MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmval Structured version   Visualization version   GIF version

Theorem lcmval 15926
Description: Value of the lcm operator. (𝑀 lcm 𝑁) is the least common multiple of 𝑀 and 𝑁. If either 𝑀 or 𝑁 is 0, the result is defined conventionally as 0. Contrast with df-gcd 15834 and gcdval 15835. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmval ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁

Proof of Theorem lcmval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2802 . . . 4 (𝑥 = 𝑀 → (𝑥 = 0 ↔ 𝑀 = 0))
21orbi1d 914 . . 3 (𝑥 = 𝑀 → ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑦 = 0)))
3 breq1 5033 . . . . . 6 (𝑥 = 𝑀 → (𝑥𝑛𝑀𝑛))
43anbi1d 632 . . . . 5 (𝑥 = 𝑀 → ((𝑥𝑛𝑦𝑛) ↔ (𝑀𝑛𝑦𝑛)))
54rabbidv 3427 . . . 4 (𝑥 = 𝑀 → {𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)})
65infeq1d 8925 . . 3 (𝑥 = 𝑀 → inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)}, ℝ, < ))
72, 6ifbieq2d 4450 . 2 (𝑥 = 𝑀 → if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)}, ℝ, < )))
8 eqeq1 2802 . . . 4 (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0))
98orbi2d 913 . . 3 (𝑦 = 𝑁 → ((𝑀 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑁 = 0)))
10 breq1 5033 . . . . . 6 (𝑦 = 𝑁 → (𝑦𝑛𝑁𝑛))
1110anbi2d 631 . . . . 5 (𝑦 = 𝑁 → ((𝑀𝑛𝑦𝑛) ↔ (𝑀𝑛𝑁𝑛)))
1211rabbidv 3427 . . . 4 (𝑦 = 𝑁 → {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
1312infeq1d 8925 . . 3 (𝑦 = 𝑁 → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
149, 13ifbieq2d 4450 . 2 (𝑦 = 𝑁 → if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑦𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
15 df-lcm 15924 . 2 lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )))
16 c0ex 10624 . . 3 0 ∈ V
17 ltso 10710 . . . 4 < Or ℝ
1817infex 8941 . . 3 inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ∈ V
1916, 18ifex 4473 . 2 if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )) ∈ V
207, 14, 15, 19ovmpo 7289 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  {crab 3110  ifcif 4425   class class class wbr 5030  (class class class)co 7135  infcinf 8889  cr 10525  0cc0 10526   < clt 10664  cn 11625  cz 11969  cdvds 15599   lcm clcm 15922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-mulcl 10588  ax-i2m1 10594  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-lcm 15924
This theorem is referenced by:  lcmcom  15927  lcm0val  15928  lcmn0val  15929  lcmass  15948  lcmfpr  15961
  Copyright terms: Public domain W3C validator