Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdfval Structured version   Visualization version   GIF version

Theorem lcdfval 40762
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypothesis
Ref Expression
lcdval.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
lcdfval (𝐾 ∈ 𝑋 β†’ (LCDualβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ ((LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)})))
Distinct variable groups:   𝑀,𝐻   𝑀,𝑓,𝐾
Allowed substitution hints:   𝐻(𝑓)   𝑋(𝑀,𝑓)

Proof of Theorem lcdfval
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝑋 β†’ 𝐾 ∈ V)
2 fveq2 6891 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 lcdval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2790 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6891 . . . . . . 7 (π‘˜ = 𝐾 β†’ (DVecHβ€˜π‘˜) = (DVecHβ€˜πΎ))
65fveq1d 6893 . . . . . 6 (π‘˜ = 𝐾 β†’ ((DVecHβ€˜π‘˜)β€˜π‘€) = ((DVecHβ€˜πΎ)β€˜π‘€))
76fveq2d 6895 . . . . 5 (π‘˜ = 𝐾 β†’ (LDualβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) = (LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))
86fveq2d 6895 . . . . . 6 (π‘˜ = 𝐾 β†’ (LFnlβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) = (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))
9 fveq2 6891 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (ocHβ€˜π‘˜) = (ocHβ€˜πΎ))
109fveq1d 6893 . . . . . . . 8 (π‘˜ = 𝐾 β†’ ((ocHβ€˜π‘˜)β€˜π‘€) = ((ocHβ€˜πΎ)β€˜π‘€))
116fveq2d 6895 . . . . . . . . . 10 (π‘˜ = 𝐾 β†’ (LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) = (LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€)))
1211fveq1d 6893 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ ((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))
1310, 12fveq12d 6898 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“)) = (((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)))
1410, 13fveq12d 6898 . . . . . . 7 (π‘˜ = 𝐾 β†’ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜(((ocHβ€˜π‘˜)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“))) = (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))))
1514, 12eqeq12d 2748 . . . . . 6 (π‘˜ = 𝐾 β†’ ((((ocHβ€˜π‘˜)β€˜π‘€)β€˜(((ocHβ€˜π‘˜)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“) ↔ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)))
168, 15rabeqbidv 3449 . . . . 5 (π‘˜ = 𝐾 β†’ {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ∣ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜(((ocHβ€˜π‘˜)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“)} = {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)})
177, 16oveq12d 7429 . . . 4 (π‘˜ = 𝐾 β†’ ((LDualβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ∣ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜(((ocHβ€˜π‘˜)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“)}) = ((LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)}))
184, 17mpteq12dv 5239 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ ((LDualβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ∣ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜(((ocHβ€˜π‘˜)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“)})) = (𝑀 ∈ 𝐻 ↦ ((LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)})))
19 df-lcdual 40761 . . 3 LCDual = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ ((LDualβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜π‘˜)β€˜π‘€)) ∣ (((ocHβ€˜π‘˜)β€˜π‘€)β€˜(((ocHβ€˜π‘˜)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜π‘˜)β€˜π‘€))β€˜π‘“)})))
2018, 19, 3mptfvmpt 7232 . 2 (𝐾 ∈ V β†’ (LCDualβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ ((LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)})))
211, 20syl 17 1 (𝐾 ∈ 𝑋 β†’ (LCDualβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ ((LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   ↦ cmpt 5231  β€˜cfv 6543  (class class class)co 7411   β†Ύs cress 17177  LFnlclfn 38230  LKerclk 38258  LDualcld 38296  LHypclh 39158  DVecHcdvh 40252  ocHcoch 40521  LCDualclcd 40760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-lcdual 40761
This theorem is referenced by:  lcdval  40763
  Copyright terms: Public domain W3C validator