Detailed syntax breakdown of Definition df-ldgis
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cldgis 43133 | . 2
class
ldgIdlSeq | 
| 2 |  | vr | . . 3
setvar 𝑟 | 
| 3 |  | cvv 3480 | . . 3
class
V | 
| 4 |  | vi | . . . 4
setvar 𝑖 | 
| 5 | 2 | cv 1539 | . . . . . 6
class 𝑟 | 
| 6 |  | cpl1 22178 | . . . . . 6
class
Poly1 | 
| 7 | 5, 6 | cfv 6561 | . . . . 5
class
(Poly1‘𝑟) | 
| 8 |  | clidl 21216 | . . . . 5
class
LIdeal | 
| 9 | 7, 8 | cfv 6561 | . . . 4
class
(LIdeal‘(Poly1‘𝑟)) | 
| 10 |  | vx | . . . . 5
setvar 𝑥 | 
| 11 |  | cn0 12526 | . . . . 5
class
ℕ0 | 
| 12 |  | vk | . . . . . . . . . . 11
setvar 𝑘 | 
| 13 | 12 | cv 1539 | . . . . . . . . . 10
class 𝑘 | 
| 14 |  | cdg1 26093 | . . . . . . . . . . 11
class
deg1 | 
| 15 | 5, 14 | cfv 6561 | . . . . . . . . . 10
class
(deg1‘𝑟) | 
| 16 | 13, 15 | cfv 6561 | . . . . . . . . 9
class
((deg1‘𝑟)‘𝑘) | 
| 17 | 10 | cv 1539 | . . . . . . . . 9
class 𝑥 | 
| 18 |  | cle 11296 | . . . . . . . . 9
class 
≤ | 
| 19 | 16, 17, 18 | wbr 5143 | . . . . . . . 8
wff
((deg1‘𝑟)‘𝑘) ≤ 𝑥 | 
| 20 |  | vj | . . . . . . . . . 10
setvar 𝑗 | 
| 21 | 20 | cv 1539 | . . . . . . . . 9
class 𝑗 | 
| 22 |  | cco1 22179 | . . . . . . . . . . 11
class
coe1 | 
| 23 | 13, 22 | cfv 6561 | . . . . . . . . . 10
class
(coe1‘𝑘) | 
| 24 | 17, 23 | cfv 6561 | . . . . . . . . 9
class
((coe1‘𝑘)‘𝑥) | 
| 25 | 21, 24 | wceq 1540 | . . . . . . . 8
wff 𝑗 = ((coe1‘𝑘)‘𝑥) | 
| 26 | 19, 25 | wa 395 | . . . . . . 7
wff
(((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) | 
| 27 | 4 | cv 1539 | . . . . . . 7
class 𝑖 | 
| 28 | 26, 12, 27 | wrex 3070 | . . . . . 6
wff
∃𝑘 ∈
𝑖
(((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) | 
| 29 | 28, 20 | cab 2714 | . . . . 5
class {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))} | 
| 30 | 10, 11, 29 | cmpt 5225 | . . . 4
class (𝑥 ∈ ℕ0
↦ {𝑗 ∣
∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) | 
| 31 | 4, 9, 30 | cmpt 5225 | . . 3
class (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) | 
| 32 | 2, 3, 31 | cmpt 5225 | . 2
class (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) | 
| 33 | 1, 32 | wceq 1540 | 1
wff ldgIdlSeq =
(𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |