Step | Hyp | Ref
| Expression |
1 | | elex 3492 |
. 2
β’ (πΎ β π β πΎ β V) |
2 | | fveq2 6891 |
. . . . 5
β’ (π = πΎ β (LHypβπ) = (LHypβπΎ)) |
3 | | lcdval.h |
. . . . 5
β’ π» = (LHypβπΎ) |
4 | 2, 3 | eqtr4di 2790 |
. . . 4
β’ (π = πΎ β (LHypβπ) = π») |
5 | | fveq2 6891 |
. . . . . . 7
β’ (π = πΎ β (DVecHβπ) = (DVecHβπΎ)) |
6 | 5 | fveq1d 6893 |
. . . . . 6
β’ (π = πΎ β ((DVecHβπ)βπ€) = ((DVecHβπΎ)βπ€)) |
7 | 6 | fveq2d 6895 |
. . . . 5
β’ (π = πΎ β (LDualβ((DVecHβπ)βπ€)) = (LDualβ((DVecHβπΎ)βπ€))) |
8 | 6 | fveq2d 6895 |
. . . . . 6
β’ (π = πΎ β (LFnlβ((DVecHβπ)βπ€)) = (LFnlβ((DVecHβπΎ)βπ€))) |
9 | | fveq2 6891 |
. . . . . . . . 9
β’ (π = πΎ β (ocHβπ) = (ocHβπΎ)) |
10 | 9 | fveq1d 6893 |
. . . . . . . 8
β’ (π = πΎ β ((ocHβπ)βπ€) = ((ocHβπΎ)βπ€)) |
11 | 6 | fveq2d 6895 |
. . . . . . . . . 10
β’ (π = πΎ β (LKerβ((DVecHβπ)βπ€)) = (LKerβ((DVecHβπΎ)βπ€))) |
12 | 11 | fveq1d 6893 |
. . . . . . . . 9
β’ (π = πΎ β ((LKerβ((DVecHβπ)βπ€))βπ) = ((LKerβ((DVecHβπΎ)βπ€))βπ)) |
13 | 10, 12 | fveq12d 6898 |
. . . . . . . 8
β’ (π = πΎ β (((ocHβπ)βπ€)β((LKerβ((DVecHβπ)βπ€))βπ)) = (((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) |
14 | 10, 13 | fveq12d 6898 |
. . . . . . 7
β’ (π = πΎ β (((ocHβπ)βπ€)β(((ocHβπ)βπ€)β((LKerβ((DVecHβπ)βπ€))βπ))) = (((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ)))) |
15 | 14, 12 | eqeq12d 2748 |
. . . . . 6
β’ (π = πΎ β ((((ocHβπ)βπ€)β(((ocHβπ)βπ€)β((LKerβ((DVecHβπ)βπ€))βπ))) = ((LKerβ((DVecHβπ)βπ€))βπ) β (((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ))) |
16 | 8, 15 | rabeqbidv 3449 |
. . . . 5
β’ (π = πΎ β {π β (LFnlβ((DVecHβπ)βπ€)) β£ (((ocHβπ)βπ€)β(((ocHβπ)βπ€)β((LKerβ((DVecHβπ)βπ€))βπ))) = ((LKerβ((DVecHβπ)βπ€))βπ)} = {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ (((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ)}) |
17 | 7, 16 | oveq12d 7429 |
. . . 4
β’ (π = πΎ β ((LDualβ((DVecHβπ)βπ€)) βΎs {π β (LFnlβ((DVecHβπ)βπ€)) β£ (((ocHβπ)βπ€)β(((ocHβπ)βπ€)β((LKerβ((DVecHβπ)βπ€))βπ))) = ((LKerβ((DVecHβπ)βπ€))βπ)}) = ((LDualβ((DVecHβπΎ)βπ€)) βΎs {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ (((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ)})) |
18 | 4, 17 | mpteq12dv 5239 |
. . 3
β’ (π = πΎ β (π€ β (LHypβπ) β¦ ((LDualβ((DVecHβπ)βπ€)) βΎs {π β (LFnlβ((DVecHβπ)βπ€)) β£ (((ocHβπ)βπ€)β(((ocHβπ)βπ€)β((LKerβ((DVecHβπ)βπ€))βπ))) = ((LKerβ((DVecHβπ)βπ€))βπ)})) = (π€ β π» β¦ ((LDualβ((DVecHβπΎ)βπ€)) βΎs {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ (((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ)}))) |
19 | | df-lcdual 40761 |
. . 3
β’ LCDual =
(π β V β¦ (π€ β (LHypβπ) β¦
((LDualβ((DVecHβπ)βπ€)) βΎs {π β (LFnlβ((DVecHβπ)βπ€)) β£ (((ocHβπ)βπ€)β(((ocHβπ)βπ€)β((LKerβ((DVecHβπ)βπ€))βπ))) = ((LKerβ((DVecHβπ)βπ€))βπ)}))) |
20 | 18, 19, 3 | mptfvmpt 7232 |
. 2
β’ (πΎ β V β
(LCDualβπΎ) = (π€ β π» β¦ ((LDualβ((DVecHβπΎ)βπ€)) βΎs {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ (((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ)}))) |
21 | 1, 20 | syl 17 |
1
β’ (πΎ β π β (LCDualβπΎ) = (π€ β π» β¦ ((LDualβ((DVecHβπΎ)βπ€)) βΎs {π β (LFnlβ((DVecHβπΎ)βπ€)) β£ (((ocHβπΎ)βπ€)β(((ocHβπΎ)βπ€)β((LKerβ((DVecHβπΎ)βπ€))βπ))) = ((LKerβ((DVecHβπΎ)βπ€))βπ)}))) |