| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcmval | Structured version Visualization version GIF version | ||
| Description: Value of the lcm operator. (𝑀 lcm 𝑁) is the least common multiple of 𝑀 and 𝑁. If either 𝑀 or 𝑁 is 0, the result is defined conventionally as 0. Contrast with df-gcd 16408 and gcdval 16409. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.) |
| Ref | Expression |
|---|---|
| lcmval | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2737 | . . . 4 ⊢ (𝑥 = 𝑀 → (𝑥 = 0 ↔ 𝑀 = 0)) | |
| 2 | 1 | orbi1d 916 | . . 3 ⊢ (𝑥 = 𝑀 → ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑦 = 0))) |
| 3 | breq1 5096 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝑥 ∥ 𝑛 ↔ 𝑀 ∥ 𝑛)) | |
| 4 | 3 | anbi1d 631 | . . . . 5 ⊢ (𝑥 = 𝑀 → ((𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛) ↔ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛))) |
| 5 | 4 | rabbidv 3403 | . . . 4 ⊢ (𝑥 = 𝑀 → {𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}) |
| 6 | 5 | infeq1d 9369 | . . 3 ⊢ (𝑥 = 𝑀 → inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) |
| 7 | 2, 6 | ifbieq2d 4501 | . 2 ⊢ (𝑥 = 𝑀 → if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) |
| 8 | eqeq1 2737 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0)) | |
| 9 | 8 | orbi2d 915 | . . 3 ⊢ (𝑦 = 𝑁 → ((𝑀 = 0 ∨ 𝑦 = 0) ↔ (𝑀 = 0 ∨ 𝑁 = 0))) |
| 10 | breq1 5096 | . . . . . 6 ⊢ (𝑦 = 𝑁 → (𝑦 ∥ 𝑛 ↔ 𝑁 ∥ 𝑛)) | |
| 11 | 10 | anbi2d 630 | . . . . 5 ⊢ (𝑦 = 𝑁 → ((𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛) ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛))) |
| 12 | 11 | rabbidv 3403 | . . . 4 ⊢ (𝑦 = 𝑁 → {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)} = {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
| 13 | 12 | infeq1d 9369 | . . 3 ⊢ (𝑦 = 𝑁 → inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
| 14 | 9, 13 | ifbieq2d 4501 | . 2 ⊢ (𝑦 = 𝑁 → if((𝑀 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| 15 | df-lcm 16503 | . 2 ⊢ lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) | |
| 16 | c0ex 11113 | . . 3 ⊢ 0 ∈ V | |
| 17 | ltso 11200 | . . . 4 ⊢ < Or ℝ | |
| 18 | 17 | infex 9386 | . . 3 ⊢ inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ) ∈ V |
| 19 | 16, 18 | ifex 4525 | . 2 ⊢ if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) ∈ V |
| 20 | 7, 14, 15, 19 | ovmpo 7512 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 {crab 3396 ifcif 4474 class class class wbr 5093 (class class class)co 7352 infcinf 9332 ℝcr 11012 0cc0 11013 < clt 11153 ℕcn 12132 ℤcz 12475 ∥ cdvds 16165 lcm clcm 16501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-mulcl 11075 ax-i2m1 11081 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-lcm 16503 |
| This theorem is referenced by: lcmcom 16506 lcm0val 16507 lcmn0val 16508 lcmass 16527 lcmfpr 16540 |
| Copyright terms: Public domain | W3C validator |