![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-lcm | Structured version Visualization version GIF version |
Description: Example for df-lcm 16534. (Contributed by AV, 5-Sep-2021.) |
Ref | Expression |
---|---|
ex-lcm | ⊢ (6 lcm 9) = ;18 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 12308 | . . . . 5 ⊢ 6 ∈ ℕ | |
2 | 9nn 12317 | . . . . 5 ⊢ 9 ∈ ℕ | |
3 | 1, 2 | nnmulcli 12244 | . . . 4 ⊢ (6 · 9) ∈ ℕ |
4 | 3 | nncni 12229 | . . 3 ⊢ (6 · 9) ∈ ℂ |
5 | 1 | nnzi 12593 | . . . . 5 ⊢ 6 ∈ ℤ |
6 | 2 | nnzi 12593 | . . . . 5 ⊢ 9 ∈ ℤ |
7 | 5, 6 | pm3.2i 470 | . . . 4 ⊢ (6 ∈ ℤ ∧ 9 ∈ ℤ) |
8 | lcmcl 16545 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℕ0) | |
9 | 8 | nn0cnd 12541 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℂ) |
10 | 7, 9 | ax-mp 5 | . . 3 ⊢ (6 lcm 9) ∈ ℂ |
11 | neggcd 16471 | . . . . . . . 8 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
12 | 7, 11 | ax-mp 5 | . . . . . . 7 ⊢ (-6 gcd 9) = (6 gcd 9) |
13 | 12 | eqcomi 2740 | . . . . . 6 ⊢ (6 gcd 9) = (-6 gcd 9) |
14 | ex-gcd 30143 | . . . . . 6 ⊢ (-6 gcd 9) = 3 | |
15 | 13, 14 | eqtri 2759 | . . . . 5 ⊢ (6 gcd 9) = 3 |
16 | 3cn 12300 | . . . . 5 ⊢ 3 ∈ ℂ | |
17 | 15, 16 | eqeltri 2828 | . . . 4 ⊢ (6 gcd 9) ∈ ℂ |
18 | 3ne0 12325 | . . . . 5 ⊢ 3 ≠ 0 | |
19 | 15, 18 | eqnetri 3010 | . . . 4 ⊢ (6 gcd 9) ≠ 0 |
20 | 17, 19 | pm3.2i 470 | . . 3 ⊢ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0) |
21 | 1, 2 | pm3.2i 470 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 9 ∈ ℕ) |
22 | lcmgcdnn 16555 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 9 ∈ ℕ) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9)) | |
23 | 21, 22 | mp1i 13 | . . . . . 6 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9)) |
24 | 23 | eqcomd 2737 | . . . . 5 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 · 9) = ((6 lcm 9) · (6 gcd 9))) |
25 | divmul3 11884 | . . . . 5 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (((6 · 9) / (6 gcd 9)) = (6 lcm 9) ↔ (6 · 9) = ((6 lcm 9) · (6 gcd 9)))) | |
26 | 24, 25 | mpbird 257 | . . . 4 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 · 9) / (6 gcd 9)) = (6 lcm 9)) |
27 | 26 | eqcomd 2737 | . . 3 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 lcm 9) = ((6 · 9) / (6 gcd 9))) |
28 | 4, 10, 20, 27 | mp3an 1460 | . 2 ⊢ (6 lcm 9) = ((6 · 9) / (6 gcd 9)) |
29 | 15 | oveq2i 7423 | . 2 ⊢ ((6 · 9) / (6 gcd 9)) = ((6 · 9) / 3) |
30 | 6cn 12310 | . . . 4 ⊢ 6 ∈ ℂ | |
31 | 9cn 12319 | . . . 4 ⊢ 9 ∈ ℂ | |
32 | 30, 31, 16, 18 | divassi 11977 | . . 3 ⊢ ((6 · 9) / 3) = (6 · (9 / 3)) |
33 | 3t3e9 12386 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
34 | 33 | eqcomi 2740 | . . . . . 6 ⊢ 9 = (3 · 3) |
35 | 34 | oveq1i 7422 | . . . . 5 ⊢ (9 / 3) = ((3 · 3) / 3) |
36 | 16, 16, 18 | divcan3i 11967 | . . . . 5 ⊢ ((3 · 3) / 3) = 3 |
37 | 35, 36 | eqtri 2759 | . . . 4 ⊢ (9 / 3) = 3 |
38 | 37 | oveq2i 7423 | . . 3 ⊢ (6 · (9 / 3)) = (6 · 3) |
39 | 6t3e18 12789 | . . 3 ⊢ (6 · 3) = ;18 | |
40 | 32, 38, 39 | 3eqtri 2763 | . 2 ⊢ ((6 · 9) / 3) = ;18 |
41 | 28, 29, 40 | 3eqtri 2763 | 1 ⊢ (6 lcm 9) = ;18 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 (class class class)co 7412 ℂcc 11114 0cc0 11116 1c1 11117 · cmul 11121 -cneg 11452 / cdiv 11878 ℕcn 12219 3c3 12275 6c6 12278 8c8 12280 9c9 12281 ℤcz 12565 ;cdc 12684 gcd cgcd 16442 lcm clcm 16532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-rp 12982 df-fl 13764 df-mod 13842 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-dvds 16205 df-gcd 16443 df-lcm 16534 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |