏 = 𝐵 → (((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥}))) ↔ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
6160elrab 3633 . . 3 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))} ↔ (𝐵 ∈ 𝒫 𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
62 3anass 1094 . . 3 ((𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))) ↔ (𝐵𝑉 ∧ ((𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
6352, 61, 623bitr4i 302 . 2 (𝐵 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((𝑁𝑏) = 𝑉 ∧ ∀𝑥𝑏𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝑏 ∖ {𝑥})))} ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
6450, 63bitrdi 286 1 (𝑊𝑋 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3062  {crab 3404  Vcvv 3441  [wsbc 3725  cdif 3893  wss 3896  𝒫 cpw 4543  {csn 4569  cfv 6463  (class class class)co 7313  Basecbs 16979  Scalarcsca 17032   ·𝑠 cvsca 17033  0gc0g 17217  LSpanclspn 20304  LBasisclbs 20407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-iota 6415  df-fun 6465  df-fv 6471  df-ov 7316  df-lbs 20408
This theorem is referenced by:  lbsss  20410  lbssp  20412  lbsind  20413  lbspropd  20432  islbs2  20487  frlmlbs  21075  islbs4  21110
  Copyright terms: Public domain W3C validator