MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-lcm Structured version   Visualization version   GIF version

Theorem ex-lcm 30394
Description: Example for df-lcm 16567. (Contributed by AV, 5-Sep-2021.)
Assertion
Ref Expression
ex-lcm (6 lcm 9) = 18

Proof of Theorem ex-lcm
StepHypRef Expression
1 6nn 12282 . . . . 5 6 ∈ ℕ
2 9nn 12291 . . . . 5 9 ∈ ℕ
31, 2nnmulcli 12218 . . . 4 (6 · 9) ∈ ℕ
43nncni 12203 . . 3 (6 · 9) ∈ ℂ
51nnzi 12564 . . . . 5 6 ∈ ℤ
62nnzi 12564 . . . . 5 9 ∈ ℤ
75, 6pm3.2i 470 . . . 4 (6 ∈ ℤ ∧ 9 ∈ ℤ)
8 lcmcl 16578 . . . . 5 ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℕ0)
98nn0cnd 12512 . . . 4 ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℂ)
107, 9ax-mp 5 . . 3 (6 lcm 9) ∈ ℂ
11 neggcd 16500 . . . . . . . 8 ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9))
127, 11ax-mp 5 . . . . . . 7 (-6 gcd 9) = (6 gcd 9)
1312eqcomi 2739 . . . . . 6 (6 gcd 9) = (-6 gcd 9)
14 ex-gcd 30393 . . . . . 6 (-6 gcd 9) = 3
1513, 14eqtri 2753 . . . . 5 (6 gcd 9) = 3
16 3cn 12274 . . . . 5 3 ∈ ℂ
1715, 16eqeltri 2825 . . . 4 (6 gcd 9) ∈ ℂ
18 3ne0 12299 . . . . 5 3 ≠ 0
1915, 18eqnetri 2996 . . . 4 (6 gcd 9) ≠ 0
2017, 19pm3.2i 470 . . 3 ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)
211, 2pm3.2i 470 . . . . . . 7 (6 ∈ ℕ ∧ 9 ∈ ℕ)
22 lcmgcdnn 16588 . . . . . . 7 ((6 ∈ ℕ ∧ 9 ∈ ℕ) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9))
2321, 22mp1i 13 . . . . . 6 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9))
2423eqcomd 2736 . . . . 5 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 · 9) = ((6 lcm 9) · (6 gcd 9)))
25 divmul3 11849 . . . . 5 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (((6 · 9) / (6 gcd 9)) = (6 lcm 9) ↔ (6 · 9) = ((6 lcm 9) · (6 gcd 9))))
2624, 25mpbird 257 . . . 4 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 · 9) / (6 gcd 9)) = (6 lcm 9))
2726eqcomd 2736 . . 3 (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 lcm 9) = ((6 · 9) / (6 gcd 9)))
284, 10, 20, 27mp3an 1463 . 2 (6 lcm 9) = ((6 · 9) / (6 gcd 9))
2915oveq2i 7401 . 2 ((6 · 9) / (6 gcd 9)) = ((6 · 9) / 3)
30 6cn 12284 . . . 4 6 ∈ ℂ
31 9cn 12293 . . . 4 9 ∈ ℂ
3230, 31, 16, 18divassi 11945 . . 3 ((6 · 9) / 3) = (6 · (9 / 3))
33 3t3e9 12355 . . . . . . 7 (3 · 3) = 9
3433eqcomi 2739 . . . . . 6 9 = (3 · 3)
3534oveq1i 7400 . . . . 5 (9 / 3) = ((3 · 3) / 3)
3616, 16, 18divcan3i 11935 . . . . 5 ((3 · 3) / 3) = 3
3735, 36eqtri 2753 . . . 4 (9 / 3) = 3
3837oveq2i 7401 . . 3 (6 · (9 / 3)) = (6 · 3)
39 6t3e18 12761 . . 3 (6 · 3) = 18
4032, 38, 393eqtri 2757 . 2 ((6 · 9) / 3) = 18
4128, 29, 403eqtri 2757 1 (6 lcm 9) = 18
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   · cmul 11080  -cneg 11413   / cdiv 11842  cn 12193  3c3 12249  6c6 12252  8c8 12254  9c9 12255  cz 12536  cdc 12656   gcd cgcd 16471   lcm clcm 16565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-lcm 16567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator