| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcmval | Structured version Visualization version GIF version | ||
| Description: Value of the lcm operator. (𝑀 lcm 𝑁) is the least common multiple of 𝑀 and 𝑁. If either 𝑀 or 𝑁 is 0, the result is defined conventionally as 0. Contrast with df-gcd 16514 and gcdval 16515. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.) |
| Ref | Expression |
|---|---|
| lcmval | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2739 | . . . 4 ⊢ (𝑥 = 𝑀 → (𝑥 = 0 ↔ 𝑀 = 0)) | |
| 2 | 1 | orbi1d 916 | . . 3 ⊢ (𝑥 = 𝑀 → ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑦 = 0))) |
| 3 | breq1 5122 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝑥 ∥ 𝑛 ↔ 𝑀 ∥ 𝑛)) | |
| 4 | 3 | anbi1d 631 | . . . . 5 ⊢ (𝑥 = 𝑀 → ((𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛) ↔ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛))) |
| 5 | 4 | rabbidv 3423 | . . . 4 ⊢ (𝑥 = 𝑀 → {𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}) |
| 6 | 5 | infeq1d 9490 | . . 3 ⊢ (𝑥 = 𝑀 → inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) |
| 7 | 2, 6 | ifbieq2d 4527 | . 2 ⊢ (𝑥 = 𝑀 → if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) |
| 8 | eqeq1 2739 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0)) | |
| 9 | 8 | orbi2d 915 | . . 3 ⊢ (𝑦 = 𝑁 → ((𝑀 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑁 = 0))) |
| 10 | breq1 5122 | . . . . . 6 ⊢ (𝑦 = 𝑁 → (𝑦 ∥ 𝑛 ↔ 𝑁 ∥ 𝑛)) | |
| 11 | 10 | anbi2d 630 | . . . . 5 ⊢ (𝑦 = 𝑁 → ((𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛) ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛))) |
| 12 | 11 | rabbidv 3423 | . . . 4 ⊢ (𝑦 = 𝑁 → {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
| 13 | 12 | infeq1d 9490 | . . 3 ⊢ (𝑦 = 𝑁 → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
| 14 | 9, 13 | ifbieq2d 4527 | . 2 ⊢ (𝑦 = 𝑁 → if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| 15 | df-lcm 16609 | . 2 ⊢ lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) | |
| 16 | c0ex 11229 | . . 3 ⊢ 0 ∈ V | |
| 17 | ltso 11315 | . . . 4 ⊢ < Or ℝ | |
| 18 | 17 | infex 9507 | . . 3 ⊢ inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ∈ V |
| 19 | 16, 18 | ifex 4551 | . 2 ⊢ if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) ∈ V |
| 20 | 7, 14, 15, 19 | ovmpo 7567 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 {crab 3415 ifcif 4500 class class class wbr 5119 (class class class)co 7405 infcinf 9453 ℝcr 11128 0cc0 11129 < clt 11269 ℕcn 12240 ℤcz 12588 ∥ cdvds 16272 lcm clcm 16607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 ax-i2m1 11197 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-lcm 16609 |
| This theorem is referenced by: lcmcom 16612 lcm0val 16613 lcmn0val 16614 lcmass 16633 lcmfpr 16646 |
| Copyright terms: Public domain | W3C validator |