Detailed syntax breakdown of Definition df-lcdual
| Step | Hyp | Ref
| Expression |
| 1 | | clcd 41588 |
. 2
class
LCDual |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vw |
. . . 4
setvar 𝑤 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑘 |
| 6 | | clh 39986 |
. . . . 5
class
LHyp |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(LHyp‘𝑘) |
| 8 | 4 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 9 | | cdvh 41080 |
. . . . . . . 8
class
DVecH |
| 10 | 5, 9 | cfv 6561 |
. . . . . . 7
class
(DVecH‘𝑘) |
| 11 | 8, 10 | cfv 6561 |
. . . . . 6
class
((DVecH‘𝑘)‘𝑤) |
| 12 | | cld 39124 |
. . . . . 6
class
LDual |
| 13 | 11, 12 | cfv 6561 |
. . . . 5
class
(LDual‘((DVecH‘𝑘)‘𝑤)) |
| 14 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
| 15 | 14 | cv 1539 |
. . . . . . . . . 10
class 𝑓 |
| 16 | | clk 39086 |
. . . . . . . . . . 11
class
LKer |
| 17 | 11, 16 | cfv 6561 |
. . . . . . . . . 10
class
(LKer‘((DVecH‘𝑘)‘𝑤)) |
| 18 | 15, 17 | cfv 6561 |
. . . . . . . . 9
class
((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) |
| 19 | | coch 41349 |
. . . . . . . . . . 11
class
ocH |
| 20 | 5, 19 | cfv 6561 |
. . . . . . . . . 10
class
(ocH‘𝑘) |
| 21 | 8, 20 | cfv 6561 |
. . . . . . . . 9
class
((ocH‘𝑘)‘𝑤) |
| 22 | 18, 21 | cfv 6561 |
. . . . . . . 8
class
(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) |
| 23 | 22, 21 | cfv 6561 |
. . . . . . 7
class
(((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) |
| 24 | 23, 18 | wceq 1540 |
. . . . . 6
wff
(((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) |
| 25 | | clfn 39058 |
. . . . . . 7
class
LFnl |
| 26 | 11, 25 | cfv 6561 |
. . . . . 6
class
(LFnl‘((DVecH‘𝑘)‘𝑤)) |
| 27 | 24, 14, 26 | crab 3436 |
. . . . 5
class {𝑓 ∈
(LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)} |
| 28 | | cress 17274 |
. . . . 5
class
↾s |
| 29 | 13, 27, 28 | co 7431 |
. . . 4
class
((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)}) |
| 30 | 4, 7, 29 | cmpt 5225 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦
((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)})) |
| 31 | 2, 3, 30 | cmpt 5225 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)}))) |
| 32 | 1, 31 | wceq 1540 |
1
wff LCDual =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)}))) |