| Metamath
Proof Explorer Theorem List (p. 166 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | algfx 16501* | If 𝐹 reaches a fixed point when the countdown function 𝐶 reaches 0, 𝐹 remains fixed after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ 𝐹:𝑆⟶𝑆 & ⊢ 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴})) & ⊢ 𝐶:𝑆⟶ℕ0 & ⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) & ⊢ 𝑁 = (𝐶‘𝐴) & ⊢ (𝑧 ∈ 𝑆 → ((𝐶‘𝑧) = 0 → (𝐹‘𝑧) = 𝑧)) ⇒ ⊢ (𝐴 ∈ 𝑆 → (𝐾 ∈ (ℤ≥‘𝑁) → (𝑅‘𝐾) = (𝑅‘𝑁))) | ||
| Theorem | eucalgval2 16502* | The value of the step function 𝐸 for Euclid's Algorithm on an ordered pair. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
| ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀𝐸𝑁) = if(𝑁 = 0, 〈𝑀, 𝑁〉, 〈𝑁, (𝑀 mod 𝑁)〉)) | ||
| Theorem | eucalgval 16503* |
Euclid's Algorithm eucalg 16508 computes the greatest common divisor of two
nonnegative integers by repeatedly replacing the larger of them with its
remainder modulo the smaller until the remainder is 0.
The value of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
| ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) ⇒ ⊢ (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸‘𝑋) = if((2nd ‘𝑋) = 0, 𝑋, 〈(2nd ‘𝑋), ( mod ‘𝑋)〉)) | ||
| Theorem | eucalgf 16504* | Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
| ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) ⇒ ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) | ||
| Theorem | eucalginv 16505* | The invariant of the step function 𝐸 for Euclid's Algorithm is the gcd operator applied to the state. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.) |
| ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) ⇒ ⊢ (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸‘𝑋)) = ( gcd ‘𝑋)) | ||
| Theorem | eucalglt 16506* | The second member of the state decreases with each iteration of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.) |
| ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) ⇒ ⊢ (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸‘𝑋)) ≠ 0 → (2nd ‘(𝐸‘𝑋)) < (2nd ‘𝑋))) | ||
| Theorem | eucalgcvga 16507* | Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.) |
| ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) & ⊢ 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴})) & ⊢ 𝑁 = (2nd ‘𝐴) ⇒ ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘𝑁) → (2nd ‘(𝑅‘𝐾)) = 0)) | ||
| Theorem | eucalg 16508* |
Euclid's Algorithm computes the greatest common divisor of two
nonnegative integers by repeatedly replacing the larger of them with its
remainder modulo the smaller until the remainder is 0. Theorem 1.15 in
[ApostolNT] p. 20.
Upon halting, the first member of the final state (𝑅‘𝑁) is equal to the gcd of the values comprising the input state 〈𝑀, 𝑁〉. This is Metamath 100 proof #69 (greatest common divisor algorithm). (Contributed by Paul Chapman, 31-Mar-2011.) (Proof shortened by Mario Carneiro, 29-May-2014.) |
| ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) & ⊢ 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴})) & ⊢ 𝐴 = 〈𝑀, 𝑁〉 ⇒ ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (1st ‘(𝑅‘𝑁)) = (𝑀 gcd 𝑁)) | ||
According to Wikipedia ("Least common multiple", 27-Aug-2020, https://en.wikipedia.org/wiki/Least_common_multiple): "In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers a and b, usually denoted by lcm(a, b), is the smallest positive integer that is divisible by both a and b. Since division of integers by zero is undefined, this definition has meaning only if a and b are both different from zero. However, some authors define lcm(a,0) as 0 for all a, which is the result of taking the lcm to be the least upper bound in the lattice of divisibility. ... The lcm of more than two integers is also well-defined: it is the smallest positive integer hat is divisible by each of them." In this section, an operation calculating the least common multiple of two integers (df-lcm 16511) as well as a function mapping a set of integers to their least common multiple (df-lcmf 16512) are provided. Both definitions are valid for all integers, including negative integers and 0, obeying the above mentioned convention. It is shown by lcmfpr 16548 that the two definitions are compatible. | ||
| Syntax | clcm 16509 | Extend the definition of a class to include the least common multiple operator. |
| class lcm | ||
| Syntax | clcmf 16510 | Extend the definition of a class to include the least common multiple function. |
| class lcm | ||
| Definition | df-lcm 16511* | Define the lcm operator. For example, (6 lcm 9) = 18 (ex-lcm 30449). (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.) |
| ⊢ lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) | ||
| Definition | df-lcmf 16512* | Define the lcm function on a set of integers. (Contributed by AV, 21-Aug-2020.) (Revised by AV, 16-Sep-2020.) |
| ⊢ lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ))) | ||
| Theorem | lcmval 16513* | Value of the lcm operator. (𝑀 lcm 𝑁) is the least common multiple of 𝑀 and 𝑁. If either 𝑀 or 𝑁 is 0, the result is defined conventionally as 0. Contrast with df-gcd 16416 and gcdval 16417. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) | ||
| Theorem | lcmcom 16514 | The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀)) | ||
| Theorem | lcm0val 16515 | The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom 16514 for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) | ||
| Theorem | lcmn0val 16516* | The value of the lcm operator when both operands are nonzero. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) | ||
| Theorem | lcmcllem 16517* | Lemma for lcmn0cl 16518 and dvdslcm 16519. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) | ||
| Theorem | lcmn0cl 16518 | Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ) | ||
| Theorem | dvdslcm 16519 | The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) | ||
| Theorem | lcmledvds 16520 | A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾)) | ||
| Theorem | lcmeq0 16521 | The lcm of two integers is zero iff either is zero. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = 0 ↔ (𝑀 = 0 ∨ 𝑁 = 0))) | ||
| Theorem | lcmcl 16522 | Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | ||
| Theorem | gcddvdslcm 16523 | The greatest common divisor of two numbers divides their least common multiple. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ (𝑀 lcm 𝑁)) | ||
| Theorem | lcmneg 16524 | Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁)) | ||
| Theorem | neglcm 16525 | Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 lcm 𝑁) = (𝑀 lcm 𝑁)) | ||
| Theorem | lcmabs 16526 | The lcm of two integers is the same as that of their absolute values. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁)) | ||
| Theorem | lcmgcdlem 16527 | Lemma for lcmgcd 16528 and lcmdvds 16529. Prove them for positive 𝑀, 𝑁, and 𝐾. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)) ∧ ((𝐾 ∈ ℕ ∧ (𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾)) → (𝑀 lcm 𝑁) ∥ 𝐾))) | ||
| Theorem | lcmgcd 16528 |
The product of two numbers' least common multiple and greatest common
divisor is the absolute value of the product of the two numbers. In
particular, that absolute value is the least common multiple of two
coprime numbers, for which (𝑀 gcd 𝑁) = 1.
Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic 1arith 16849 or of Bézout's identity bezout 16464; see e.g., https://proofwiki.org/wiki/Product_of_GCD_and_LCM 16464 and https://math.stackexchange.com/a/470827 16464. This proof uses the latter to first confirm it for positive integers 𝑀 and 𝑁 (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val 16515 to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁))) | ||
| Theorem | lcmdvds 16529 | The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 lcm 𝑁) ∥ 𝐾)) | ||
| Theorem | lcmid 16530 | The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀)) | ||
| Theorem | lcm1 16531 | The lcm of an integer and 1 is the absolute value of the integer. (Contributed by AV, 23-Aug-2020.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 1) = (abs‘𝑀)) | ||
| Theorem | lcmgcdnn 16532 | The product of two positive integers' least common multiple and greatest common divisor is the product of the two integers. (Contributed by AV, 27-Aug-2020.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁)) | ||
| Theorem | lcmgcdeq 16533 | Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) ↔ (abs‘𝑀) = (abs‘𝑁))) | ||
| Theorem | lcmdvdsb 16534 | Biconditional form of lcmdvds 16529. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) ↔ (𝑀 lcm 𝑁) ∥ 𝐾)) | ||
| Theorem | lcmass 16535 | Associative law for lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃))) | ||
| Theorem | 3lcm2e6woprm 16536 | The least common multiple of three and two is six. In contrast to 3lcm2e6 16653, this proof does not use the property of 2 and 3 being prime, therefore it is much longer. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (3 lcm 2) = 6 | ||
| Theorem | 6lcm4e12 16537 | The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.) |
| ⊢ (6 lcm 4) = ;12 | ||
| Theorem | absproddvds 16538* | The absolute value of the product of the elements of a finite subset of the integers is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑍 ⊆ ℤ) & ⊢ (𝜑 → 𝑍 ∈ Fin) & ⊢ 𝑃 = (abs‘∏𝑧 ∈ 𝑍 𝑧) ⇒ ⊢ (𝜑 → ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑃) | ||
| Theorem | absprodnn 16539* | The absolute value of the product of the elements of a finite subset of the integers not containing 0 is a poitive integer. (Contributed by AV, 21-Aug-2020.) |
| ⊢ (𝜑 → 𝑍 ⊆ ℤ) & ⊢ (𝜑 → 𝑍 ∈ Fin) & ⊢ 𝑃 = (abs‘∏𝑧 ∈ 𝑍 𝑧) & ⊢ (𝜑 → 0 ∉ 𝑍) ⇒ ⊢ (𝜑 → 𝑃 ∈ ℕ) | ||
| Theorem | fissn0dvds 16540* | For each finite subset of the integers not containing 0 there is a positive integer which is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛) | ||
| Theorem | fissn0dvdsn0 16541* | For each finite subset of the integers not containing 0 there is a positive integer which is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛} ≠ ∅) | ||
| Theorem | lcmfval 16542* | Value of the lcm function. (lcm‘𝑍) is the least common multiple of the integers contained in the finite subset of integers 𝑍. If at least one of the elements of 𝑍 is 0, the result is defined conventionally as 0. (Contributed by AV, 21-Apr-2020.) (Revised by AV, 16-Sep-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < ))) | ||
| Theorem | lcmf0val 16543 | The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm‘𝑍) = 0) | ||
| Theorem | lcmfn0val 16544* | The value of the lcm function for a set without 0. (Contributed by AV, 21-Aug-2020.) (Revised by AV, 16-Sep-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) = inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) | ||
| Theorem | lcmfnnval 16545* | The value of the lcm function for a subset of the positive integers. (Contributed by AV, 21-Aug-2020.) (Revised by AV, 16-Sep-2020.) |
| ⊢ ((𝑍 ⊆ ℕ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) = inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) | ||
| Theorem | lcmfcllem 16546* | Lemma for lcmfn0cl 16547 and dvdslcmf 16552. (Contributed by AV, 21-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}) | ||
| Theorem | lcmfn0cl 16547 | Closure of the lcm function. (Contributed by AV, 21-Aug-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → (lcm‘𝑍) ∈ ℕ) | ||
| Theorem | lcmfpr 16548 | The value of the lcm function for an unordered pair is the value of the lcm operator for both elements. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = (𝑀 lcm 𝑁)) | ||
| Theorem | lcmfcl 16549 | Closure of the lcm function. (Contributed by AV, 21-Aug-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℕ0) | ||
| Theorem | lcmfnncl 16550 | Closure of the lcm function. (Contributed by AV, 20-Apr-2020.) |
| ⊢ ((𝑍 ⊆ ℕ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℕ) | ||
| Theorem | lcmfeq0b 16551 | The least common multiple of a set of integers is 0 iff at least one of its element is 0. (Contributed by AV, 21-Aug-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) = 0 ↔ 0 ∈ 𝑍)) | ||
| Theorem | dvdslcmf 16552* | The least common multiple of a set of integers is divisible by each of its elements. (Contributed by AV, 22-Aug-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) | ||
| Theorem | lcmfledvds 16553* | A positive integer which is divisible by all elements of a set of integers bounds the least common multiple of the set. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾) → (lcm‘𝑍) ≤ 𝐾)) | ||
| Theorem | lcmf 16554* | Characterization of the least common multiple of a set of integers (without 0): A positiven integer is the least common multiple of a set of integers iff it divides each of the elements of the set and every integer which divides each of the elements of the set is greater than or equal to this integer. (Contributed by AV, 22-Aug-2020.) |
| ⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm‘𝑍) ↔ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)))) | ||
| Theorem | lcmf0 16555 | The least common multiple of the empty set is 1. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ (lcm‘∅) = 1 | ||
| Theorem | lcmfsn 16556 | The least common multiple of a singleton is its absolute value. (Contributed by AV, 22-Aug-2020.) |
| ⊢ (𝑀 ∈ ℤ → (lcm‘{𝑀}) = (abs‘𝑀)) | ||
| Theorem | lcmftp 16557 | The least common multiple of a triple of integers is the least common multiple of the third integer and the least common multiple of the first two integers. Although there would be a shorter proof using lcmfunsn 16565, this explicit proof (not based on induction) should be kept. (Proof modification is discouraged.) (Contributed by AV, 23-Aug-2020.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶)) | ||
| Theorem | lcmfunsnlem1 16558* | Lemma for lcmfdvds 16563 and lcmfunsnlem 16562 (Induction step part 1). (Contributed by AV, 25-Aug-2020.) |
| ⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)) | ||
| Theorem | lcmfunsnlem2lem1 16559* | Lemma 1 for lcmfunsnlem2 16561. (Contributed by AV, 26-Aug-2020.) |
| ⊢ (((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)) | ||
| Theorem | lcmfunsnlem2lem2 16560* | Lemma 2 for lcmfunsnlem2 16561. (Contributed by AV, 26-Aug-2020.) |
| ⊢ (((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) | ||
| Theorem | lcmfunsnlem2 16561* | Lemma for lcmfunsn 16565 and lcmfunsnlem 16562 (Induction step part 2). (Contributed by AV, 26-Aug-2020.) |
| ⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) | ||
| Theorem | lcmfunsnlem 16562* | Lemma for lcmfdvds 16563 and lcmfunsn 16565. These two theorems must be proven simultaneously by induction on the cardinality of a finite set 𝑌, because they depend on each other. This can be seen by the two parts lcmfunsnlem1 16558 and lcmfunsnlem2 16561 of the induction step, each of them using both induction hypotheses. (Contributed by AV, 26-Aug-2020.) |
| ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → (lcm‘𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛))) | ||
| Theorem | lcmfdvds 16563* | The least common multiple of a set of integers divides any integer which is divisible by all elements of the set. (Contributed by AV, 26-Aug-2020.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → (lcm‘𝑍) ∥ 𝐾)) | ||
| Theorem | lcmfdvdsb 16564* | Biconditional form of lcmfdvds 16563. (Contributed by AV, 26-Aug-2020.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ (lcm‘𝑍) ∥ 𝐾)) | ||
| Theorem | lcmfunsn 16565 | The lcm function for a union of a set of integer and a singleton. (Contributed by AV, 26-Aug-2020.) |
| ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm‘𝑌) lcm 𝑁)) | ||
| Theorem | lcmfun 16566 | The lcm function for a union of sets of integers. (Contributed by AV, 27-Aug-2020.) |
| ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌 ∪ 𝑍)) = ((lcm‘𝑌) lcm (lcm‘𝑍))) | ||
| Theorem | lcmfass 16567 | Associative law for the lcm function. (Contributed by AV, 27-Aug-2020.) |
| ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = (lcm‘(𝑌 ∪ {(lcm‘𝑍)}))) | ||
| Theorem | lcmf2a3a4e12 16568 | The least common multiple of 2 , 3 and 4 is 12. (Contributed by AV, 27-Aug-2020.) |
| ⊢ (lcm‘{2, 3, 4}) = ;12 | ||
| Theorem | lcmflefac 16569 | The least common multiple of all positive integers less than or equal to an integer is less than or equal to the factorial of the integer. (Contributed by AV, 16-Aug-2020.) (Revised by AV, 27-Aug-2020.) |
| ⊢ (𝑁 ∈ ℕ → (lcm‘(1...𝑁)) ≤ (!‘𝑁)) | ||
According to Wikipedia "Coprime integers", see https://en.wikipedia.org/wiki/Coprime_integers (16-Aug-2020) "[...] two integers a and b are said to be relatively prime, mutually prime, or coprime [...] if the only positive integer (factor) that divides both of them is 1. Consequently, any prime number that divides one does not divide the other. This is equivalent to their greatest common divisor (gcd) being 1.". In the following, we use this equivalent characterization to say that 𝐴 ∈ ℤ and 𝐵 ∈ ℤ are coprime (or relatively prime) if (𝐴 gcd 𝐵) = 1. The equivalence of the definitions is shown by coprmgcdb 16570. The negation, i.e. two integers are not coprime, can be expressed either by (𝐴 gcd 𝐵) ≠ 1, see ncoprmgcdne1b 16571, or equivalently by 1 < (𝐴 gcd 𝐵), see ncoprmgcdgt1b 16572. A proof of Euclid's lemma based on coprimality is provided in coprmdvds 16574 (see euclemma 16634 for a version of Euclid's lemma for primes). | ||
| Theorem | coprmgcdb 16570* | Two positive integers are coprime, i.e. the only positive integer that divides both of them is 1, iff their greatest common divisor is 1. (Contributed by AV, 9-Aug-2020.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) | ||
| Theorem | ncoprmgcdne1b 16571* | Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. See prmdvdsncoprmbd 16648 for a version where the existential quantifier is restricted to primes. (Contributed by AV, 9-Aug-2020.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) | ||
| Theorem | ncoprmgcdgt1b 16572* | Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is greater than 1. (Contributed by AV, 9-Aug-2020.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ 1 < (𝐴 gcd 𝐵))) | ||
| Theorem | coprmdvds1 16573 | If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021.) |
| ⊢ ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1)) | ||
| Theorem | coprmdvds 16574 | Euclid's Lemma (see ProofWiki "Euclid's Lemma", 10-Jul-2021, https://proofwiki.org/wiki/Euclid's_Lemma): If an integer divides the product of two integers and is coprime to one of them, then it divides the other. See also theorem 1.5 in [ApostolNT] p. 16. Generalization of euclemma 16634. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by AV, 10-Jul-2021.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 · 𝑁) ∧ (𝐾 gcd 𝑀) = 1) → 𝐾 ∥ 𝑁)) | ||
| Theorem | coprmdvds2 16575 | If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 · 𝑁) ∥ 𝐾)) | ||
| Theorem | mulgcddvds 16576 | One half of rpmulgcd2 16577, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))) | ||
| Theorem | rpmulgcd2 16577 | If 𝑀 is relatively prime to 𝑁, then the GCD of 𝐾 with 𝑀 · 𝑁 is the product of the GCDs with 𝑀 and 𝑁 respectively. (Contributed by Mario Carneiro, 2-Jul-2015.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))) | ||
| Theorem | qredeq 16578 | Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃 ∧ 𝑁 = 𝑄)) | ||
| Theorem | qredeu 16579* | Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| ⊢ (𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) | ||
| Theorem | rpmul 16580 | If 𝐾 is relatively prime to 𝑀 and to 𝑁, it is also relatively prime to their product. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-Jul-2015.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd 𝑀) = 1 ∧ (𝐾 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = 1)) | ||
| Theorem | rpdvds 16581 | If 𝐾 is relatively prime to 𝑁 then it is also relatively prime to any divisor 𝑀 of 𝑁. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑀) = 1) | ||
| Theorem | coprmprod 16582* | The product of the elements of a sequence of pairwise coprime positive integers is coprime to a positive integer which is coprime to all integers of the sequence. (Contributed by AV, 18-Aug-2020.) |
| ⊢ (((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1) → (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)) | ||
| Theorem | coprmproddvdslem 16583* | Lemma for coprmproddvds 16584: Induction step. (Contributed by AV, 19-Aug-2020.) |
| ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) | ||
| Theorem | coprmproddvds 16584* | If a positive integer is divisible by each element of a set of pairwise coprime positive integers, then it is divisible by their product. (Contributed by AV, 19-Aug-2020.) |
| ⊢ (((𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin) ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾) | ||
| Theorem | congr 16585* | Definition of congruence by integer multiple (see ProofWiki "Congruence (Number Theory)", 11-Jul-2021, https://proofwiki.org/wiki/Definition:Congruence_(Number_Theory)): An integer 𝐴 is congruent to an integer 𝐵 modulo 𝑀 if their difference is a multiple of 𝑀. See also the definition in [ApostolNT] p. 104: "... 𝑎 is congruent to 𝑏 modulo 𝑚, and we write 𝑎≡𝑏 (mod 𝑚) if 𝑚 divides the difference 𝑎 − 𝑏", or Wikipedia "Modular arithmetic - Congruence", https://en.wikipedia.org/wiki/Modular_arithmetic#Congruence, 11-Jul-2021,: "Given an integer n > 1, called a modulus, two integers are said to be congruent modulo n, if n is a divisor of their difference (i.e., if there is an integer k such that a-b = kn)". (Contributed by AV, 11-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = (𝐴 − 𝐵))) | ||
| Theorem | divgcdcoprm0 16586 | Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1) | ||
| Theorem | divgcdcoprmex 16587* | Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)) | ||
| Theorem | cncongr1 16588 | One direction of the bicondition in cncongr 16590. Theorem 5.4 in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))) | ||
| Theorem | cncongr2 16589 | The other direction of the bicondition in cncongr 16590. (Contributed by AV, 11-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))) | ||
| Theorem | cncongr 16590 | Cancellability of Congruences (see ProofWiki "Cancellability of Congruences, https://proofwiki.org/wiki/Cancellability_of_Congruences, 10-Jul-2021): Two products with a common factor are congruent modulo a positive integer iff the other factors are congruent modulo the integer divided by the greatest common divisor of the integer and the common factor. See also Theorem 5.4 "Cancellation law" in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ (𝐴 mod 𝑀) = (𝐵 mod 𝑀))) | ||
| Theorem | cncongrcoprm 16591 | Corollary 1 of Cancellability of Congruences: Two products with a common factor are congruent modulo an integer being coprime to the common factor iff the other factors are congruent modulo the integer. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ (𝐶 gcd 𝑁) = 1)) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ (𝐴 mod 𝑁) = (𝐵 mod 𝑁))) | ||
Remark: to represent odd prime numbers, i.e., all prime numbers except 2, the idiom 𝑃 ∈ (ℙ ∖ {2}) is used. It is a little bit shorter than (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2). Both representations can be converted into each other by eldifsn 4739. | ||
| Syntax | cprime 16592 | Extend the definition of a class to include the set of prime numbers. |
| class ℙ | ||
| Definition | df-prm 16593* | Define the set of prime numbers. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o} | ||
| Theorem | isprm 16594* | The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) | ||
| Theorem | prmnn 16595 | A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | ||
| Theorem | prmz 16596 | A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.) |
| ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | ||
| Theorem | prmssnn 16597 | The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
| ⊢ ℙ ⊆ ℕ | ||
| Theorem | prmex 16598 | The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.) |
| ⊢ ℙ ∈ V | ||
| Theorem | 0nprm 16599 | 0 is not a prime number. Already Definition df-prm 16593 excludes 0 from being prime (ℙ = {𝑝 ∈ ℕ ∣ ...), but even if 𝑝 ∈ ℕ0 was allowed, the condition {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o would not hold for 𝑝 = 0, because {𝑛 ∈ ℕ ∣ 𝑛 ∥ 0} = ℕ, see dvds0 16192, and ¬ ℕ ≈ 2o (there are more than 2 positive integers). (Contributed by AV, 29-May-2023.) |
| ⊢ ¬ 0 ∈ ℙ | ||
| Theorem | 1nprm 16600 | 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
| ⊢ ¬ 1 ∈ ℙ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |