| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-lcm | Structured version Visualization version GIF version | ||
| Description: Example for df-lcm 16609. (Contributed by AV, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-lcm | ⊢ (6 lcm 9) = ;18 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12329 | . . . . 5 ⊢ 6 ∈ ℕ | |
| 2 | 9nn 12338 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 3 | 1, 2 | nnmulcli 12265 | . . . 4 ⊢ (6 · 9) ∈ ℕ |
| 4 | 3 | nncni 12250 | . . 3 ⊢ (6 · 9) ∈ ℂ |
| 5 | 1 | nnzi 12616 | . . . . 5 ⊢ 6 ∈ ℤ |
| 6 | 2 | nnzi 12616 | . . . . 5 ⊢ 9 ∈ ℤ |
| 7 | 5, 6 | pm3.2i 470 | . . . 4 ⊢ (6 ∈ ℤ ∧ 9 ∈ ℤ) |
| 8 | lcmcl 16620 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℕ0) | |
| 9 | 8 | nn0cnd 12564 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (6 lcm 9) ∈ ℂ) |
| 10 | 7, 9 | ax-mp 5 | . . 3 ⊢ (6 lcm 9) ∈ ℂ |
| 11 | neggcd 16542 | . . . . . . . 8 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
| 12 | 7, 11 | ax-mp 5 | . . . . . . 7 ⊢ (-6 gcd 9) = (6 gcd 9) |
| 13 | 12 | eqcomi 2744 | . . . . . 6 ⊢ (6 gcd 9) = (-6 gcd 9) |
| 14 | ex-gcd 30438 | . . . . . 6 ⊢ (-6 gcd 9) = 3 | |
| 15 | 13, 14 | eqtri 2758 | . . . . 5 ⊢ (6 gcd 9) = 3 |
| 16 | 3cn 12321 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 17 | 15, 16 | eqeltri 2830 | . . . 4 ⊢ (6 gcd 9) ∈ ℂ |
| 18 | 3ne0 12346 | . . . . 5 ⊢ 3 ≠ 0 | |
| 19 | 15, 18 | eqnetri 3002 | . . . 4 ⊢ (6 gcd 9) ≠ 0 |
| 20 | 17, 19 | pm3.2i 470 | . . 3 ⊢ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0) |
| 21 | 1, 2 | pm3.2i 470 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 9 ∈ ℕ) |
| 22 | lcmgcdnn 16630 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 9 ∈ ℕ) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9)) | |
| 23 | 21, 22 | mp1i 13 | . . . . . 6 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 lcm 9) · (6 gcd 9)) = (6 · 9)) |
| 24 | 23 | eqcomd 2741 | . . . . 5 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 · 9) = ((6 lcm 9) · (6 gcd 9))) |
| 25 | divmul3 11901 | . . . . 5 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (((6 · 9) / (6 gcd 9)) = (6 lcm 9) ↔ (6 · 9) = ((6 lcm 9) · (6 gcd 9)))) | |
| 26 | 24, 25 | mpbird 257 | . . . 4 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → ((6 · 9) / (6 gcd 9)) = (6 lcm 9)) |
| 27 | 26 | eqcomd 2741 | . . 3 ⊢ (((6 · 9) ∈ ℂ ∧ (6 lcm 9) ∈ ℂ ∧ ((6 gcd 9) ∈ ℂ ∧ (6 gcd 9) ≠ 0)) → (6 lcm 9) = ((6 · 9) / (6 gcd 9))) |
| 28 | 4, 10, 20, 27 | mp3an 1463 | . 2 ⊢ (6 lcm 9) = ((6 · 9) / (6 gcd 9)) |
| 29 | 15 | oveq2i 7416 | . 2 ⊢ ((6 · 9) / (6 gcd 9)) = ((6 · 9) / 3) |
| 30 | 6cn 12331 | . . . 4 ⊢ 6 ∈ ℂ | |
| 31 | 9cn 12340 | . . . 4 ⊢ 9 ∈ ℂ | |
| 32 | 30, 31, 16, 18 | divassi 11997 | . . 3 ⊢ ((6 · 9) / 3) = (6 · (9 / 3)) |
| 33 | 3t3e9 12407 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
| 34 | 33 | eqcomi 2744 | . . . . . 6 ⊢ 9 = (3 · 3) |
| 35 | 34 | oveq1i 7415 | . . . . 5 ⊢ (9 / 3) = ((3 · 3) / 3) |
| 36 | 16, 16, 18 | divcan3i 11987 | . . . . 5 ⊢ ((3 · 3) / 3) = 3 |
| 37 | 35, 36 | eqtri 2758 | . . . 4 ⊢ (9 / 3) = 3 |
| 38 | 37 | oveq2i 7416 | . . 3 ⊢ (6 · (9 / 3)) = (6 · 3) |
| 39 | 6t3e18 12813 | . . 3 ⊢ (6 · 3) = ;18 | |
| 40 | 32, 38, 39 | 3eqtri 2762 | . 2 ⊢ ((6 · 9) / 3) = ;18 |
| 41 | 28, 29, 40 | 3eqtri 2762 | 1 ⊢ (6 lcm 9) = ;18 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 (class class class)co 7405 ℂcc 11127 0cc0 11129 1c1 11130 · cmul 11134 -cneg 11467 / cdiv 11894 ℕcn 12240 3c3 12296 6c6 12299 8c8 12301 9c9 12302 ℤcz 12588 ;cdc 12708 gcd cgcd 16513 lcm clcm 16607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-gcd 16514 df-lcm 16609 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |