Detailed syntax breakdown of Definition df-ldgis
Step | Hyp | Ref
| Expression |
1 | | cldgis 40862 |
. 2
class
ldgIdlSeq |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | vi |
. . . 4
setvar 𝑖 |
5 | 2 | cv 1538 |
. . . . . 6
class 𝑟 |
6 | | cpl1 21258 |
. . . . . 6
class
Poly1 |
7 | 5, 6 | cfv 6418 |
. . . . 5
class
(Poly1‘𝑟) |
8 | | clidl 20347 |
. . . . 5
class
LIdeal |
9 | 7, 8 | cfv 6418 |
. . . 4
class
(LIdeal‘(Poly1‘𝑟)) |
10 | | vx |
. . . . 5
setvar 𝑥 |
11 | | cn0 12163 |
. . . . 5
class
ℕ0 |
12 | | vk |
. . . . . . . . . . 11
setvar 𝑘 |
13 | 12 | cv 1538 |
. . . . . . . . . 10
class 𝑘 |
14 | | cdg1 25121 |
. . . . . . . . . . 11
class
deg1 |
15 | 5, 14 | cfv 6418 |
. . . . . . . . . 10
class (
deg1 ‘𝑟) |
16 | 13, 15 | cfv 6418 |
. . . . . . . . 9
class ((
deg1 ‘𝑟)‘𝑘) |
17 | 10 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
18 | | cle 10941 |
. . . . . . . . 9
class
≤ |
19 | 16, 17, 18 | wbr 5070 |
. . . . . . . 8
wff ((
deg1 ‘𝑟)‘𝑘) ≤ 𝑥 |
20 | | vj |
. . . . . . . . . 10
setvar 𝑗 |
21 | 20 | cv 1538 |
. . . . . . . . 9
class 𝑗 |
22 | | cco1 21259 |
. . . . . . . . . . 11
class
coe1 |
23 | 13, 22 | cfv 6418 |
. . . . . . . . . 10
class
(coe1‘𝑘) |
24 | 17, 23 | cfv 6418 |
. . . . . . . . 9
class
((coe1‘𝑘)‘𝑥) |
25 | 21, 24 | wceq 1539 |
. . . . . . . 8
wff 𝑗 = ((coe1‘𝑘)‘𝑥) |
26 | 19, 25 | wa 395 |
. . . . . . 7
wff (((
deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) |
27 | 4 | cv 1538 |
. . . . . . 7
class 𝑖 |
28 | 26, 12, 27 | wrex 3064 |
. . . . . 6
wff
∃𝑘 ∈
𝑖 ((( deg1
‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) |
29 | 28, 20 | cab 2715 |
. . . . 5
class {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))} |
30 | 10, 11, 29 | cmpt 5153 |
. . . 4
class (𝑥 ∈ ℕ0
↦ {𝑗 ∣
∃𝑘 ∈ 𝑖 ((( deg1
‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) |
31 | 4, 9, 30 | cmpt 5153 |
. . 3
class (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) |
32 | 2, 3, 31 | cmpt 5153 |
. 2
class (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
33 | 1, 32 | wceq 1539 |
1
wff ldgIdlSeq =
(𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |