![]() |
Metamath
Proof Explorer Theorem List (p. 166 of 443) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28468) |
![]() (28469-29993) |
![]() (29994-44247) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ressvsca 16501 | ·𝑠 is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = ( ·𝑠 ‘𝐻)) | ||
Theorem | ressip 16502 | The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ , = (·𝑖‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → , = (·𝑖‘𝐻)) | ||
Theorem | phlstr 16503 | A constructed pre-Hilbert space is a structure. Starting from lmodstr 16486 (which has 4 members), we chain strleun 16441 once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ 𝐻 Struct 〈1, 8〉 | ||
Theorem | phlbase 16504 | The base set of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝐻)) | ||
Theorem | phlplusg 16505 | The additive operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝐻)) | ||
Theorem | phlsca 16506 | The ring of scalars of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ (𝑇 ∈ 𝑋 → 𝑇 = (Scalar‘𝐻)) | ||
Theorem | phlvsca 16507 | The scalar product operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = ( ·𝑠 ‘𝐻)) | ||
Theorem | phlip 16508 | The inner product (Hermitian form) operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( , ∈ 𝑋 → , = (·𝑖‘𝐻)) | ||
Theorem | tsetndx 16509 | Index value of the df-tset 16434 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (TopSet‘ndx) = 9 | ||
Theorem | tsetid 16510 | Utility theorem: index-independent form of df-tset 16434. (Contributed by NM, 20-Oct-2012.) |
⊢ TopSet = Slot (TopSet‘ndx) | ||
Theorem | topgrpstr 16511 | A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ 𝑊 Struct 〈1, 9〉 | ||
Theorem | topgrpbas 16512 | The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
Theorem | topgrpplusg 16513 | The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
Theorem | topgrptset 16514 | The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ 𝑋 → 𝐽 = (TopSet‘𝑊)) | ||
Theorem | resstset 16515 | TopSet is unaffected by restriction. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐽 = (TopSet‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐽 = (TopSet‘𝐻)) | ||
Theorem | plendx 16516 | Index value of the df-ple 16435 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ (le‘ndx) = ;10 | ||
Theorem | pleid 16517 | Utility theorem: self-referencing, index-independent form of df-ple 16435. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
⊢ le = Slot (le‘ndx) | ||
Theorem | otpsstr 16518 | Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ 𝐾 Struct 〈1, ;10〉 | ||
Theorem | otpsbas 16519 | The base set of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) | ||
Theorem | otpstset 16520 | The open sets of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝐾)) | ||
Theorem | otpsle 16521 | The order of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝐾)) | ||
Theorem | ressle 16522 | le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015.) |
⊢ 𝑊 = (𝐾 ↾s 𝐴) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐴 ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
Theorem | ocndx 16523 | Index value of the df-ocomp 16436 slot. (Contributed by Mario Carneiro, 25-Oct-2015.) |
⊢ (oc‘ndx) = ;11 | ||
Theorem | ocid 16524 | Utility theorem: index-independent form of df-ocomp 16436. (Contributed by Mario Carneiro, 25-Oct-2015.) |
⊢ oc = Slot (oc‘ndx) | ||
Theorem | dsndx 16525 | Index value of the df-ds 16437 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (dist‘ndx) = ;12 | ||
Theorem | dsid 16526 | Utility theorem: index-independent form of df-ds 16437. (Contributed by Mario Carneiro, 23-Dec-2013.) |
⊢ dist = Slot (dist‘ndx) | ||
Theorem | unifndx 16527 | Index value of the df-unif 16438 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
⊢ (UnifSet‘ndx) = ;13 | ||
Theorem | unifid 16528 | Utility theorem: index-independent form of df-unif 16438. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
⊢ UnifSet = Slot (UnifSet‘ndx) | ||
Theorem | odrngstr 16529 | Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ 𝑊 Struct 〈1, ;12〉 | ||
Theorem | odrngbas 16530 | The base set of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝑊)) | ||
Theorem | odrngplusg 16531 | The addition operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝑊)) | ||
Theorem | odrngmulr 16532 | The multiplication operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = (.r‘𝑊)) | ||
Theorem | odrngtset 16533 | The open sets of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝑊)) | ||
Theorem | odrngle 16534 | The order of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
Theorem | odrngds 16535 | The metric of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) | ||
Theorem | ressds 16536 | dist is unaffected by restriction. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐷 = (dist‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐷 = (dist‘𝐻)) | ||
Theorem | homndx 16537 | Index value of the df-hom 16439 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ (Hom ‘ndx) = ;14 | ||
Theorem | homid 16538 | Utility theorem: index-independent form of df-hom 16439. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ Hom = Slot (Hom ‘ndx) | ||
Theorem | ccondx 16539 | Index value of the df-cco 16440 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ (comp‘ndx) = ;15 | ||
Theorem | ccoid 16540 | Utility theorem: index-independent form of df-cco 16440. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ comp = Slot (comp‘ndx) | ||
Theorem | resshom 16541 | Hom is unaffected by restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ 𝐷 = (𝐶 ↾s 𝐴) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐻 = (Hom ‘𝐷)) | ||
Theorem | ressco 16542 | comp is unaffected by restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ 𝐷 = (𝐶 ↾s 𝐴) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (comp‘𝐷)) | ||
Theorem | slotsbhcdif 16543 | The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) |
⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | ||
Syntax | crest 16544 | Extend class notation with the function returning a subspace topology. |
class ↾t | ||
Syntax | ctopn 16545 | Extend class notation with the topology extractor function. |
class TopOpen | ||
Definition | df-rest 16546* | Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | ||
Definition | df-topn 16547 | Define the topology extractor function. This differs from df-tset 16434 when a structure has been restricted using df-ress 16341; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | ||
Theorem | restfn 16548 | The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.) |
⊢ ↾t Fn (V × V) | ||
Theorem | topnfn 16549 | The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ TopOpen Fn V | ||
Theorem | restval 16550* | The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | ||
Theorem | elrest 16551* | The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | ||
Theorem | elrestr 16552 | Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) | ||
Theorem | 0rest 16553 | Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (∅ ↾t 𝐴) = ∅ | ||
Theorem | restid2 16554 | The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) | ||
Theorem | restsspw 16555 | The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 | ||
Theorem | firest 16556 | The finite intersections operator commutes with restriction. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ (fi‘(𝐽 ↾t 𝐴)) = ((fi‘𝐽) ↾t 𝐴) | ||
Theorem | restid 16557 | The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) | ||
Theorem | topnval 16558 | Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) | ||
Theorem | topnid 16559 | Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝐽 ⊆ 𝒫 𝐵 → 𝐽 = (TopOpen‘𝑊)) | ||
Theorem | topnpropd 16560 | The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) |
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) ⇒ ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | ||
Syntax | ctg 16561 | Extend class notation with a function that converts a basis to its corresponding topology. |
class topGen | ||
Syntax | cpt 16562 | Extend class notation with a function whose value is a product topology. |
class ∏t | ||
Syntax | c0g 16563 | Extend class notation with group identity element. |
class 0g | ||
Syntax | cgsu 16564 | Extend class notation to include finitely supported group sums. |
class Σg | ||
Definition | df-0g 16565* | Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-gsum 16566. The related theorems are provided later, see grpidval 17722. (Contributed by NM, 20-Aug-2011.) |
⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) | ||
Definition | df-gsum 16566* |
Define the group sum for the structure 𝐺 of a finite sequence of
elements whose values are defined by the expression 𝐵 and
whose set
of indices is 𝐴. It may be viewed as a product (if
𝐺
is a
multiplication), a sum (if 𝐺 is an addition) or any other
operation.
The variable 𝑘 is normally a free variable in 𝐵 (i.e.,
𝐵
can
be thought of as 𝐵(𝑘)). The definition is meaningful in
different contexts, depending on the size of the index set 𝐴 and
each demanding different properties of 𝐺.
1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity. 2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e. (𝐵(1) + 𝐵(2)) + 𝐵(3) etc. 3. If 𝐴 is a finite set (or is nonzero for finitely many indices) and 𝐺 is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined. 4. If 𝐴 is an infinite set and 𝐺 is a Hausdorff topological group, then there is a meaningful sum, but Σg cannot handle this case. See df-tsms 22432. Remark: this definition is required here because the symbol Σg is already used in df-prds 16571 and df-imas 16631. The related theorems are provided later, see gsumvalx 17732. (Contributed by FL, 5-Sep-2010.) (Revised by FL, 17-Oct-2011.) (Revised by Mario Carneiro, 7-Dec-2014.) |
⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) | ||
Definition | df-topgen 16567* | Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78 (see tgval2 21262). The first use of this definition is tgval 21261 but the token is used in df-pt 16568. See tgval3 21269 for an alternate expression for the value. (Contributed by NM, 16-Jul-2006.) |
⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | ||
Definition | df-pt 16568* | Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ ∏t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) | ||
Syntax | cprds 16569 | The function constructing structure products. |
class Xs | ||
Syntax | cpws 16570 | The function constructing structure powers. |
class ↑s | ||
Definition | df-prds 16571* | Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) |
⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx), 𝑠〉, 〈( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) | ||
Theorem | reldmprds 16572 | The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) |
⊢ Rel dom Xs | ||
Definition | df-pws 16573* | Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015.) |
⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) | ||
Theorem | prdsbasex 16574* | Lemma for structure products. (Contributed by Mario Carneiro, 3-Jan-2015.) |
⊢ 𝐵 = X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ⇒ ⊢ 𝐵 ∈ V | ||
Theorem | imasvalstr 16575 | Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ 𝑈 Struct 〈1, ;12〉 | ||
Theorem | prdsvalstr 16576 | Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) Struct 〈1, ;15〉 | ||
Theorem | prdsvallem 16577 | Lemma for prdsbas 16580 and similar theorems. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ (𝜑 → 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}))) & ⊢ 𝐴 = (𝐸‘𝑈) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ {〈(𝐸‘ndx), 𝑇〉} ⊆ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) ⇒ ⊢ (𝜑 → 𝐴 = 𝑇) | ||
Theorem | prdsval 16578* | Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) & ⊢ (𝜑 → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) & ⊢ (𝜑 → × = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) & ⊢ (𝜑 → · = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥))))) & ⊢ (𝜑 → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) & ⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅))) & ⊢ (𝜑 → ≤ = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) & ⊢ (𝜑 → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))) & ⊢ (𝜑 → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) & ⊢ (𝜑 → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ (𝑐𝐻(2nd ‘𝑎)), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑃 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}))) | ||
Theorem | prdssca 16579 | Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑆 = (Scalar‘𝑃)) | ||
Theorem | prdsbas 16580* | Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) ⇒ ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) | ||
Theorem | prdsplusg 16581* | Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ + = (+g‘𝑃) ⇒ ⊢ (𝜑 → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) | ||
Theorem | prdsmulr 16582* | Multiplication in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ · = (.r‘𝑃) ⇒ ⊢ (𝜑 → · = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) | ||
Theorem | prdsvsca 16583* | Scalar multiplication in a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑃) ⇒ ⊢ (𝜑 → · = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥))))) | ||
Theorem | prdsip 16584* | Inner product in a structure product. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ , = (·𝑖‘𝑃) ⇒ ⊢ (𝜑 → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) | ||
Theorem | prdsle 16585* | Structure product weak ordering. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ ≤ = (le‘𝑃) ⇒ ⊢ (𝜑 → ≤ = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) | ||
Theorem | prdsless 16586 | Closure of the order relation on a structure product. (Contributed by Mario Carneiro, 16-Aug-2015.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ ≤ = (le‘𝑃) ⇒ ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) | ||
Theorem | prdsds 16587* | Structure product distance function. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐷 = (dist‘𝑃) ⇒ ⊢ (𝜑 → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))) | ||
Theorem | prdsdsfn 16588 | Structure product distance function. (Contributed by Mario Carneiro, 15-Sep-2015.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐷 = (dist‘𝑃) ⇒ ⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) | ||
Theorem | prdstset 16589 | Structure product topology. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝑂 = (TopSet‘𝑃) ⇒ ⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅))) | ||
Theorem | prdshom 16590* | Structure product hom-sets. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐻 = (Hom ‘𝑃) ⇒ ⊢ (𝜑 → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) | ||
Theorem | prdsco 16591* | Structure product composition operation. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐻 = (Hom ‘𝑃) & ⊢ ∙ = (comp‘𝑃) ⇒ ⊢ (𝜑 → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ (𝑐𝐻(2nd ‘𝑎)), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) | ||
Theorem | prdsbas2 16592* | The base set of a structure product is an indexed set product. (Contributed by Stefan O'Rear, 10-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) ⇒ ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) | ||
Theorem | prdsbasmpt 16593* | A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝑈) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 𝑈 ∈ (Base‘(𝑅‘𝑥)))) | ||
Theorem | prdsbasfn 16594 | Points in the structure product are functions; use this with dffn5 6552 to establish equalities. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑇 Fn 𝐼) | ||
Theorem | prdsbasprj 16595 | Each point in a structure product restricts on each coordinate to the relevant base set. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑇‘𝐽) ∈ (Base‘(𝑅‘𝐽))) | ||
Theorem | prdsplusgval 16596* | Value of a componentwise sum in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)))) | ||
Theorem | prdsplusgfval 16597 | Value of a structure product sum at a single coordinate. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝐹‘𝐽)(+g‘(𝑅‘𝐽))(𝐺‘𝐽))) | ||
Theorem | prdsmulrval 16598* | Value of a componentwise ring product in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ · = (.r‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))) | ||
Theorem | prdsmulrfval 16599 | Value of a structure product's ring product at a single coordinate. (Contributed by Mario Carneiro, 11-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) | ||
Theorem | prdsleval 16600* | Value of the product ordering in a structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ ≤ = (le‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 ≤ 𝐺 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥)(le‘(𝑅‘𝑥))(𝐺‘𝑥))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |