Detailed syntax breakdown of Definition df-lcmf
| Step | Hyp | Ref
 | Expression | 
| 1 |   | clcmf 16609 | 
. 2
class
lcm | 
| 2 |   | vz | 
. . 3
setvar 𝑧 | 
| 3 |   | cz 12597 | 
. . . 4
class
ℤ | 
| 4 | 3 | cpw 4582 | 
. . 3
class 𝒫
ℤ | 
| 5 |   | cc0 11138 | 
. . . . 5
class
0 | 
| 6 | 2 | cv 1538 | 
. . . . 5
class 𝑧 | 
| 7 | 5, 6 | wcel 2107 | 
. . . 4
wff 0 ∈
𝑧 | 
| 8 |   | vm | 
. . . . . . . . 9
setvar 𝑚 | 
| 9 | 8 | cv 1538 | 
. . . . . . . 8
class 𝑚 | 
| 10 |   | vn | 
. . . . . . . . 9
setvar 𝑛 | 
| 11 | 10 | cv 1538 | 
. . . . . . . 8
class 𝑛 | 
| 12 |   | cdvds 16273 | 
. . . . . . . 8
class 
∥ | 
| 13 | 9, 11, 12 | wbr 5125 | 
. . . . . . 7
wff 𝑚 ∥ 𝑛 | 
| 14 | 13, 8, 6 | wral 3050 | 
. . . . . 6
wff
∀𝑚 ∈
𝑧 𝑚 ∥ 𝑛 | 
| 15 |   | cn 12249 | 
. . . . . 6
class
ℕ | 
| 16 | 14, 10, 15 | crab 3420 | 
. . . . 5
class {𝑛 ∈ ℕ ∣
∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛} | 
| 17 |   | cr 11137 | 
. . . . 5
class
ℝ | 
| 18 |   | clt 11278 | 
. . . . 5
class 
< | 
| 19 | 16, 17, 18 | cinf 9464 | 
. . . 4
class
inf({𝑛 ∈
ℕ ∣ ∀𝑚
∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ) | 
| 20 | 7, 5, 19 | cif 4507 | 
. . 3
class if(0
∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣
∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < )) | 
| 21 | 2, 4, 20 | cmpt 5207 | 
. 2
class (𝑧 ∈ 𝒫 ℤ
↦ if(0 ∈ 𝑧, 0,
inf({𝑛 ∈ ℕ
∣ ∀𝑚 ∈
𝑧 𝑚 ∥ 𝑛}, ℝ, < ))) | 
| 22 | 1, 21 | wceq 1539 | 
1
wff lcm
= (𝑧 ∈ 𝒫
ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ))) |