| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-lcm | Structured version Visualization version GIF version | ||
| Description: Example for df-lcm 16519. (Contributed by AV, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-lcm | ⊢ (6 lcm 9) = ;18 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12235 | . . . . 5 ⊢ 6 ∈ ℕ | |
| 2 | 9nn 12244 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 3 | 1, 2 | nnmulcli 12171 | . . . 4 ⊢ (6 · 9) ∈ ℕ |
| 4 | 3 | nncni 12156 | . . 3 ⊢ (6 · 9) ∈ ℂ |
| 5 | 1 | nnzi 12517 | . . . . 5 ⊢ 6 ∈ ℤ |
| 6 | 2 | nnzi 12517 | . . . . 5 ⊢ 9 ∈ ℤ |
| 7 | 5, 6 | pm3.2i 470 | . . . 4 ⊢ (6 ∈ ℤ ∧ 9 ∈ ℤ) |
| 8 | lcmcl 16530 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℕ0) | |
| 9 | 8 | nn0cnd 12465 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℂ) |
| 10 | 7, 9 | ax-mp 5 | . . 3 ⊢ (6 lcm 9) ∈ ℂ |
| 11 | neggcd 16452 | . . . . . . . 8 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
| 12 | 7, 11 | ax-mp 5 | . . . . . . 7 ⊢ (-6 gcd 9) = (6 gcd 9) |
| 13 | 12 | eqcomi 2738 | . . . . . 6 ⊢ (6 gcd 9) = (-6 gcd 9) |
| 14 | ex-gcd 30419 | . . . . . 6 ⊢ (-6 gcd 9) = 3 | |
| 15 | 13, 14 | eqtri 2752 | . . . . 5 ⊢ (6 gcd 9) = 3 |
| 16 | 3cn 12227 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 17 | 15, 16 | eqeltri 2824 | . . . 4 ⊢ (6 gcd 9) ∈ ℂ |
| 18 | 3ne0 12252 | . . . . 5 ⊢ 3 ≠ 0 | |
| 19 | 15, 18 | eqnetri 2995 | . . . 4 ⊢ (6 gcd 9) ≠ 0 |
| 20 | 17, 19 | pm3.2i 470 | . . 3 ⊢ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0) |
| 21 | 1, 2 | pm3.2i 470 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 9 ∈ ℕ) |
| 22 | lcmgcdnn 16540 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 9 ∈ ℕ) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9)) | |
| 23 | 21, 22 | mp1i 13 | . . . . . 6 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9)) |
| 24 | 23 | eqcomd 2735 | . . . . 5 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 · 9) = ((6 lcm 9) · (6 gcd 9))) |
| 25 | divmul3 11802 | . . . . 5 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (((6 · 9) / (6 gcd 9)) = (6 lcm 9) ↔ (6 · 9) = ((6 lcm 9) · (6 gcd 9)))) | |
| 26 | 24, 25 | mpbird 257 | . . . 4 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 · 9) / (6 gcd 9)) = (6 lcm 9)) |
| 27 | 26 | eqcomd 2735 | . . 3 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 lcm 9) = ((6 · 9) / (6 gcd 9))) |
| 28 | 4, 10, 20, 27 | mp3an 1463 | . 2 ⊢ (6 lcm 9) = ((6 · 9) / (6 gcd 9)) |
| 29 | 15 | oveq2i 7364 | . 2 ⊢ ((6 · 9) / (6 gcd 9)) = ((6 · 9) / 3) |
| 30 | 6cn 12237 | . . . 4 ⊢ 6 ∈ ℂ | |
| 31 | 9cn 12246 | . . . 4 ⊢ 9 ∈ ℂ | |
| 32 | 30, 31, 16, 18 | divassi 11898 | . . 3 ⊢ ((6 · 9) / 3) = (6 · (9 / 3)) |
| 33 | 3t3e9 12308 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
| 34 | 33 | eqcomi 2738 | . . . . . 6 ⊢ 9 = (3 · 3) |
| 35 | 34 | oveq1i 7363 | . . . . 5 ⊢ (9 / 3) = ((3 · 3) / 3) |
| 36 | 16, 16, 18 | divcan3i 11888 | . . . . 5 ⊢ ((3 · 3) / 3) = 3 |
| 37 | 35, 36 | eqtri 2752 | . . . 4 ⊢ (9 / 3) = 3 |
| 38 | 37 | oveq2i 7364 | . . 3 ⊢ (6 · (9 / 3)) = (6 · 3) |
| 39 | 6t3e18 12714 | . . 3 ⊢ (6 · 3) = ;18 | |
| 40 | 32, 38, 39 | 3eqtri 2756 | . 2 ⊢ ((6 · 9) / 3) = ;18 |
| 41 | 28, 29, 40 | 3eqtri 2756 | 1 ⊢ (6 lcm 9) = ;18 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 · cmul 11033 -cneg 11366 / cdiv 11795 ℕcn 12146 3c3 12202 6c6 12205 8c8 12207 9c9 12208 ℤcz 12489 ;cdc 12609 gcd cgcd 16423 lcm clcm 16517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-dvds 16182 df-gcd 16424 df-lcm 16519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |