Detailed syntax breakdown of Definition df-ldgis
| Step | Hyp | Ref
| Expression |
| 1 | | cldgis 43112 |
. 2
class
ldgIdlSeq |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vi |
. . . 4
setvar 𝑖 |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑟 |
| 6 | | cpl1 22117 |
. . . . . 6
class
Poly1 |
| 7 | 5, 6 | cfv 6536 |
. . . . 5
class
(Poly1‘𝑟) |
| 8 | | clidl 21172 |
. . . . 5
class
LIdeal |
| 9 | 7, 8 | cfv 6536 |
. . . 4
class
(LIdeal‘(Poly1‘𝑟)) |
| 10 | | vx |
. . . . 5
setvar 𝑥 |
| 11 | | cn0 12506 |
. . . . 5
class
ℕ0 |
| 12 | | vk |
. . . . . . . . . . 11
setvar 𝑘 |
| 13 | 12 | cv 1539 |
. . . . . . . . . 10
class 𝑘 |
| 14 | | cdg1 26016 |
. . . . . . . . . . 11
class
deg1 |
| 15 | 5, 14 | cfv 6536 |
. . . . . . . . . 10
class
(deg1‘𝑟) |
| 16 | 13, 15 | cfv 6536 |
. . . . . . . . 9
class
((deg1‘𝑟)‘𝑘) |
| 17 | 10 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 18 | | cle 11275 |
. . . . . . . . 9
class
≤ |
| 19 | 16, 17, 18 | wbr 5124 |
. . . . . . . 8
wff
((deg1‘𝑟)‘𝑘) ≤ 𝑥 |
| 20 | | vj |
. . . . . . . . . 10
setvar 𝑗 |
| 21 | 20 | cv 1539 |
. . . . . . . . 9
class 𝑗 |
| 22 | | cco1 22118 |
. . . . . . . . . . 11
class
coe1 |
| 23 | 13, 22 | cfv 6536 |
. . . . . . . . . 10
class
(coe1‘𝑘) |
| 24 | 17, 23 | cfv 6536 |
. . . . . . . . 9
class
((coe1‘𝑘)‘𝑥) |
| 25 | 21, 24 | wceq 1540 |
. . . . . . . 8
wff 𝑗 = ((coe1‘𝑘)‘𝑥) |
| 26 | 19, 25 | wa 395 |
. . . . . . 7
wff
(((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) |
| 27 | 4 | cv 1539 |
. . . . . . 7
class 𝑖 |
| 28 | 26, 12, 27 | wrex 3061 |
. . . . . 6
wff
∃𝑘 ∈
𝑖
(((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) |
| 29 | 28, 20 | cab 2714 |
. . . . 5
class {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))} |
| 30 | 10, 11, 29 | cmpt 5206 |
. . . 4
class (𝑥 ∈ ℕ0
↦ {𝑗 ∣
∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) |
| 31 | 4, 9, 30 | cmpt 5206 |
. . 3
class (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) |
| 32 | 2, 3, 31 | cmpt 5206 |
. 2
class (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
| 33 | 1, 32 | wceq 1540 |
1
wff ldgIdlSeq =
(𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |