| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcmval | Structured version Visualization version GIF version | ||
| Description: Value of the lcm operator. (𝑀 lcm 𝑁) is the least common multiple of 𝑀 and 𝑁. If either 𝑀 or 𝑁 is 0, the result is defined conventionally as 0. Contrast with df-gcd 16532 and gcdval 16533. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.) |
| Ref | Expression |
|---|---|
| lcmval | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2741 | . . . 4 ⊢ (𝑥 = 𝑀 → (𝑥 = 0 ↔ 𝑀 = 0)) | |
| 2 | 1 | orbi1d 917 | . . 3 ⊢ (𝑥 = 𝑀 → ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑦 = 0))) |
| 3 | breq1 5146 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝑥 ∥ 𝑛 ↔ 𝑀 ∥ 𝑛)) | |
| 4 | 3 | anbi1d 631 | . . . . 5 ⊢ (𝑥 = 𝑀 → ((𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛) ↔ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛))) |
| 5 | 4 | rabbidv 3444 | . . . 4 ⊢ (𝑥 = 𝑀 → {𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}) |
| 6 | 5 | infeq1d 9517 | . . 3 ⊢ (𝑥 = 𝑀 → inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) |
| 7 | 2, 6 | ifbieq2d 4552 | . 2 ⊢ (𝑥 = 𝑀 → if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) |
| 8 | eqeq1 2741 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0)) | |
| 9 | 8 | orbi2d 916 | . . 3 ⊢ (𝑦 = 𝑁 → ((𝑀 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑁 = 0))) |
| 10 | breq1 5146 | . . . . . 6 ⊢ (𝑦 = 𝑁 → (𝑦 ∥ 𝑛 ↔ 𝑁 ∥ 𝑛)) | |
| 11 | 10 | anbi2d 630 | . . . . 5 ⊢ (𝑦 = 𝑁 → ((𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛) ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛))) |
| 12 | 11 | rabbidv 3444 | . . . 4 ⊢ (𝑦 = 𝑁 → {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
| 13 | 12 | infeq1d 9517 | . . 3 ⊢ (𝑦 = 𝑁 → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
| 14 | 9, 13 | ifbieq2d 4552 | . 2 ⊢ (𝑦 = 𝑁 → if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| 15 | df-lcm 16627 | . 2 ⊢ lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) | |
| 16 | c0ex 11255 | . . 3 ⊢ 0 ∈ V | |
| 17 | ltso 11341 | . . . 4 ⊢ < Or ℝ | |
| 18 | 17 | infex 9533 | . . 3 ⊢ inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ∈ V |
| 19 | 16, 18 | ifex 4576 | . 2 ⊢ if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) ∈ V |
| 20 | 7, 14, 15, 19 | ovmpo 7593 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 {crab 3436 ifcif 4525 class class class wbr 5143 (class class class)co 7431 infcinf 9481 ℝcr 11154 0cc0 11155 < clt 11295 ℕcn 12266 ℤcz 12613 ∥ cdvds 16290 lcm clcm 16625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-mulcl 11217 ax-i2m1 11223 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-lcm 16627 |
| This theorem is referenced by: lcmcom 16630 lcm0val 16631 lcmn0val 16632 lcmass 16651 lcmfpr 16664 |
| Copyright terms: Public domain | W3C validator |