Detailed syntax breakdown of Definition df-lcmf
| Step | Hyp | Ref
| Expression |
| 1 | | clcmf 16565 |
. 2
class
lcm |
| 2 | | vz |
. . 3
setvar 𝑧 |
| 3 | | cz 12545 |
. . . 4
class
ℤ |
| 4 | 3 | cpw 4571 |
. . 3
class 𝒫
ℤ |
| 5 | | cc0 11086 |
. . . . 5
class
0 |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑧 |
| 7 | 5, 6 | wcel 2109 |
. . . 4
wff 0 ∈
𝑧 |
| 8 | | vm |
. . . . . . . . 9
setvar 𝑚 |
| 9 | 8 | cv 1539 |
. . . . . . . 8
class 𝑚 |
| 10 | | vn |
. . . . . . . . 9
setvar 𝑛 |
| 11 | 10 | cv 1539 |
. . . . . . . 8
class 𝑛 |
| 12 | | cdvds 16229 |
. . . . . . . 8
class
∥ |
| 13 | 9, 11, 12 | wbr 5115 |
. . . . . . 7
wff 𝑚 ∥ 𝑛 |
| 14 | 13, 8, 6 | wral 3046 |
. . . . . 6
wff
∀𝑚 ∈
𝑧 𝑚 ∥ 𝑛 |
| 15 | | cn 12197 |
. . . . . 6
class
ℕ |
| 16 | 14, 10, 15 | crab 3411 |
. . . . 5
class {𝑛 ∈ ℕ ∣
∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛} |
| 17 | | cr 11085 |
. . . . 5
class
ℝ |
| 18 | | clt 11226 |
. . . . 5
class
< |
| 19 | 16, 17, 18 | cinf 9410 |
. . . 4
class
inf({𝑛 ∈
ℕ ∣ ∀𝑚
∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ) |
| 20 | 7, 5, 19 | cif 4496 |
. . 3
class if(0
∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣
∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < )) |
| 21 | 2, 4, 20 | cmpt 5196 |
. 2
class (𝑧 ∈ 𝒫 ℤ
↦ if(0 ∈ 𝑧, 0,
inf({𝑛 ∈ ℕ
∣ ∀𝑚 ∈
𝑧 𝑚 ∥ 𝑛}, ℝ, < ))) |
| 22 | 1, 21 | wceq 1540 |
1
wff lcm
= (𝑧 ∈ 𝒫
ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ))) |