Detailed syntax breakdown of Definition df-lcdual
Step | Hyp | Ref
| Expression |
1 | | clcd 39607 |
. 2
class
LCDual |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 38005 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6437 |
. . . 4
class
(LHyp‘𝑘) |
8 | 4 | cv 1538 |
. . . . . . 7
class 𝑤 |
9 | | cdvh 39099 |
. . . . . . . 8
class
DVecH |
10 | 5, 9 | cfv 6437 |
. . . . . . 7
class
(DVecH‘𝑘) |
11 | 8, 10 | cfv 6437 |
. . . . . 6
class
((DVecH‘𝑘)‘𝑤) |
12 | | cld 37144 |
. . . . . 6
class
LDual |
13 | 11, 12 | cfv 6437 |
. . . . 5
class
(LDual‘((DVecH‘𝑘)‘𝑤)) |
14 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
15 | 14 | cv 1538 |
. . . . . . . . . 10
class 𝑓 |
16 | | clk 37106 |
. . . . . . . . . . 11
class
LKer |
17 | 11, 16 | cfv 6437 |
. . . . . . . . . 10
class
(LKer‘((DVecH‘𝑘)‘𝑤)) |
18 | 15, 17 | cfv 6437 |
. . . . . . . . 9
class
((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) |
19 | | coch 39368 |
. . . . . . . . . . 11
class
ocH |
20 | 5, 19 | cfv 6437 |
. . . . . . . . . 10
class
(ocH‘𝑘) |
21 | 8, 20 | cfv 6437 |
. . . . . . . . 9
class
((ocH‘𝑘)‘𝑤) |
22 | 18, 21 | cfv 6437 |
. . . . . . . 8
class
(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) |
23 | 22, 21 | cfv 6437 |
. . . . . . 7
class
(((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) |
24 | 23, 18 | wceq 1539 |
. . . . . 6
wff
(((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) |
25 | | clfn 37078 |
. . . . . . 7
class
LFnl |
26 | 11, 25 | cfv 6437 |
. . . . . 6
class
(LFnl‘((DVecH‘𝑘)‘𝑤)) |
27 | 24, 14, 26 | crab 3069 |
. . . . 5
class {𝑓 ∈
(LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)} |
28 | | cress 16950 |
. . . . 5
class
↾s |
29 | 13, 27, 28 | co 7284 |
. . . 4
class
((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)}) |
30 | 4, 7, 29 | cmpt 5158 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦
((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)})) |
31 | 2, 3, 30 | cmpt 5158 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)}))) |
32 | 1, 31 | wceq 1539 |
1
wff LCDual =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)}))) |