| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcmval | Structured version Visualization version GIF version | ||
| Description: Value of the lcm operator. (𝑀 lcm 𝑁) is the least common multiple of 𝑀 and 𝑁. If either 𝑀 or 𝑁 is 0, the result is defined conventionally as 0. Contrast with df-gcd 16465 and gcdval 16466. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.) |
| Ref | Expression |
|---|---|
| lcmval | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . . 4 ⊢ (𝑥 = 𝑀 → (𝑥 = 0 ↔ 𝑀 = 0)) | |
| 2 | 1 | orbi1d 916 | . . 3 ⊢ (𝑥 = 𝑀 → ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑦 = 0))) |
| 3 | breq1 5110 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝑥 ∥ 𝑛 ↔ 𝑀 ∥ 𝑛)) | |
| 4 | 3 | anbi1d 631 | . . . . 5 ⊢ (𝑥 = 𝑀 → ((𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛) ↔ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛))) |
| 5 | 4 | rabbidv 3413 | . . . 4 ⊢ (𝑥 = 𝑀 → {𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}) |
| 6 | 5 | infeq1d 9429 | . . 3 ⊢ (𝑥 = 𝑀 → inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) |
| 7 | 2, 6 | ifbieq2d 4515 | . 2 ⊢ (𝑥 = 𝑀 → if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) |
| 8 | eqeq1 2733 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0)) | |
| 9 | 8 | orbi2d 915 | . . 3 ⊢ (𝑦 = 𝑁 → ((𝑀 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑁 = 0))) |
| 10 | breq1 5110 | . . . . . 6 ⊢ (𝑦 = 𝑁 → (𝑦 ∥ 𝑛 ↔ 𝑁 ∥ 𝑛)) | |
| 11 | 10 | anbi2d 630 | . . . . 5 ⊢ (𝑦 = 𝑁 → ((𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛) ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛))) |
| 12 | 11 | rabbidv 3413 | . . . 4 ⊢ (𝑦 = 𝑁 → {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
| 13 | 12 | infeq1d 9429 | . . 3 ⊢ (𝑦 = 𝑁 → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
| 14 | 9, 13 | ifbieq2d 4515 | . 2 ⊢ (𝑦 = 𝑁 → if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| 15 | df-lcm 16560 | . 2 ⊢ lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) | |
| 16 | c0ex 11168 | . . 3 ⊢ 0 ∈ V | |
| 17 | ltso 11254 | . . . 4 ⊢ < Or ℝ | |
| 18 | 17 | infex 9446 | . . 3 ⊢ inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ∈ V |
| 19 | 16, 18 | ifex 4539 | . 2 ⊢ if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) ∈ V |
| 20 | 7, 14, 15, 19 | ovmpo 7549 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {crab 3405 ifcif 4488 class class class wbr 5107 (class class class)co 7387 infcinf 9392 ℝcr 11067 0cc0 11068 < clt 11208 ℕcn 12186 ℤcz 12529 ∥ cdvds 16222 lcm clcm 16558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-lcm 16560 |
| This theorem is referenced by: lcmcom 16563 lcm0val 16564 lcmn0val 16565 lcmass 16584 lcmfpr 16597 |
| Copyright terms: Public domain | W3C validator |