MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs Structured version   Visualization version   GIF version

Theorem islbs 20687
Description: The predicate "𝐡 is a basis for the left module or vector space π‘Š". A subset of the base set is a basis if zero is not in the set, it spans the set, and no nonzero multiple of an element of the basis is in the span of the rest of the family. (Contributed by Mario Carneiro, 24-Jun-2014.) (Revised by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
islbs.v 𝑉 = (Baseβ€˜π‘Š)
islbs.f 𝐹 = (Scalarβ€˜π‘Š)
islbs.s Β· = ( ·𝑠 β€˜π‘Š)
islbs.k 𝐾 = (Baseβ€˜πΉ)
islbs.j 𝐽 = (LBasisβ€˜π‘Š)
islbs.n 𝑁 = (LSpanβ€˜π‘Š)
islbs.z 0 = (0gβ€˜πΉ)
Assertion
Ref Expression
islbs (π‘Š ∈ 𝑋 β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
Distinct variable groups:   π‘₯,𝑦,𝐡   𝑦,𝐾   π‘₯,𝑁,𝑦   π‘₯,π‘Š,𝑦   π‘₯,𝐹,𝑦   𝑦, 0
Allowed substitution hints:   Β· (π‘₯,𝑦)   𝐽(π‘₯,𝑦)   𝐾(π‘₯)   𝑉(π‘₯,𝑦)   𝑋(π‘₯,𝑦)   0 (π‘₯)

Proof of Theorem islbs
Dummy variables 𝑏 𝑓 𝑛 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3493 . . . 4 (π‘Š ∈ 𝑋 β†’ π‘Š ∈ V)
2 islbs.j . . . . 5 𝐽 = (LBasisβ€˜π‘Š)
3 fveq2 6892 . . . . . . . . 9 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
4 islbs.v . . . . . . . . 9 𝑉 = (Baseβ€˜π‘Š)
53, 4eqtr4di 2791 . . . . . . . 8 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝑉)
65pweqd 4620 . . . . . . 7 (𝑀 = π‘Š β†’ 𝒫 (Baseβ€˜π‘€) = 𝒫 𝑉)
7 fvexd 6907 . . . . . . . 8 (𝑀 = π‘Š β†’ (LSpanβ€˜π‘€) ∈ V)
8 fveq2 6892 . . . . . . . . 9 (𝑀 = π‘Š β†’ (LSpanβ€˜π‘€) = (LSpanβ€˜π‘Š))
9 islbs.n . . . . . . . . 9 𝑁 = (LSpanβ€˜π‘Š)
108, 9eqtr4di 2791 . . . . . . . 8 (𝑀 = π‘Š β†’ (LSpanβ€˜π‘€) = 𝑁)
11 fvexd 6907 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑛 = 𝑁) β†’ (Scalarβ€˜π‘€) ∈ V)
12 fveq2 6892 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
1312adantr 482 . . . . . . . . . 10 ((𝑀 = π‘Š ∧ 𝑛 = 𝑁) β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
14 islbs.f . . . . . . . . . 10 𝐹 = (Scalarβ€˜π‘Š)
1513, 14eqtr4di 2791 . . . . . . . . 9 ((𝑀 = π‘Š ∧ 𝑛 = 𝑁) β†’ (Scalarβ€˜π‘€) = 𝐹)
16 simplr 768 . . . . . . . . . . . 12 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ 𝑛 = 𝑁)
1716fveq1d 6894 . . . . . . . . . . 11 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ (π‘›β€˜π‘) = (π‘β€˜π‘))
185ad2antrr 725 . . . . . . . . . . 11 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ (Baseβ€˜π‘€) = 𝑉)
1917, 18eqeq12d 2749 . . . . . . . . . 10 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ ((π‘›β€˜π‘) = (Baseβ€˜π‘€) ↔ (π‘β€˜π‘) = 𝑉))
20 simpr 486 . . . . . . . . . . . . . . 15 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ 𝑓 = 𝐹)
2120fveq2d 6896 . . . . . . . . . . . . . 14 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ (Baseβ€˜π‘“) = (Baseβ€˜πΉ))
22 islbs.k . . . . . . . . . . . . . 14 𝐾 = (Baseβ€˜πΉ)
2321, 22eqtr4di 2791 . . . . . . . . . . . . 13 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ (Baseβ€˜π‘“) = 𝐾)
2420fveq2d 6896 . . . . . . . . . . . . . . 15 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ (0gβ€˜π‘“) = (0gβ€˜πΉ))
25 islbs.z . . . . . . . . . . . . . . 15 0 = (0gβ€˜πΉ)
2624, 25eqtr4di 2791 . . . . . . . . . . . . . 14 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ (0gβ€˜π‘“) = 0 )
2726sneqd 4641 . . . . . . . . . . . . 13 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ {(0gβ€˜π‘“)} = { 0 })
2823, 27difeq12d 4124 . . . . . . . . . . . 12 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ ((Baseβ€˜π‘“) βˆ– {(0gβ€˜π‘“)}) = (𝐾 βˆ– { 0 }))
29 fveq2 6892 . . . . . . . . . . . . . . . . 17 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘Š))
30 islbs.s . . . . . . . . . . . . . . . . 17 Β· = ( ·𝑠 β€˜π‘Š)
3129, 30eqtr4di 2791 . . . . . . . . . . . . . . . 16 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜π‘€) = Β· )
3231ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ ( ·𝑠 β€˜π‘€) = Β· )
3332oveqd 7426 . . . . . . . . . . . . . 14 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ (𝑦( ·𝑠 β€˜π‘€)π‘₯) = (𝑦 Β· π‘₯))
3416fveq1d 6894 . . . . . . . . . . . . . 14 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ (π‘›β€˜(𝑏 βˆ– {π‘₯})) = (π‘β€˜(𝑏 βˆ– {π‘₯})))
3533, 34eleq12d 2828 . . . . . . . . . . . . 13 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ ((𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})) ↔ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯}))))
3635notbid 318 . . . . . . . . . . . 12 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ (Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})) ↔ Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯}))))
3728, 36raleqbidv 3343 . . . . . . . . . . 11 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ (βˆ€π‘¦ ∈ ((Baseβ€˜π‘“) βˆ– {(0gβ€˜π‘“)}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})) ↔ βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯}))))
3837ralbidv 3178 . . . . . . . . . 10 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘“) βˆ– {(0gβ€˜π‘“)}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})) ↔ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯}))))
3919, 38anbi12d 632 . . . . . . . . 9 (((𝑀 = π‘Š ∧ 𝑛 = 𝑁) ∧ 𝑓 = 𝐹) β†’ (((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘“) βˆ– {(0gβ€˜π‘“)}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯}))) ↔ ((π‘β€˜π‘) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})))))
4011, 15, 39sbcied2 3825 . . . . . . . 8 ((𝑀 = π‘Š ∧ 𝑛 = 𝑁) β†’ ([(Scalarβ€˜π‘€) / 𝑓]((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘“) βˆ– {(0gβ€˜π‘“)}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯}))) ↔ ((π‘β€˜π‘) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})))))
417, 10, 40sbcied2 3825 . . . . . . 7 (𝑀 = π‘Š β†’ ([(LSpanβ€˜π‘€) / 𝑛][(Scalarβ€˜π‘€) / 𝑓]((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘“) βˆ– {(0gβ€˜π‘“)}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯}))) ↔ ((π‘β€˜π‘) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})))))
426, 41rabeqbidv 3450 . . . . . 6 (𝑀 = π‘Š β†’ {𝑏 ∈ 𝒫 (Baseβ€˜π‘€) ∣ [(LSpanβ€˜π‘€) / 𝑛][(Scalarβ€˜π‘€) / 𝑓]((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘“) βˆ– {(0gβ€˜π‘“)}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})))} = {𝑏 ∈ 𝒫 𝑉 ∣ ((π‘β€˜π‘) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})))})
43 df-lbs 20686 . . . . . 6 LBasis = (𝑀 ∈ V ↦ {𝑏 ∈ 𝒫 (Baseβ€˜π‘€) ∣ [(LSpanβ€˜π‘€) / 𝑛][(Scalarβ€˜π‘€) / 𝑓]((π‘›β€˜π‘) = (Baseβ€˜π‘€) ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ ((Baseβ€˜π‘“) βˆ– {(0gβ€˜π‘“)}) Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) ∈ (π‘›β€˜(𝑏 βˆ– {π‘₯})))})
444fvexi 6906 . . . . . . . 8 𝑉 ∈ V
4544pwex 5379 . . . . . . 7 𝒫 𝑉 ∈ V
4645rabex 5333 . . . . . 6 {𝑏 ∈ 𝒫 𝑉 ∣ ((π‘β€˜π‘) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})))} ∈ V
4742, 43, 46fvmpt 6999 . . . . 5 (π‘Š ∈ V β†’ (LBasisβ€˜π‘Š) = {𝑏 ∈ 𝒫 𝑉 ∣ ((π‘β€˜π‘) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})))})
482, 47eqtrid 2785 . . . 4 (π‘Š ∈ V β†’ 𝐽 = {𝑏 ∈ 𝒫 𝑉 ∣ ((π‘β€˜π‘) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})))})
491, 48syl 17 . . 3 (π‘Š ∈ 𝑋 β†’ 𝐽 = {𝑏 ∈ 𝒫 𝑉 ∣ ((π‘β€˜π‘) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})))})
5049eleq2d 2820 . 2 (π‘Š ∈ 𝑋 β†’ (𝐡 ∈ 𝐽 ↔ 𝐡 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((π‘β€˜π‘) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})))}))
5144elpw2 5346 . . . 4 (𝐡 ∈ 𝒫 𝑉 ↔ 𝐡 βŠ† 𝑉)
5251anbi1i 625 . . 3 ((𝐡 ∈ 𝒫 𝑉 ∧ ((π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ↔ (𝐡 βŠ† 𝑉 ∧ ((π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
53 fveqeq2 6901 . . . . 5 (𝑏 = 𝐡 β†’ ((π‘β€˜π‘) = 𝑉 ↔ (π‘β€˜π΅) = 𝑉))
54 difeq1 4116 . . . . . . . . . 10 (𝑏 = 𝐡 β†’ (𝑏 βˆ– {π‘₯}) = (𝐡 βˆ– {π‘₯}))
5554fveq2d 6896 . . . . . . . . 9 (𝑏 = 𝐡 β†’ (π‘β€˜(𝑏 βˆ– {π‘₯})) = (π‘β€˜(𝐡 βˆ– {π‘₯})))
5655eleq2d 2820 . . . . . . . 8 (𝑏 = 𝐡 β†’ ((𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})) ↔ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯}))))
5756notbid 318 . . . . . . 7 (𝑏 = 𝐡 β†’ (Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})) ↔ Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯}))))
5857ralbidv 3178 . . . . . 6 (𝑏 = 𝐡 β†’ (βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})) ↔ βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯}))))
5958raleqbi1dv 3334 . . . . 5 (𝑏 = 𝐡 β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯}))))
6053, 59anbi12d 632 . . . 4 (𝑏 = 𝐡 β†’ (((π‘β€˜π‘) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯}))) ↔ ((π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
6160elrab 3684 . . 3 (𝐡 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((π‘β€˜π‘) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})))} ↔ (𝐡 ∈ 𝒫 𝑉 ∧ ((π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
62 3anass 1096 . . 3 ((𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯}))) ↔ (𝐡 βŠ† 𝑉 ∧ ((π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
6352, 61, 623bitr4i 303 . 2 (𝐡 ∈ {𝑏 ∈ 𝒫 𝑉 ∣ ((π‘β€˜π‘) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝑏 βˆ– {π‘₯})))} ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯}))))
6450, 63bitrdi 287 1 (π‘Š ∈ 𝑋 β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433  Vcvv 3475  [wsbc 3778   βˆ– cdif 3946   βŠ† wss 3949  π’« cpw 4603  {csn 4629  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  Scalarcsca 17200   ·𝑠 cvsca 17201  0gc0g 17385  LSpanclspn 20582  LBasisclbs 20685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-lbs 20686
This theorem is referenced by:  lbsss  20688  lbssp  20690  lbsind  20691  lbspropd  20710  islbs2  20767  frlmlbs  21352  islbs4  21387
  Copyright terms: Public domain W3C validator