Step | Hyp | Ref
| Expression |
1 | | lnrring 41839 |
. . 3
β’ (π
β LNoeR β π
β Ring) |
2 | | hbt.p |
. . . 4
β’ π = (Poly1βπ
) |
3 | 2 | ply1ring 21761 |
. . 3
β’ (π
β Ring β π β Ring) |
4 | 1, 3 | syl 17 |
. 2
β’ (π
β LNoeR β π β Ring) |
5 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ
) =
(Baseβπ
) |
6 | | eqid 2732 |
. . . . . . . 8
β’
(LIdealβπ
) =
(LIdealβπ
) |
7 | 5, 6 | islnr3 41842 |
. . . . . . 7
β’ (π
β LNoeR β (π
β Ring β§
(LIdealβπ
) β
(NoeACSβ(Baseβπ
)))) |
8 | 7 | simprbi 497 |
. . . . . 6
β’ (π
β LNoeR β
(LIdealβπ
) β
(NoeACSβ(Baseβπ
))) |
9 | 8 | adantr 481 |
. . . . 5
β’ ((π
β LNoeR β§ π β (LIdealβπ)) β (LIdealβπ
) β
(NoeACSβ(Baseβπ
))) |
10 | | eqid 2732 |
. . . . . . 7
β’
(LIdealβπ) =
(LIdealβπ) |
11 | | eqid 2732 |
. . . . . . 7
β’
(ldgIdlSeqβπ
)
= (ldgIdlSeqβπ
) |
12 | 2, 10, 11, 6 | hbtlem7 41852 |
. . . . . 6
β’ ((π
β Ring β§ π β (LIdealβπ)) β
((ldgIdlSeqβπ
)βπ):β0βΆ(LIdealβπ
)) |
13 | 1, 12 | sylan 580 |
. . . . 5
β’ ((π
β LNoeR β§ π β (LIdealβπ)) β
((ldgIdlSeqβπ
)βπ):β0βΆ(LIdealβπ
)) |
14 | 1 | ad2antrr 724 |
. . . . . . 7
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ π β β0) β π
β Ring) |
15 | | simplr 767 |
. . . . . . 7
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ π β β0) β π β (LIdealβπ)) |
16 | | simpr 485 |
. . . . . . 7
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ π β β0) β π β
β0) |
17 | | peano2nn0 12508 |
. . . . . . . 8
β’ (π β β0
β (π + 1) β
β0) |
18 | 17 | adantl 482 |
. . . . . . 7
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ π β β0) β (π + 1) β
β0) |
19 | | nn0re 12477 |
. . . . . . . . 9
β’ (π β β0
β π β
β) |
20 | 19 | lep1d 12141 |
. . . . . . . 8
β’ (π β β0
β π β€ (π + 1)) |
21 | 20 | adantl 482 |
. . . . . . 7
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ π β β0) β π β€ (π + 1)) |
22 | 2, 10, 11, 14, 15, 16, 18, 21 | hbtlem4 41853 |
. . . . . 6
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ π β β0) β
(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)βπ)β(π + 1))) |
23 | 22 | ralrimiva 3146 |
. . . . 5
β’ ((π
β LNoeR β§ π β (LIdealβπ)) β βπ β β0
(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)βπ)β(π + 1))) |
24 | | nacsfix 41435 |
. . . . 5
β’
(((LIdealβπ
)
β (NoeACSβ(Baseβπ
)) β§ ((ldgIdlSeqβπ
)βπ):β0βΆ(LIdealβπ
) β§ βπ β β0
(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)βπ)β(π + 1))) β βπ β β0 βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ)) |
25 | 9, 13, 23, 24 | syl3anc 1371 |
. . . 4
β’ ((π
β LNoeR β§ π β (LIdealβπ)) β βπ β β0
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ)) |
26 | | fzfi 13933 |
. . . . . . 7
β’
(0...π) β
Fin |
27 | | eqid 2732 |
. . . . . . . . 9
β’
(RSpanβπ) =
(RSpanβπ) |
28 | | simpll 765 |
. . . . . . . . 9
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ π β (0...π)) β π
β LNoeR) |
29 | | simplr 767 |
. . . . . . . . 9
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ π β (0...π)) β π β (LIdealβπ)) |
30 | | elfznn0 13590 |
. . . . . . . . . 10
β’ (π β (0...π) β π β β0) |
31 | 30 | adantl 482 |
. . . . . . . . 9
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ π β (0...π)) β π β β0) |
32 | 2, 10, 11, 27, 28, 29, 31 | hbtlem6 41856 |
. . . . . . . 8
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ π β (0...π)) β βπ β (π« π β© Fin)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)βπ))βπ)) |
33 | 32 | ralrimiva 3146 |
. . . . . . 7
β’ ((π
β LNoeR β§ π β (LIdealβπ)) β βπ β (0...π)βπ β (π« π β© Fin)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)βπ))βπ)) |
34 | | 2fveq3 6893 |
. . . . . . . . . 10
β’ (π = (πβπ) β ((ldgIdlSeqβπ
)β((RSpanβπ)βπ)) = ((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))) |
35 | 34 | fveq1d 6890 |
. . . . . . . . 9
β’ (π = (πβπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)βπ))βπ) = (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ)) |
36 | 35 | sseq2d 4013 |
. . . . . . . 8
β’ (π = (πβπ) β ((((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)βπ))βπ) β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) |
37 | 36 | ac6sfi 9283 |
. . . . . . 7
β’
(((0...π) β Fin
β§ βπ β
(0...π)βπ β (π« π β©
Fin)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)βπ))βπ)) β βπ(π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) |
38 | 26, 33, 37 | sylancr 587 |
. . . . . 6
β’ ((π
β LNoeR β§ π β (LIdealβπ)) β βπ(π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) |
39 | 38 | adantr 481 |
. . . . 5
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β βπ(π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) |
40 | | frn 6721 |
. . . . . . . . . . . . 13
β’ (π:(0...π)βΆ(π« π β© Fin) β ran π β (π« π β© Fin)) |
41 | 40 | ad2antrl 726 |
. . . . . . . . . . . 12
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β ran π β (π« π β© Fin)) |
42 | | inss1 4227 |
. . . . . . . . . . . 12
β’
(π« π β©
Fin) β π« π |
43 | 41, 42 | sstrdi 3993 |
. . . . . . . . . . 11
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β ran π β π« π) |
44 | 43 | unissd 4917 |
. . . . . . . . . 10
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βͺ ran
π β βͺ π« π) |
45 | | unipw 5449 |
. . . . . . . . . 10
β’ βͺ π« π = π |
46 | 44, 45 | sseqtrdi 4031 |
. . . . . . . . 9
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βͺ ran
π β π) |
47 | | simpllr 774 |
. . . . . . . . . 10
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β π β (LIdealβπ)) |
48 | | eqid 2732 |
. . . . . . . . . . 11
β’
(Baseβπ) =
(Baseβπ) |
49 | 48, 10 | lidlss 20825 |
. . . . . . . . . 10
β’ (π β (LIdealβπ) β π β (Baseβπ)) |
50 | 47, 49 | syl 17 |
. . . . . . . . 9
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β π β (Baseβπ)) |
51 | 46, 50 | sstrd 3991 |
. . . . . . . 8
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βͺ ran
π β (Baseβπ)) |
52 | | fvex 6901 |
. . . . . . . . 9
β’
(Baseβπ)
β V |
53 | 52 | elpw2 5344 |
. . . . . . . 8
β’ (βͺ ran π β π« (Baseβπ) β βͺ ran π β (Baseβπ)) |
54 | 51, 53 | sylibr 233 |
. . . . . . 7
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βͺ ran
π β π«
(Baseβπ)) |
55 | | simprl 769 |
. . . . . . . . 9
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β π:(0...π)βΆ(π« π β© Fin)) |
56 | | ffn 6714 |
. . . . . . . . 9
β’ (π:(0...π)βΆ(π« π β© Fin) β π Fn (0...π)) |
57 | | fniunfv 7242 |
. . . . . . . . 9
β’ (π Fn (0...π) β βͺ
π β (0...π)(πβπ) = βͺ ran π) |
58 | 55, 56, 57 | 3syl 18 |
. . . . . . . 8
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βͺ π β (0...π)(πβπ) = βͺ ran π) |
59 | | inss2 4228 |
. . . . . . . . . . 11
β’
(π« π β©
Fin) β Fin |
60 | 55 | ffvelcdmda 7083 |
. . . . . . . . . . 11
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ π β (0...π)) β (πβπ) β (π« π β© Fin)) |
61 | 59, 60 | sselid 3979 |
. . . . . . . . . 10
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ π β (0...π)) β (πβπ) β Fin) |
62 | 61 | ralrimiva 3146 |
. . . . . . . . 9
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βπ β (0...π)(πβπ) β Fin) |
63 | | iunfi 9336 |
. . . . . . . . 9
β’
(((0...π) β Fin
β§ βπ β
(0...π)(πβπ) β Fin) β βͺ π β (0...π)(πβπ) β Fin) |
64 | 26, 62, 63 | sylancr 587 |
. . . . . . . 8
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βͺ π β (0...π)(πβπ) β Fin) |
65 | 58, 64 | eqeltrrd 2834 |
. . . . . . 7
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βͺ ran
π β
Fin) |
66 | 54, 65 | elind 4193 |
. . . . . 6
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βͺ ran
π β (π«
(Baseβπ) β©
Fin)) |
67 | 1 | ad3antrrr 728 |
. . . . . . . 8
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β π
β Ring) |
68 | 4 | ad3antrrr 728 |
. . . . . . . . 9
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β π β Ring) |
69 | 27, 48, 10 | rspcl 20839 |
. . . . . . . . 9
β’ ((π β Ring β§ βͺ ran π β (Baseβπ)) β ((RSpanβπ)ββͺ ran
π) β
(LIdealβπ)) |
70 | 68, 51, 69 | syl2anc 584 |
. . . . . . . 8
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β ((RSpanβπ)ββͺ ran
π) β
(LIdealβπ)) |
71 | 27, 10 | rspssp 20843 |
. . . . . . . . 9
β’ ((π β Ring β§ π β (LIdealβπ) β§ βͺ ran π β π) β ((RSpanβπ)ββͺ ran
π) β π) |
72 | 68, 47, 46, 71 | syl3anc 1371 |
. . . . . . . 8
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β ((RSpanβπ)ββͺ ran
π) β π) |
73 | | nn0re 12477 |
. . . . . . . . . . 11
β’ (π β β0
β π β
β) |
74 | 73 | adantl 482 |
. . . . . . . . . 10
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ π β β0) β π β
β) |
75 | | simplrl 775 |
. . . . . . . . . . . 12
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β π β β0) |
76 | 75 | adantr 481 |
. . . . . . . . . . 11
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ π β β0) β π β
β0) |
77 | 76 | nn0red 12529 |
. . . . . . . . . 10
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ π β β0) β π β
β) |
78 | | simprl 769 |
. . . . . . . . . . . . . 14
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β π β β0) |
79 | | simprr 771 |
. . . . . . . . . . . . . 14
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β π β€ π) |
80 | 75 | adantr 481 |
. . . . . . . . . . . . . . 15
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β π β β0) |
81 | | fznn0 13589 |
. . . . . . . . . . . . . . 15
β’ (π β β0
β (π β (0...π) β (π β β0 β§ π β€ π))) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . 14
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β (π β (0...π) β (π β β0 β§ π β€ π))) |
83 | 78, 79, 82 | mpbir2and 711 |
. . . . . . . . . . . . 13
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β π β (0...π)) |
84 | | simplrr 776 |
. . . . . . . . . . . . 13
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ)) |
85 | | fveq2 6888 |
. . . . . . . . . . . . . . 15
β’ (π = π β (((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ)) |
86 | | 2fveq3 6893 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β ((RSpanβπ)β(πβπ)) = ((RSpanβπ)β(πβπ))) |
87 | 86 | fveq2d 6892 |
. . . . . . . . . . . . . . . 16
β’ (π = π β ((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ))) = ((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))) |
88 | | id 22 |
. . . . . . . . . . . . . . . 16
β’ (π = π β π = π) |
89 | 87, 88 | fveq12d 6895 |
. . . . . . . . . . . . . . 15
β’ (π = π β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ) = (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ)) |
90 | 85, 89 | sseq12d 4014 |
. . . . . . . . . . . . . 14
β’ (π = π β ((((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ) β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) |
91 | 90 | rspcva 3610 |
. . . . . . . . . . . . 13
β’ ((π β (0...π) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ)) β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ)) |
92 | 83, 84, 91 | syl2anc 584 |
. . . . . . . . . . . 12
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ)) |
93 | 67 | adantr 481 |
. . . . . . . . . . . . 13
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β π
β Ring) |
94 | | fvssunirn 6921 |
. . . . . . . . . . . . . . . 16
β’ (πβπ) β βͺ ran
π |
95 | 94, 51 | sstrid 3992 |
. . . . . . . . . . . . . . 15
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β (πβπ) β (Baseβπ)) |
96 | 27, 48, 10 | rspcl 20839 |
. . . . . . . . . . . . . . 15
β’ ((π β Ring β§ (πβπ) β (Baseβπ)) β ((RSpanβπ)β(πβπ)) β (LIdealβπ)) |
97 | 68, 95, 96 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β ((RSpanβπ)β(πβπ)) β (LIdealβπ)) |
98 | 97 | adantr 481 |
. . . . . . . . . . . . 13
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β ((RSpanβπ)β(πβπ)) β (LIdealβπ)) |
99 | 70 | adantr 481 |
. . . . . . . . . . . . 13
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β ((RSpanβπ)ββͺ ran
π) β
(LIdealβπ)) |
100 | 67, 3 | syl 17 |
. . . . . . . . . . . . . . 15
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β π β Ring) |
101 | 100 | adantr 481 |
. . . . . . . . . . . . . 14
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β π β Ring) |
102 | 27, 48 | rspssid 20840 |
. . . . . . . . . . . . . . . . 17
β’ ((π β Ring β§ βͺ ran π β (Baseβπ)) β βͺ ran
π β
((RSpanβπ)ββͺ ran
π)) |
103 | 68, 51, 102 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βͺ ran
π β
((RSpanβπ)ββͺ ran
π)) |
104 | 103 | adantr 481 |
. . . . . . . . . . . . . . 15
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β βͺ ran
π β
((RSpanβπ)ββͺ ran
π)) |
105 | 94, 104 | sstrid 3992 |
. . . . . . . . . . . . . 14
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β (πβπ) β ((RSpanβπ)ββͺ ran
π)) |
106 | 27, 10 | rspssp 20843 |
. . . . . . . . . . . . . 14
β’ ((π β Ring β§
((RSpanβπ)ββͺ ran
π) β
(LIdealβπ) β§
(πβπ) β ((RSpanβπ)ββͺ ran
π)) β
((RSpanβπ)β(πβπ)) β ((RSpanβπ)ββͺ ran
π)) |
107 | 101, 99, 105, 106 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β ((RSpanβπ)β(πβπ)) β ((RSpanβπ)ββͺ ran
π)) |
108 | 2, 10, 11, 93, 98, 99, 107, 78 | hbtlem3 41854 |
. . . . . . . . . . . 12
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) |
109 | 92, 108 | sstrd 3991 |
. . . . . . . . . . 11
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) |
110 | 109 | anassrs 468 |
. . . . . . . . . 10
β’
((((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ π β β0) β§ π β€ π) β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) |
111 | | nn0z 12579 |
. . . . . . . . . . . . . . . 16
β’ (π β β0
β π β
β€) |
112 | 111 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β β0
β§ (π β
β0 β§ π
β€ π)) β π β
β€) |
113 | | nn0z 12579 |
. . . . . . . . . . . . . . . 16
β’ (π β β0
β π β
β€) |
114 | 113 | ad2antrl 726 |
. . . . . . . . . . . . . . 15
β’ ((π β β0
β§ (π β
β0 β§ π
β€ π)) β π β
β€) |
115 | | simprr 771 |
. . . . . . . . . . . . . . 15
β’ ((π β β0
β§ (π β
β0 β§ π
β€ π)) β π β€ π) |
116 | | eluz2 12824 |
. . . . . . . . . . . . . . 15
β’ (π β
(β€β₯βπ) β (π β β€ β§ π β β€ β§ π β€ π)) |
117 | 112, 114,
115, 116 | syl3anbrc 1343 |
. . . . . . . . . . . . . 14
β’ ((π β β0
β§ (π β
β0 β§ π
β€ π)) β π β
(β€β₯βπ)) |
118 | 75, 117 | sylan 580 |
. . . . . . . . . . . . 13
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β π β (β€β₯βπ)) |
119 | | simprr 771 |
. . . . . . . . . . . . . 14
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ)) |
120 | 119 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ)) |
121 | | fveqeq2 6897 |
. . . . . . . . . . . . . 14
β’ (π = π β ((((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) |
122 | 121 | rspcva 3610 |
. . . . . . . . . . . . 13
β’ ((π β
(β€β₯βπ) β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ)) β (((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ)) |
123 | 118, 120,
122 | syl2anc 584 |
. . . . . . . . . . . 12
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β (((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ)) |
124 | 75 | nn0red 12529 |
. . . . . . . . . . . . . . . 16
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β π β β) |
125 | 124 | leidd 11776 |
. . . . . . . . . . . . . . 15
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β π β€ π) |
126 | 109 | expr 457 |
. . . . . . . . . . . . . . . . 17
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ π β β0) β (π β€ π β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ))) |
127 | 126 | ralrimiva 3146 |
. . . . . . . . . . . . . . . 16
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βπ β β0 (π β€ π β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ))) |
128 | | breq1 5150 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β (π β€ π β π β€ π)) |
129 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = π β (((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ)) |
130 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = π β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran
π))βπ) = (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) |
131 | 129, 130 | sseq12d 4014 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β ((((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ) β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ))) |
132 | 128, 131 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β ((π β€ π β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) β (π β€ π β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)))) |
133 | 132 | rspcva 3610 |
. . . . . . . . . . . . . . . 16
β’ ((π β β0
β§ βπ β
β0 (π β€
π β
(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ))) β (π β€ π β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ))) |
134 | 75, 127, 133 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β (π β€ π β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ))) |
135 | 125, 134 | mpd 15 |
. . . . . . . . . . . . . 14
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) |
136 | 135 | adantr 481 |
. . . . . . . . . . . . 13
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) |
137 | 67 | adantr 481 |
. . . . . . . . . . . . . 14
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β π
β Ring) |
138 | 70 | adantr 481 |
. . . . . . . . . . . . . 14
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β ((RSpanβπ)ββͺ ran
π) β
(LIdealβπ)) |
139 | 75 | adantr 481 |
. . . . . . . . . . . . . 14
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β π β β0) |
140 | | simprl 769 |
. . . . . . . . . . . . . 14
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β π β β0) |
141 | | simprr 771 |
. . . . . . . . . . . . . 14
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β π β€ π) |
142 | 2, 10, 11, 137, 138, 139, 140, 141 | hbtlem4 41853 |
. . . . . . . . . . . . 13
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) |
143 | 136, 142 | sstrd 3991 |
. . . . . . . . . . . 12
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) |
144 | 123, 143 | eqsstrd 4019 |
. . . . . . . . . . 11
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ (π β β0 β§ π β€ π)) β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) |
145 | 144 | anassrs 468 |
. . . . . . . . . 10
β’
((((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ π β β0) β§ π β€ π) β (((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) |
146 | 74, 77, 110, 145 | lecasei 11316 |
. . . . . . . . 9
β’
(((((π
β LNoeR
β§ π β
(LIdealβπ)) β§
(π β
β0 β§ βπ β (β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β§ π β β0) β
(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) |
147 | 146 | ralrimiva 3146 |
. . . . . . . 8
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βπ β β0
(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)ββͺ ran π))βπ)) |
148 | 2, 10, 11, 67, 70, 47, 72, 147 | hbtlem5 41855 |
. . . . . . 7
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β ((RSpanβπ)ββͺ ran
π) = π) |
149 | 148 | eqcomd 2738 |
. . . . . 6
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β π = ((RSpanβπ)ββͺ ran
π)) |
150 | | fveq2 6888 |
. . . . . . 7
β’ (π = βͺ
ran π β
((RSpanβπ)βπ) = ((RSpanβπ)ββͺ ran
π)) |
151 | 150 | rspceeqv 3632 |
. . . . . 6
β’ ((βͺ ran π β (π« (Baseβπ) β© Fin) β§ π = ((RSpanβπ)ββͺ ran π)) β βπ β (π« (Baseβπ) β© Fin)π = ((RSpanβπ)βπ)) |
152 | 66, 149, 151 | syl2anc 584 |
. . . . 5
β’ ((((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β§ (π:(0...π)βΆ(π« π β© Fin) β§ βπ β (0...π)(((ldgIdlSeqβπ
)βπ)βπ) β (((ldgIdlSeqβπ
)β((RSpanβπ)β(πβπ)))βπ))) β βπ β (π« (Baseβπ) β© Fin)π = ((RSpanβπ)βπ)) |
153 | 39, 152 | exlimddv 1938 |
. . . 4
β’ (((π
β LNoeR β§ π β (LIdealβπ)) β§ (π β β0 β§
βπ β
(β€β₯βπ)(((ldgIdlSeqβπ
)βπ)βπ) = (((ldgIdlSeqβπ
)βπ)βπ))) β βπ β (π« (Baseβπ) β© Fin)π = ((RSpanβπ)βπ)) |
154 | 25, 153 | rexlimddv 3161 |
. . 3
β’ ((π
β LNoeR β§ π β (LIdealβπ)) β βπ β (π«
(Baseβπ) β©
Fin)π = ((RSpanβπ)βπ)) |
155 | 154 | ralrimiva 3146 |
. 2
β’ (π
β LNoeR β
βπ β
(LIdealβπ)βπ β (π« (Baseβπ) β© Fin)π = ((RSpanβπ)βπ)) |
156 | 48, 10, 27 | islnr2 41841 |
. 2
β’ (π β LNoeR β (π β Ring β§ βπ β (LIdealβπ)βπ β (π« (Baseβπ) β© Fin)π = ((RSpanβπ)βπ))) |
157 | 4, 155, 156 | sylanbrc 583 |
1
β’ (π
β LNoeR β π β LNoeR) |