| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-lcm | Structured version Visualization version GIF version | ||
| Description: Example for df-lcm 16496. (Contributed by AV, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-lcm | ⊢ (6 lcm 9) = ;18 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12209 | . . . . 5 ⊢ 6 ∈ ℕ | |
| 2 | 9nn 12218 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 3 | 1, 2 | nnmulcli 12145 | . . . 4 ⊢ (6 · 9) ∈ ℕ |
| 4 | 3 | nncni 12130 | . . 3 ⊢ (6 · 9) ∈ ℂ |
| 5 | 1 | nnzi 12491 | . . . . 5 ⊢ 6 ∈ ℤ |
| 6 | 2 | nnzi 12491 | . . . . 5 ⊢ 9 ∈ ℤ |
| 7 | 5, 6 | pm3.2i 470 | . . . 4 ⊢ (6 ∈ ℤ ∧ 9 ∈ ℤ) |
| 8 | lcmcl 16507 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℕ0) | |
| 9 | 8 | nn0cnd 12439 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℂ) |
| 10 | 7, 9 | ax-mp 5 | . . 3 ⊢ (6 lcm 9) ∈ ℂ |
| 11 | neggcd 16429 | . . . . . . . 8 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
| 12 | 7, 11 | ax-mp 5 | . . . . . . 7 ⊢ (-6 gcd 9) = (6 gcd 9) |
| 13 | 12 | eqcomi 2740 | . . . . . 6 ⊢ (6 gcd 9) = (-6 gcd 9) |
| 14 | ex-gcd 30429 | . . . . . 6 ⊢ (-6 gcd 9) = 3 | |
| 15 | 13, 14 | eqtri 2754 | . . . . 5 ⊢ (6 gcd 9) = 3 |
| 16 | 3cn 12201 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 17 | 15, 16 | eqeltri 2827 | . . . 4 ⊢ (6 gcd 9) ∈ ℂ |
| 18 | 3ne0 12226 | . . . . 5 ⊢ 3 ≠ 0 | |
| 19 | 15, 18 | eqnetri 2998 | . . . 4 ⊢ (6 gcd 9) ≠ 0 |
| 20 | 17, 19 | pm3.2i 470 | . . 3 ⊢ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0) |
| 21 | 1, 2 | pm3.2i 470 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 9 ∈ ℕ) |
| 22 | lcmgcdnn 16517 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 9 ∈ ℕ) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9)) | |
| 23 | 21, 22 | mp1i 13 | . . . . . 6 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9)) |
| 24 | 23 | eqcomd 2737 | . . . . 5 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 · 9) = ((6 lcm 9) · (6 gcd 9))) |
| 25 | divmul3 11776 | . . . . 5 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (((6 · 9) / (6 gcd 9)) = (6 lcm 9) ↔ (6 · 9) = ((6 lcm 9) · (6 gcd 9)))) | |
| 26 | 24, 25 | mpbird 257 | . . . 4 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 · 9) / (6 gcd 9)) = (6 lcm 9)) |
| 27 | 26 | eqcomd 2737 | . . 3 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 lcm 9) = ((6 · 9) / (6 gcd 9))) |
| 28 | 4, 10, 20, 27 | mp3an 1463 | . 2 ⊢ (6 lcm 9) = ((6 · 9) / (6 gcd 9)) |
| 29 | 15 | oveq2i 7352 | . 2 ⊢ ((6 · 9) / (6 gcd 9)) = ((6 · 9) / 3) |
| 30 | 6cn 12211 | . . . 4 ⊢ 6 ∈ ℂ | |
| 31 | 9cn 12220 | . . . 4 ⊢ 9 ∈ ℂ | |
| 32 | 30, 31, 16, 18 | divassi 11872 | . . 3 ⊢ ((6 · 9) / 3) = (6 · (9 / 3)) |
| 33 | 3t3e9 12282 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
| 34 | 33 | eqcomi 2740 | . . . . . 6 ⊢ 9 = (3 · 3) |
| 35 | 34 | oveq1i 7351 | . . . . 5 ⊢ (9 / 3) = ((3 · 3) / 3) |
| 36 | 16, 16, 18 | divcan3i 11862 | . . . . 5 ⊢ ((3 · 3) / 3) = 3 |
| 37 | 35, 36 | eqtri 2754 | . . . 4 ⊢ (9 / 3) = 3 |
| 38 | 37 | oveq2i 7352 | . . 3 ⊢ (6 · (9 / 3)) = (6 · 3) |
| 39 | 6t3e18 12688 | . . 3 ⊢ (6 · 3) = ;18 | |
| 40 | 32, 38, 39 | 3eqtri 2758 | . 2 ⊢ ((6 · 9) / 3) = ;18 |
| 41 | 28, 29, 40 | 3eqtri 2758 | 1 ⊢ (6 lcm 9) = ;18 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 · cmul 11006 -cneg 11340 / cdiv 11769 ℕcn 12120 3c3 12176 6c6 12179 8c8 12181 9c9 12182 ℤcz 12463 ;cdc 12583 gcd cgcd 16400 lcm clcm 16494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-rp 12886 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-gcd 16401 df-lcm 16496 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |