| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-lcm | Structured version Visualization version GIF version | ||
| Description: Example for df-lcm 16508. (Contributed by AV, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-lcm | ⊢ (6 lcm 9) = ;18 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12225 | . . . . 5 ⊢ 6 ∈ ℕ | |
| 2 | 9nn 12234 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 3 | 1, 2 | nnmulcli 12161 | . . . 4 ⊢ (6 · 9) ∈ ℕ |
| 4 | 3 | nncni 12146 | . . 3 ⊢ (6 · 9) ∈ ℂ |
| 5 | 1 | nnzi 12506 | . . . . 5 ⊢ 6 ∈ ℤ |
| 6 | 2 | nnzi 12506 | . . . . 5 ⊢ 9 ∈ ℤ |
| 7 | 5, 6 | pm3.2i 470 | . . . 4 ⊢ (6 ∈ ℤ ∧ 9 ∈ ℤ) |
| 8 | lcmcl 16519 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℕ0) | |
| 9 | 8 | nn0cnd 12455 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℂ) |
| 10 | 7, 9 | ax-mp 5 | . . 3 ⊢ (6 lcm 9) ∈ ℂ |
| 11 | neggcd 16441 | . . . . . . . 8 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
| 12 | 7, 11 | ax-mp 5 | . . . . . . 7 ⊢ (-6 gcd 9) = (6 gcd 9) |
| 13 | 12 | eqcomi 2742 | . . . . . 6 ⊢ (6 gcd 9) = (-6 gcd 9) |
| 14 | ex-gcd 30458 | . . . . . 6 ⊢ (-6 gcd 9) = 3 | |
| 15 | 13, 14 | eqtri 2756 | . . . . 5 ⊢ (6 gcd 9) = 3 |
| 16 | 3cn 12217 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 17 | 15, 16 | eqeltri 2829 | . . . 4 ⊢ (6 gcd 9) ∈ ℂ |
| 18 | 3ne0 12242 | . . . . 5 ⊢ 3 ≠ 0 | |
| 19 | 15, 18 | eqnetri 2999 | . . . 4 ⊢ (6 gcd 9) ≠ 0 |
| 20 | 17, 19 | pm3.2i 470 | . . 3 ⊢ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0) |
| 21 | 1, 2 | pm3.2i 470 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 9 ∈ ℕ) |
| 22 | lcmgcdnn 16529 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 9 ∈ ℕ) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9)) | |
| 23 | 21, 22 | mp1i 13 | . . . . . 6 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9)) |
| 24 | 23 | eqcomd 2739 | . . . . 5 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 · 9) = ((6 lcm 9) · (6 gcd 9))) |
| 25 | divmul3 11792 | . . . . 5 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (((6 · 9) / (6 gcd 9)) = (6 lcm 9) ↔ (6 · 9) = ((6 lcm 9) · (6 gcd 9)))) | |
| 26 | 24, 25 | mpbird 257 | . . . 4 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 · 9) / (6 gcd 9)) = (6 lcm 9)) |
| 27 | 26 | eqcomd 2739 | . . 3 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 lcm 9) = ((6 · 9) / (6 gcd 9))) |
| 28 | 4, 10, 20, 27 | mp3an 1463 | . 2 ⊢ (6 lcm 9) = ((6 · 9) / (6 gcd 9)) |
| 29 | 15 | oveq2i 7366 | . 2 ⊢ ((6 · 9) / (6 gcd 9)) = ((6 · 9) / 3) |
| 30 | 6cn 12227 | . . . 4 ⊢ 6 ∈ ℂ | |
| 31 | 9cn 12236 | . . . 4 ⊢ 9 ∈ ℂ | |
| 32 | 30, 31, 16, 18 | divassi 11888 | . . 3 ⊢ ((6 · 9) / 3) = (6 · (9 / 3)) |
| 33 | 3t3e9 12298 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
| 34 | 33 | eqcomi 2742 | . . . . . 6 ⊢ 9 = (3 · 3) |
| 35 | 34 | oveq1i 7365 | . . . . 5 ⊢ (9 / 3) = ((3 · 3) / 3) |
| 36 | 16, 16, 18 | divcan3i 11878 | . . . . 5 ⊢ ((3 · 3) / 3) = 3 |
| 37 | 35, 36 | eqtri 2756 | . . . 4 ⊢ (9 / 3) = 3 |
| 38 | 37 | oveq2i 7366 | . . 3 ⊢ (6 · (9 / 3)) = (6 · 3) |
| 39 | 6t3e18 12703 | . . 3 ⊢ (6 · 3) = ;18 | |
| 40 | 32, 38, 39 | 3eqtri 2760 | . 2 ⊢ ((6 · 9) / 3) = ;18 |
| 41 | 28, 29, 40 | 3eqtri 2760 | 1 ⊢ (6 lcm 9) = ;18 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7355 ℂcc 11015 0cc0 11017 1c1 11018 · cmul 11022 -cneg 11356 / cdiv 11785 ℕcn 12136 3c3 12192 6c6 12195 8c8 12197 9c9 12198 ℤcz 12479 ;cdc 12598 gcd cgcd 16412 lcm clcm 16506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-dvds 16171 df-gcd 16413 df-lcm 16508 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |