MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-lcm Structured version   Visualization version   GIF version

Theorem ex-lcm 30387
Description: Example for df-lcm 16560. (Contributed by AV, 5-Sep-2021.)
Assertion
Ref Expression
ex-lcm (6 lcm 9) = 18

Proof of Theorem ex-lcm
StepHypRef Expression
1 6nn 12275 . . . . 5 6 ∈ ℕ
2 9nn 12284 . . . . 5 9 ∈ ℕ
31, 2nnmulcli 12211 . . . 4 (6 · 9) ∈ ℕ
43nncni 12196 . . 3 (6 · 9) ∈ ℂ
51nnzi 12557 . . . . 5 6 ∈ ℤ
62nnzi 12557 . . . . 5 9 ∈ ℤ
75, 6pm3.2i 470 . . . 4 (6 ∈ ℤ ∧ 9 ∈ ℤ)
8 lcmcl 16571 . . . . 5 ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℕ0)
98nn0cnd 12505 . . . 4 ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℂ)
107, 9ax-mp 5 . . 3 (6 lcm 9) ∈ ℂ
11 neggcd 16493 . . . . . . . 8 ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9))
127, 11ax-mp 5 . . . . . . 7 (-6 gcd 9) = (6 gcd 9)
1312eqcomi 2738 . . . . . 6 (6 gcd 9) = (-6 gcd 9)
14 ex-gcd 30386 . . . . . 6 (-6 gcd 9) = 3
1513, 14eqtri 2752 . . . . 5 (6 gcd 9) = 3
16 3cn 12267 . . . . 5 3 ∈ ℂ
1715, 16eqeltri 2824 . . . 4 (6 gcd 9) ∈ ℂ
18 3ne0 12292 . . . . 5 3 ≠ 0
1915, 18eqnetri 2995 . . . 4 (6 gcd 9) ≠ 0
2017, 19pm3.2i 470 . . 3 ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)
211, 2pm3.2i 470 . . . . . . 7 (6 ∈ ℕ ∧ 9 ∈ ℕ)
22 lcmgcdnn 16581 . . . . . . 7 ((6 ∈ ℕ ∧ 9 ∈ ℕ) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9))
2321, 22mp1i 13 . . . . . 6 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9))
2423eqcomd 2735 . . . . 5 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 · 9) = ((6 lcm 9) · (6 gcd 9)))
25 divmul3 11842 . . . . 5 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (((6 · 9) / (6 gcd 9)) = (6 lcm 9) ↔ (6 · 9) = ((6 lcm 9) · (6 gcd 9))))
2624, 25mpbird 257 . . . 4 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 · 9) / (6 gcd 9)) = (6 lcm 9))
2726eqcomd 2735 . . 3 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 lcm 9) = ((6 · 9) / (6 gcd 9)))
284, 10, 20, 27mp3an 1463 . 2 (6 lcm 9) = ((6 · 9) / (6 gcd 9))
2915oveq2i 7398 . 2 ((6 · 9) / (6 gcd 9)) = ((6 · 9) / 3)
30 6cn 12277 . . . 4 6 ∈ ℂ
31 9cn 12286 . . . 4 9 ∈ ℂ
3230, 31, 16, 18divassi 11938 . . 3 ((6 · 9) / 3) = (6 · (9 / 3))
33 3t3e9 12348 . . . . . . 7 (3 · 3) = 9
3433eqcomi 2738 . . . . . 6 9 = (3 · 3)
3534oveq1i 7397 . . . . 5 (9 / 3) = ((3 · 3) / 3)
3616, 16, 18divcan3i 11928 . . . . 5 ((3 · 3) / 3) = 3
3735, 36eqtri 2752 . . . 4 (9 / 3) = 3
3837oveq2i 7398 . . 3 (6 · (9 / 3)) = (6 · 3)
39 6t3e18 12754 . . 3 (6 · 3) = 18
4032, 38, 393eqtri 2756 . 2 ((6 · 9) / 3) = 18
4128, 29, 403eqtri 2756 1 (6 lcm 9) = 18
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   · cmul 11073  -cneg 11406   / cdiv 11835  cn 12186  3c3 12242  6c6 12245  8c8 12247  9c9 12248  cz 12529  cdc 12649   gcd cgcd 16464   lcm clcm 16558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-lcm 16560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator