![]() |
Metamath
Proof Explorer Theorem List (p. 166 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sadcp1 16501* | The carry sequence (which is a sequence of wffs, encoded as 1o and ∅) is defined recursively as the carry operation applied to the previous carry and the two current inputs. (Contributed by Mario Carneiro, 5-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) | ||
Theorem | sadval 16502* | The full adder sequence is the half adder function applied to the inputs and the carry sequence. (Contributed by Mario Carneiro, 5-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) | ||
Theorem | sadcaddlem 16503* | Lemma for sadcadd 16504. (Contributed by Mario Carneiro, 8-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) & ⊢ (𝜑 → (∅ ∈ (𝐶‘𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))) ⇒ ⊢ (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ (2↑(𝑁 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))))) | ||
Theorem | sadcadd 16504* | Non-recursive definition of the carry sequence. (Contributed by Mario Carneiro, 8-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ (𝜑 → (∅ ∈ (𝐶‘𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))) | ||
Theorem | sadadd2lem 16505* | Lemma for sadadd2 16506. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) & ⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))) ⇒ ⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))))) | ||
Theorem | sadadd2 16506* | Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 8-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))) | ||
Theorem | sadadd3 16507* | Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁))) | ||
Theorem | sadcl 16508 | The sum of two sequences is a sequence. (Contributed by Mario Carneiro, 5-Sep-2016.) |
⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0) | ||
Theorem | sadcom 16509 | The adder sequence function is commutative. (Contributed by Mario Carneiro, 5-Sep-2016.) |
⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) = (𝐵 sadd 𝐴)) | ||
Theorem | saddisjlem 16510* | Lemma for sadadd 16513. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ (𝐴 ∪ 𝐵))) | ||
Theorem | saddisj 16511 | The sum of disjoint sequences is the union of the sequences. (In this case, there are no carried bits.) (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 sadd 𝐵) = (𝐴 ∪ 𝐵)) | ||
Theorem | sadaddlem 16512* | Lemma for sadadd 16513. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) = (bits‘((𝐴 + 𝐵) mod (2↑𝑁)))) | ||
Theorem | sadadd 16513 |
For sequences that correspond to valid integers, the adder sequence
function produces the sequence for the sum. This is effectively a proof
of the correctness of the ripple carry adder, implemented with logic
gates corresponding to df-had 1591 and df-cad 1604.
It is interesting to consider in what sense the sadd function can be said to be "adding" things outside the range of the bits function, that is, when adding sequences that are not eventually constant and so do not denote any integer. The correct interpretation is that the sequences are representations of 2-adic integers, which have a natural ring structure. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) sadd (bits‘𝐵)) = (bits‘(𝐴 + 𝐵))) | ||
Theorem | sadid1 16514 | The adder sequence function has a left identity, the empty set, which is the representation of the integer zero. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝐴 ⊆ ℕ0 → (𝐴 sadd ∅) = 𝐴) | ||
Theorem | sadid2 16515 | The adder sequence function has a right identity, the empty set, which is the representation of the integer zero. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝐴 ⊆ ℕ0 → (∅ sadd 𝐴) = 𝐴) | ||
Theorem | sadasslem 16516 | Lemma for sadass 16517. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝐶 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) | ||
Theorem | sadass 16517 | Sequence addition is associative. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0 ∧ 𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶))) | ||
Theorem | sadeq 16518 | Any element of a sequence sum only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) | ||
Theorem | bitsres 16519 | Restrict the bits of a number to an upper integer set. (Contributed by Mario Carneiro, 5-Sep-2016.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ≥‘𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))) | ||
Theorem | bitsuz 16520 | The bits of a number are all at least 𝑁 iff the number is divisible by 2↑𝑁. (Contributed by Mario Carneiro, 21-Sep-2016.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ≥‘𝑁))) | ||
Theorem | bitsshft 16521* | Shifting a bit sequence to the left (toward the more significant bits) causes the number to be multiplied by a power of two. (Contributed by Mario Carneiro, 22-Sep-2016.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛 − 𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁)))) | ||
Definition | df-smu 16522* | Define the multiplication of two bit sequences, using repeated sequence addition. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ smul = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))}) | ||
Theorem | smufval 16523* | The multiplication of two bit sequences as repeated sequence addition. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) | ||
Theorem | smupf 16524* | The sequence of partial sums of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → 𝑃:ℕ0⟶𝒫 ℕ0) | ||
Theorem | smup0 16525* | The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → (𝑃‘0) = ∅) | ||
Theorem | smupp1 16526* | The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑃‘(𝑁 + 1)) = ((𝑃‘𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) | ||
Theorem | smuval 16527* | Define the addition of two bit sequences, using df-had 1591 and df-cad 1604 bit operations. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) | ||
Theorem | smuval2 16528* | The partial sum sequence stabilizes at 𝑁 after the 𝑁 + 1-th element of the sequence; this stable value is the value of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑁 + 1))) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘𝑀))) | ||
Theorem | smupvallem 16529* | If 𝐴 only has elements less than 𝑁, then all elements of the partial sum sequence past 𝑁 already equal the final value. (Contributed by Mario Carneiro, 20-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ⊆ (0..^𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁)) ⇒ ⊢ (𝜑 → (𝑃‘𝑀) = (𝐴 smul 𝐵)) | ||
Theorem | smucl 16530 | The product of two sequences is a sequence. (Contributed by Mario Carneiro, 19-Sep-2016.) |
⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0) → (𝐴 smul 𝐵) ⊆ ℕ0) | ||
Theorem | smu01lem 16531* | Lemma for smu01 16532 and smu02 16533. (Contributed by Mario Carneiro, 19-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → ¬ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 smul 𝐵) = ∅) | ||
Theorem | smu01 16532 | Multiplication of a sequence by 0 on the right. (Contributed by Mario Carneiro, 19-Sep-2016.) |
⊢ (𝐴 ⊆ ℕ0 → (𝐴 smul ∅) = ∅) | ||
Theorem | smu02 16533 | Multiplication of a sequence by 0 on the left. (Contributed by Mario Carneiro, 9-Sep-2016.) |
⊢ (𝐴 ⊆ ℕ0 → (∅ smul 𝐴) = ∅) | ||
Theorem | smupval 16534* | Rewrite the elements of the partial sum sequence in terms of sequence multiplication. (Contributed by Mario Carneiro, 20-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑃‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵)) | ||
Theorem | smup1 16535* | Rewrite smupp1 16526 using only smul instead of the internal recursive function 𝑃. (Contributed by Mario Carneiro, 20-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 ∩ (0..^(𝑁 + 1))) smul 𝐵) = (((𝐴 ∩ (0..^𝑁)) smul 𝐵) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) | ||
Theorem | smueqlem 16536* | Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) | ||
Theorem | smueq 16537 | Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) | ||
Theorem | smumullem 16538 | Lemma for smumul 16539. (Contributed by Mario Carneiro, 22-Sep-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵))) | ||
Theorem | smumul 16539 |
For sequences that correspond to valid integers, the sequence
multiplication function produces the sequence for the product. This is
effectively a proof of the correctness of the multiplication process,
implemented in terms of logic gates for df-sad 16497, whose correctness is
verified in sadadd 16513.
Outside this range, the sequences cannot be representing integers, but the smul function still "works". This extended function is best interpreted in terms of the ring structure of the 2-adic integers. (Contributed by Mario Carneiro, 22-Sep-2016.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) smul (bits‘𝐵)) = (bits‘(𝐴 · 𝐵))) | ||
Syntax | cgcd 16540 | Extend the definition of a class to include the greatest common divisor operator. |
class gcd | ||
Definition | df-gcd 16541* | Define the gcd operator. For example, (-6 gcd 9) = 3 (ex-gcd 30489). For an alternate definition, based on the definition in [ApostolNT] p. 15, see dfgcd2 16593. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) | ||
Theorem | gcdval 16542* | The value of the gcd operator. (𝑀 gcd 𝑁) is the greatest common divisor of 𝑀 and 𝑁. If 𝑀 and 𝑁 are both 0, the result is defined conventionally as 0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) | ||
Theorem | gcd0val 16543 | The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (0 gcd 0) = 0 | ||
Theorem | gcdn0val 16544* | The value of the gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) | ||
Theorem | gcdcllem1 16545* | Lemma for gcdn0cl 16548, gcddvds 16549 and dvdslegcd 16550. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ 𝐴 𝑧 ∥ 𝑛} ⇒ ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑛 ∈ 𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) | ||
Theorem | gcdcllem2 16546* | Lemma for gcdn0cl 16548, gcddvds 16549 and dvdslegcd 16550. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛} & ⊢ 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)} ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆) | ||
Theorem | gcdcllem3 16547* | Lemma for gcdn0cl 16548, gcddvds 16549 and dvdslegcd 16550. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛} & ⊢ 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)} ⇒ ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < )))) | ||
Theorem | gcdn0cl 16548 | Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
Theorem | gcddvds 16549 | The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) | ||
Theorem | dvdslegcd 16550 | An integer which divides both operands of the gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁))) | ||
Theorem | nndvdslegcd 16551 | A positive integer which divides both positive operands of the gcd operator is bounded by it. (Contributed by AV, 9-Aug-2020.) |
⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁))) | ||
Theorem | gcdcl 16552 | Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0) | ||
Theorem | gcdnncl 16553 | Closure of the gcd operator. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
Theorem | gcdcld 16554 | Closure of the gcd operator. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) ∈ ℕ0) | ||
Theorem | gcd2n0cl 16555 | Closure of the gcd operator if the second operand is not 0. (Contributed by AV, 10-Jul-2021.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
Theorem | zeqzmulgcd 16556* | An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵))) | ||
Theorem | divgcdz 16557 | An integer divided by the gcd of it and a nonzero integer is an integer. (Contributed by AV, 11-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ) | ||
Theorem | gcdf 16558 | Domain and codomain of the gcd operator. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 16-Nov-2013.) |
⊢ gcd :(ℤ × ℤ)⟶ℕ0 | ||
Theorem | gcdcom 16559 | The gcd operator is commutative. Theorem 1.4(a) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | ||
Theorem | gcdcomd 16560 | The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | ||
Theorem | divgcdnn 16561 | A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ) | ||
Theorem | divgcdnnr 16562 | A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐵 gcd 𝐴)) ∈ ℕ) | ||
Theorem | gcdeq0 16563 | The gcd of two integers is zero iff they are both zero. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = 0 ↔ (𝑀 = 0 ∧ 𝑁 = 0))) | ||
Theorem | gcdn0gt0 16564 | The gcd of two integers is positive (nonzero) iff they are not both zero. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ 0 < (𝑀 gcd 𝑁))) | ||
Theorem | gcd0id 16565 | The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁)) | ||
Theorem | gcdid0 16566 | The gcd of an integer and 0 is the integer's absolute value. Theorem 1.4(d)2 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ (𝑁 ∈ ℤ → (𝑁 gcd 0) = (abs‘𝑁)) | ||
Theorem | nn0gcdid0 16567 | The gcd of a nonnegative integer with 0 is itself. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 gcd 0) = 𝑁) | ||
Theorem | gcdneg 16568 | Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁)) | ||
Theorem | neggcd 16569 | Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd 𝑁) = (𝑀 gcd 𝑁)) | ||
Theorem | gcdaddmlem 16570 | Lemma for gcdaddm 16571. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ 𝐾 ∈ ℤ & ⊢ 𝑀 ∈ ℤ & ⊢ 𝑁 ∈ ℤ ⇒ ⊢ (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) | ||
Theorem | gcdaddm 16571 | Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀)))) | ||
Theorem | gcdadd 16572 | The GCD of two numbers is the same as the GCD of the left and their sum. (Contributed by Scott Fenton, 20-Apr-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + 𝑀))) | ||
Theorem | gcdid 16573 | The gcd of a number and itself is its absolute value. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁)) | ||
Theorem | gcd1 16574 | The gcd of a number with 1 is 1. Theorem 1.4(d)1 in [ApostolNT] p. 16. (Contributed by Mario Carneiro, 19-Feb-2014.) |
⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1) | ||
Theorem | gcdabs1 16575 | gcd of the absolute value of the first operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) gcd 𝑀) = (𝑁 gcd 𝑀)) | ||
Theorem | gcdabs2 16576 | gcd of the absolute value of the second operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd (abs‘𝑀)) = (𝑁 gcd 𝑀)) | ||
Theorem | gcdabs 16577 | The gcd of two integers is the same as that of their absolute values. (Contributed by Paul Chapman, 31-Mar-2011.) (Proof shortened by SN, 15-Sep-2024.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)) | ||
Theorem | gcdabsOLD 16578 | Obsolete version of gcdabs 16577 as of 15-Sep-2024. (Contributed by Paul Chapman, 31-Mar-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)) | ||
Theorem | modgcd 16579 | The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁)) | ||
Theorem | 1gcd 16580 | The GCD of one and an integer is one. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝑀 ∈ ℤ → (1 gcd 𝑀) = 1) | ||
Theorem | gcdmultipled 16581 | The greatest common divisor of a nonnegative integer 𝑀 and a multiple of it is 𝑀 itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd (𝑁 · 𝑀)) = 𝑀) | ||
Theorem | gcdmultiplez 16582 | The GCD of a multiple of an integer is the integer itself. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by AV, 12-Jan-2023.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) | ||
Theorem | gcdmultiple 16583 | The GCD of a multiple of a positive integer is the positive integer itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by AV, 12-Jan-2023.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) | ||
Theorem | dvdsgcdidd 16584 | The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) = 𝑀) | ||
Theorem | 6gcd4e2 16585 | The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
⊢ (6 gcd 4) = 2 | ||
Theorem | bezoutlem1 16586* | Lemma for bezout 16590. (Contributed by Mario Carneiro, 15-Mar-2014.) |
⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀)) | ||
Theorem | bezoutlem2 16587* | Lemma for bezout 16590. (Contributed by Mario Carneiro, 15-Mar-2014.) ( Revised by AV, 30-Sep-2020.) |
⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ 𝐺 = inf(𝑀, ℝ, < ) & ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑀) | ||
Theorem | bezoutlem3 16588* | Lemma for bezout 16590. (Contributed by Mario Carneiro, 22-Feb-2014.) ( Revised by AV, 30-Sep-2020.) |
⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ 𝐺 = inf(𝑀, ℝ, < ) & ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝑀 → 𝐺 ∥ 𝐶)) | ||
Theorem | bezoutlem4 16589* | Lemma for bezout 16590. (Contributed by Mario Carneiro, 22-Feb-2014.) |
⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ 𝐺 = inf(𝑀, ℝ, < ) & ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ 𝑀) | ||
Theorem | bezout 16590* | Bézout's identity: For any integers 𝐴 and 𝐵, there are integers 𝑥, 𝑦 such that (𝐴 gcd 𝐵) = 𝐴 · 𝑥 + 𝐵 · 𝑦. This is Metamath 100 proof #60. (Contributed by Mario Carneiro, 22-Feb-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) | ||
Theorem | dvdsgcd 16591 | An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁))) | ||
Theorem | dvdsgcdb 16592 | Biconditional form of dvdsgcd 16591. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ↔ 𝐾 ∥ (𝑀 gcd 𝑁))) | ||
Theorem | dfgcd2 16593* | Alternate definition of the gcd operator, see definition in [ApostolNT] p. 15. (Contributed by AV, 8-Aug-2021.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐷 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) | ||
Theorem | gcdass 16594 | Associative law for gcd operator. Theorem 1.4(b) in [ApostolNT] p. 16. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = (𝑁 gcd (𝑀 gcd 𝑃))) | ||
Theorem | mulgcd 16595 | Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 30-May-2014.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))) | ||
Theorem | absmulgcd 16596 | Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁)))) | ||
Theorem | mulgcdr 16597 | Reverse distribution law for the gcd operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 · 𝐶) gcd (𝐵 · 𝐶)) = ((𝐴 gcd 𝐵) · 𝐶)) | ||
Theorem | gcddiv 16598 | Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶 ∥ 𝐴 ∧ 𝐶 ∥ 𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))) | ||
Theorem | gcdzeq 16599 | A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 16600. (Contributed by AV, 1-Jul-2020.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) | ||
Theorem | gcdeq 16600 | 𝐴 is equal to its gcd with 𝐵 if and only if 𝐴 divides 𝐵. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by AV, 8-Aug-2021.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |