![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-lcm | Structured version Visualization version GIF version |
Description: Example for df-lcm 16637. (Contributed by AV, 5-Sep-2021.) |
Ref | Expression |
---|---|
ex-lcm | ⊢ (6 lcm 9) = ;18 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 12382 | . . . . 5 ⊢ 6 ∈ ℕ | |
2 | 9nn 12391 | . . . . 5 ⊢ 9 ∈ ℕ | |
3 | 1, 2 | nnmulcli 12318 | . . . 4 ⊢ (6 · 9) ∈ ℕ |
4 | 3 | nncni 12303 | . . 3 ⊢ (6 · 9) ∈ ℂ |
5 | 1 | nnzi 12667 | . . . . 5 ⊢ 6 ∈ ℤ |
6 | 2 | nnzi 12667 | . . . . 5 ⊢ 9 ∈ ℤ |
7 | 5, 6 | pm3.2i 470 | . . . 4 ⊢ (6 ∈ ℤ ∧ 9 ∈ ℤ) |
8 | lcmcl 16648 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℕ0) | |
9 | 8 | nn0cnd 12615 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℂ) |
10 | 7, 9 | ax-mp 5 | . . 3 ⊢ (6 lcm 9) ∈ ℂ |
11 | neggcd 16569 | . . . . . . . 8 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
12 | 7, 11 | ax-mp 5 | . . . . . . 7 ⊢ (-6 gcd 9) = (6 gcd 9) |
13 | 12 | eqcomi 2749 | . . . . . 6 ⊢ (6 gcd 9) = (-6 gcd 9) |
14 | ex-gcd 30489 | . . . . . 6 ⊢ (-6 gcd 9) = 3 | |
15 | 13, 14 | eqtri 2768 | . . . . 5 ⊢ (6 gcd 9) = 3 |
16 | 3cn 12374 | . . . . 5 ⊢ 3 ∈ ℂ | |
17 | 15, 16 | eqeltri 2840 | . . . 4 ⊢ (6 gcd 9) ∈ ℂ |
18 | 3ne0 12399 | . . . . 5 ⊢ 3 ≠ 0 | |
19 | 15, 18 | eqnetri 3017 | . . . 4 ⊢ (6 gcd 9) ≠ 0 |
20 | 17, 19 | pm3.2i 470 | . . 3 ⊢ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0) |
21 | 1, 2 | pm3.2i 470 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 9 ∈ ℕ) |
22 | lcmgcdnn 16658 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 9 ∈ ℕ) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9)) | |
23 | 21, 22 | mp1i 13 | . . . . . 6 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9)) |
24 | 23 | eqcomd 2746 | . . . . 5 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 · 9) = ((6 lcm 9) · (6 gcd 9))) |
25 | divmul3 11954 | . . . . 5 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (((6 · 9) / (6 gcd 9)) = (6 lcm 9) ↔ (6 · 9) = ((6 lcm 9) · (6 gcd 9)))) | |
26 | 24, 25 | mpbird 257 | . . . 4 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 · 9) / (6 gcd 9)) = (6 lcm 9)) |
27 | 26 | eqcomd 2746 | . . 3 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 lcm 9) = ((6 · 9) / (6 gcd 9))) |
28 | 4, 10, 20, 27 | mp3an 1461 | . 2 ⊢ (6 lcm 9) = ((6 · 9) / (6 gcd 9)) |
29 | 15 | oveq2i 7459 | . 2 ⊢ ((6 · 9) / (6 gcd 9)) = ((6 · 9) / 3) |
30 | 6cn 12384 | . . . 4 ⊢ 6 ∈ ℂ | |
31 | 9cn 12393 | . . . 4 ⊢ 9 ∈ ℂ | |
32 | 30, 31, 16, 18 | divassi 12050 | . . 3 ⊢ ((6 · 9) / 3) = (6 · (9 / 3)) |
33 | 3t3e9 12460 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
34 | 33 | eqcomi 2749 | . . . . . 6 ⊢ 9 = (3 · 3) |
35 | 34 | oveq1i 7458 | . . . . 5 ⊢ (9 / 3) = ((3 · 3) / 3) |
36 | 16, 16, 18 | divcan3i 12040 | . . . . 5 ⊢ ((3 · 3) / 3) = 3 |
37 | 35, 36 | eqtri 2768 | . . . 4 ⊢ (9 / 3) = 3 |
38 | 37 | oveq2i 7459 | . . 3 ⊢ (6 · (9 / 3)) = (6 · 3) |
39 | 6t3e18 12863 | . . 3 ⊢ (6 · 3) = ;18 | |
40 | 32, 38, 39 | 3eqtri 2772 | . 2 ⊢ ((6 · 9) / 3) = ;18 |
41 | 28, 29, 40 | 3eqtri 2772 | 1 ⊢ (6 lcm 9) = ;18 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 -cneg 11521 / cdiv 11947 ℕcn 12293 3c3 12349 6c6 12352 8c8 12354 9c9 12355 ℤcz 12639 ;cdc 12758 gcd cgcd 16540 lcm clcm 16635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-lcm 16637 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |