Detailed syntax breakdown of Definition df-lcm
Step | Hyp | Ref
| Expression |
1 | | clcm 15985 |
. 2
class
lcm |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | cz 12021 |
. . 3
class
ℤ |
5 | 2 | cv 1538 |
. . . . . 6
class 𝑥 |
6 | | cc0 10576 |
. . . . . 6
class
0 |
7 | 5, 6 | wceq 1539 |
. . . . 5
wff 𝑥 = 0 |
8 | 3 | cv 1538 |
. . . . . 6
class 𝑦 |
9 | 8, 6 | wceq 1539 |
. . . . 5
wff 𝑦 = 0 |
10 | 7, 9 | wo 845 |
. . . 4
wff (𝑥 = 0 ∨ 𝑦 = 0) |
11 | | vn |
. . . . . . . . 9
setvar 𝑛 |
12 | 11 | cv 1538 |
. . . . . . . 8
class 𝑛 |
13 | | cdvds 15656 |
. . . . . . . 8
class
∥ |
14 | 5, 12, 13 | wbr 5033 |
. . . . . . 7
wff 𝑥 ∥ 𝑛 |
15 | 8, 12, 13 | wbr 5033 |
. . . . . . 7
wff 𝑦 ∥ 𝑛 |
16 | 14, 15 | wa 400 |
. . . . . 6
wff (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛) |
17 | | cn 11675 |
. . . . . 6
class
ℕ |
18 | 16, 11, 17 | crab 3075 |
. . . . 5
class {𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)} |
19 | | cr 10575 |
. . . . 5
class
ℝ |
20 | | clt 10714 |
. . . . 5
class
< |
21 | 18, 19, 20 | cinf 8939 |
. . . 4
class
inf({𝑛 ∈
ℕ ∣ (𝑥 ∥
𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ) |
22 | 10, 6, 21 | cif 4421 |
. . 3
class if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) |
23 | 2, 3, 4, 4, 22 | cmpo 7153 |
. 2
class (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦
if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) |
24 | 1, 23 | wceq 1539 |
1
wff lcm =
(𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦
if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) |