MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-lcm Structured version   Visualization version   GIF version

Theorem ex-lcm 30490
Description: Example for df-lcm 16637. (Contributed by AV, 5-Sep-2021.)
Assertion
Ref Expression
ex-lcm (6 lcm 9) = 18

Proof of Theorem ex-lcm
StepHypRef Expression
1 6nn 12382 . . . . 5 6 ∈ ℕ
2 9nn 12391 . . . . 5 9 ∈ ℕ
31, 2nnmulcli 12318 . . . 4 (6 · 9) ∈ ℕ
43nncni 12303 . . 3 (6 · 9) ∈ ℂ
51nnzi 12667 . . . . 5 6 ∈ ℤ
62nnzi 12667 . . . . 5 9 ∈ ℤ
75, 6pm3.2i 470 . . . 4 (6 ∈ ℤ ∧ 9 ∈ ℤ)
8 lcmcl 16648 . . . . 5 ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℕ0)
98nn0cnd 12615 . . . 4 ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℂ)
107, 9ax-mp 5 . . 3 (6 lcm 9) ∈ ℂ
11 neggcd 16569 . . . . . . . 8 ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9))
127, 11ax-mp 5 . . . . . . 7 (-6 gcd 9) = (6 gcd 9)
1312eqcomi 2749 . . . . . 6 (6 gcd 9) = (-6 gcd 9)
14 ex-gcd 30489 . . . . . 6 (-6 gcd 9) = 3
1513, 14eqtri 2768 . . . . 5 (6 gcd 9) = 3
16 3cn 12374 . . . . 5 3 ∈ ℂ
1715, 16eqeltri 2840 . . . 4 (6 gcd 9) ∈ ℂ
18 3ne0 12399 . . . . 5 3 ≠ 0
1915, 18eqnetri 3017 . . . 4 (6 gcd 9) ≠ 0
2017, 19pm3.2i 470 . . 3 ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)
211, 2pm3.2i 470 . . . . . . 7 (6 ∈ ℕ ∧ 9 ∈ ℕ)
22 lcmgcdnn 16658 . . . . . . 7 ((6 ∈ ℕ ∧ 9 ∈ ℕ) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9))
2321, 22mp1i 13 . . . . . 6 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9))
2423eqcomd 2746 . . . . 5 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 · 9) = ((6 lcm 9) · (6 gcd 9)))
25 divmul3 11954 . . . . 5 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (((6 · 9) / (6 gcd 9)) = (6 lcm 9) ↔ (6 · 9) = ((6 lcm 9) · (6 gcd 9))))
2624, 25mpbird 257 . . . 4 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 · 9) / (6 gcd 9)) = (6 lcm 9))
2726eqcomd 2746 . . 3 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 lcm 9) = ((6 · 9) / (6 gcd 9)))
284, 10, 20, 27mp3an 1461 . 2 (6 lcm 9) = ((6 · 9) / (6 gcd 9))
2915oveq2i 7459 . 2 ((6 · 9) / (6 gcd 9)) = ((6 · 9) / 3)
30 6cn 12384 . . . 4 6 ∈ ℂ
31 9cn 12393 . . . 4 9 ∈ ℂ
3230, 31, 16, 18divassi 12050 . . 3 ((6 · 9) / 3) = (6 · (9 / 3))
33 3t3e9 12460 . . . . . . 7 (3 · 3) = 9
3433eqcomi 2749 . . . . . 6 9 = (3 · 3)
3534oveq1i 7458 . . . . 5 (9 / 3) = ((3 · 3) / 3)
3616, 16, 18divcan3i 12040 . . . . 5 ((3 · 3) / 3) = 3
3735, 36eqtri 2768 . . . 4 (9 / 3) = 3
3837oveq2i 7459 . . 3 (6 · (9 / 3)) = (6 · 3)
39 6t3e18 12863 . . 3 (6 · 3) = 18
4032, 38, 393eqtri 2772 . 2 ((6 · 9) / 3) = 18
4128, 29, 403eqtri 2772 1 (6 lcm 9) = 18
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   · cmul 11189  -cneg 11521   / cdiv 11947  cn 12293  3c3 12349  6c6 12352  8c8 12354  9c9 12355  cz 12639  cdc 12758   gcd cgcd 16540   lcm clcm 16635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-lcm 16637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator