Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbt Structured version   Visualization version   GIF version

Theorem hbt 41206
Description: The Hilbert Basis Theorem - the ring of univariate polynomials over a Noetherian ring is a Noetherian ring. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
hbt.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
hbt (𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR)

Proof of Theorem hbt
Dummy variables 𝑎 𝑏 𝑐 𝑒 𝑓 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnrring 41188 . . 3 (𝑅 ∈ LNoeR → 𝑅 ∈ Ring)
2 hbt.p . . . 4 𝑃 = (Poly1𝑅)
32ply1ring 21517 . . 3 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . 2 (𝑅 ∈ LNoeR → 𝑃 ∈ Ring)
5 eqid 2736 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2736 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
75, 6islnr3 41191 . . . . . . 7 (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ (LIdeal‘𝑅) ∈ (NoeACS‘(Base‘𝑅))))
87simprbi 497 . . . . . 6 (𝑅 ∈ LNoeR → (LIdeal‘𝑅) ∈ (NoeACS‘(Base‘𝑅)))
98adantr 481 . . . . 5 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → (LIdeal‘𝑅) ∈ (NoeACS‘(Base‘𝑅)))
10 eqid 2736 . . . . . . 7 (LIdeal‘𝑃) = (LIdeal‘𝑃)
11 eqid 2736 . . . . . . 7 (ldgIdlSeq‘𝑅) = (ldgIdlSeq‘𝑅)
122, 10, 11, 6hbtlem7 41201 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅))
131, 12sylan 580 . . . . 5 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅))
141ad2antrr 723 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑅 ∈ Ring)
15 simplr 766 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑎 ∈ (LIdeal‘𝑃))
16 simpr 485 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑏 ∈ ℕ0)
17 peano2nn0 12366 . . . . . . . 8 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
1817adantl 482 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → (𝑏 + 1) ∈ ℕ0)
19 nn0re 12335 . . . . . . . . 9 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
2019lep1d 11999 . . . . . . . 8 (𝑏 ∈ ℕ0𝑏 ≤ (𝑏 + 1))
2120adantl 482 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑏 ≤ (𝑏 + 1))
222, 10, 11, 14, 15, 16, 18, 21hbtlem4 41202 . . . . . 6 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1)))
2322ralrimiva 3139 . . . . 5 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∀𝑏 ∈ ℕ0 (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1)))
24 nacsfix 40784 . . . . 5 (((LIdeal‘𝑅) ∈ (NoeACS‘(Base‘𝑅)) ∧ ((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅) ∧ ∀𝑏 ∈ ℕ0 (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1))) → ∃𝑐 ∈ ℕ0𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
259, 13, 23, 24syl3anc 1370 . . . 4 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑐 ∈ ℕ0𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
26 fzfi 13785 . . . . . . 7 (0...𝑐) ∈ Fin
27 eqid 2736 . . . . . . . . 9 (RSpan‘𝑃) = (RSpan‘𝑃)
28 simpll 764 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑅 ∈ LNoeR)
29 simplr 766 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑎 ∈ (LIdeal‘𝑃))
30 elfznn0 13442 . . . . . . . . . 10 (𝑒 ∈ (0...𝑐) → 𝑒 ∈ ℕ0)
3130adantl 482 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑒 ∈ ℕ0)
322, 10, 11, 27, 28, 29, 31hbtlem6 41205 . . . . . . . 8 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒))
3332ralrimiva 3139 . . . . . . 7 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∀𝑒 ∈ (0...𝑐)∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒))
34 2fveq3 6824 . . . . . . . . . 10 (𝑏 = (𝑓𝑒) → ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏)) = ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒))))
3534fveq1d 6821 . . . . . . . . 9 (𝑏 = (𝑓𝑒) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))
3635sseq2d 3963 . . . . . . . 8 (𝑏 = (𝑓𝑒) → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)))
3736ac6sfi 9144 . . . . . . 7 (((0...𝑐) ∈ Fin ∧ ∀𝑒 ∈ (0...𝑐)∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒)) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)))
3826, 33, 37sylancr 587 . . . . . 6 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)))
3938adantr 481 . . . . 5 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)))
40 frn 6652 . . . . . . . . . . . . 13 (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑎 ∩ Fin))
4140ad2antrl 725 . . . . . . . . . . . 12 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ⊆ (𝒫 𝑎 ∩ Fin))
42 inss1 4174 . . . . . . . . . . . 12 (𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑎
4341, 42sstrdi 3943 . . . . . . . . . . 11 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ⊆ 𝒫 𝑎)
4443unissd 4861 . . . . . . . . . 10 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 𝒫 𝑎)
45 unipw 5390 . . . . . . . . . 10 𝒫 𝑎 = 𝑎
4644, 45sseqtrdi 3981 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓𝑎)
47 simpllr 773 . . . . . . . . . 10 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑎 ∈ (LIdeal‘𝑃))
48 eqid 2736 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
4948, 10lidlss 20579 . . . . . . . . . 10 (𝑎 ∈ (LIdeal‘𝑃) → 𝑎 ⊆ (Base‘𝑃))
5047, 49syl 17 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑎 ⊆ (Base‘𝑃))
5146, 50sstrd 3941 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ⊆ (Base‘𝑃))
52 fvex 6832 . . . . . . . . 9 (Base‘𝑃) ∈ V
5352elpw2 5286 . . . . . . . 8 ( ran 𝑓 ∈ 𝒫 (Base‘𝑃) ↔ ran 𝑓 ⊆ (Base‘𝑃))
5451, 53sylibr 233 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ∈ 𝒫 (Base‘𝑃))
55 simprl 768 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin))
56 ffn 6645 . . . . . . . . 9 (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) → 𝑓 Fn (0...𝑐))
57 fniunfv 7170 . . . . . . . . 9 (𝑓 Fn (0...𝑐) → 𝑔 ∈ (0...𝑐)(𝑓𝑔) = ran 𝑓)
5855, 56, 573syl 18 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑔 ∈ (0...𝑐)(𝑓𝑔) = ran 𝑓)
59 inss2 4175 . . . . . . . . . . 11 (𝒫 𝑎 ∩ Fin) ⊆ Fin
6055ffvelcdmda 7011 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ (0...𝑐)) → (𝑓𝑔) ∈ (𝒫 𝑎 ∩ Fin))
6159, 60sselid 3929 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ (0...𝑐)) → (𝑓𝑔) ∈ Fin)
6261ralrimiva 3139 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ∀𝑔 ∈ (0...𝑐)(𝑓𝑔) ∈ Fin)
63 iunfi 9197 . . . . . . . . 9 (((0...𝑐) ∈ Fin ∧ ∀𝑔 ∈ (0...𝑐)(𝑓𝑔) ∈ Fin) → 𝑔 ∈ (0...𝑐)(𝑓𝑔) ∈ Fin)
6426, 62, 63sylancr 587 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑔 ∈ (0...𝑐)(𝑓𝑔) ∈ Fin)
6558, 64eqeltrrd 2838 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ∈ Fin)
6654, 65elind 4140 . . . . . 6 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ∈ (𝒫 (Base‘𝑃) ∩ Fin))
671ad3antrrr 727 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑅 ∈ Ring)
684ad3antrrr 727 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑃 ∈ Ring)
6927, 48, 10rspcl 20591 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ ran 𝑓 ⊆ (Base‘𝑃)) → ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃))
7068, 51, 69syl2anc 584 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃))
7127, 10rspssp 20595 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ 𝑎 ∈ (LIdeal‘𝑃) ∧ ran 𝑓𝑎) → ((RSpan‘𝑃)‘ ran 𝑓) ⊆ 𝑎)
7268, 47, 46, 71syl3anc 1370 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘ ran 𝑓) ⊆ 𝑎)
73 nn0re 12335 . . . . . . . . . . 11 (𝑔 ∈ ℕ0𝑔 ∈ ℝ)
7473adantl 482 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑔 ∈ ℝ)
75 simplrl 774 . . . . . . . . . . . 12 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑐 ∈ ℕ0)
7675adantr 481 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑐 ∈ ℕ0)
7776nn0red 12387 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑐 ∈ ℝ)
78 simprl 768 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑔 ∈ ℕ0)
79 simprr 770 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑔𝑐)
8075adantr 481 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑐 ∈ ℕ0)
81 fznn0 13441 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℕ0 → (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ ℕ0𝑔𝑐)))
8280, 81syl 17 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ ℕ0𝑔𝑐)))
8378, 79, 82mpbir2and 710 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑔 ∈ (0...𝑐))
84 simplrr 775 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))
85 fveq2 6819 . . . . . . . . . . . . . . 15 (𝑒 = 𝑔 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔))
86 2fveq3 6824 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑔 → ((RSpan‘𝑃)‘(𝑓𝑒)) = ((RSpan‘𝑃)‘(𝑓𝑔)))
8786fveq2d 6823 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑔 → ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒))) = ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔))))
88 id 22 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑔𝑒 = 𝑔)
8987, 88fveq12d 6826 . . . . . . . . . . . . . . 15 (𝑒 = 𝑔 → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔))
9085, 89sseq12d 3964 . . . . . . . . . . . . . 14 (𝑒 = 𝑔 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔)))
9190rspcva 3568 . . . . . . . . . . . . 13 ((𝑔 ∈ (0...𝑐) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔))
9283, 84, 91syl2anc 584 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔))
9367adantr 481 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑅 ∈ Ring)
94 fvssunirn 6852 . . . . . . . . . . . . . . . 16 (𝑓𝑔) ⊆ ran 𝑓
9594, 51sstrid 3942 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → (𝑓𝑔) ⊆ (Base‘𝑃))
9627, 48, 10rspcl 20591 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Ring ∧ (𝑓𝑔) ⊆ (Base‘𝑃)) → ((RSpan‘𝑃)‘(𝑓𝑔)) ∈ (LIdeal‘𝑃))
9768, 95, 96syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘(𝑓𝑔)) ∈ (LIdeal‘𝑃))
9897adantr 481 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ((RSpan‘𝑃)‘(𝑓𝑔)) ∈ (LIdeal‘𝑃))
9970adantr 481 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃))
10067, 3syl 17 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑃 ∈ Ring)
101100adantr 481 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑃 ∈ Ring)
10227, 48rspssid 20592 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Ring ∧ ran 𝑓 ⊆ (Base‘𝑃)) → ran 𝑓 ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
10368, 51, 102syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
104103adantr 481 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ran 𝑓 ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
10594, 104sstrid 3942 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (𝑓𝑔) ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
10627, 10rspssp 20595 . . . . . . . . . . . . . 14 ((𝑃 ∈ Ring ∧ ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃) ∧ (𝑓𝑔) ⊆ ((RSpan‘𝑃)‘ ran 𝑓)) → ((RSpan‘𝑃)‘(𝑓𝑔)) ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
107101, 99, 105, 106syl3anc 1370 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ((RSpan‘𝑃)‘(𝑓𝑔)) ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
1082, 10, 11, 93, 98, 99, 107, 78hbtlem3 41203 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
10992, 108sstrd 3941 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
110109anassrs 468 . . . . . . . . . 10 ((((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) ∧ 𝑔𝑐) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
111 nn0z 12436 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℕ0𝑐 ∈ ℤ)
112111adantr 481 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℕ0 ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑐 ∈ ℤ)
113 nn0z 12436 . . . . . . . . . . . . . . . 16 (𝑔 ∈ ℕ0𝑔 ∈ ℤ)
114113ad2antrl 725 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℕ0 ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑔 ∈ ℤ)
115 simprr 770 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℕ0 ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑐𝑔)
116 eluz2 12681 . . . . . . . . . . . . . . 15 (𝑔 ∈ (ℤ𝑐) ↔ (𝑐 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑐𝑔))
117112, 114, 115, 116syl3anbrc 1342 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℕ0 ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑔 ∈ (ℤ𝑐))
11875, 117sylan 580 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑔 ∈ (ℤ𝑐))
119 simprr 770 . . . . . . . . . . . . . 14 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
120119ad2antrr 723 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
121 fveqeq2 6828 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)))
122121rspcva 3568 . . . . . . . . . . . . 13 ((𝑔 ∈ (ℤ𝑐) ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
123118, 120, 122syl2anc 584 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
12475nn0red 12387 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑐 ∈ ℝ)
125124leidd 11634 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑐𝑐)
126109expr 457 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → (𝑔𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔)))
127126ralrimiva 3139 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ∀𝑔 ∈ ℕ0 (𝑔𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔)))
128 breq1 5092 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑐 → (𝑔𝑐𝑐𝑐))
129 fveq2 6819 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
130 fveq2 6819 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐))
131129, 130sseq12d 3964 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑐 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐)))
132128, 131imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑐 → ((𝑔𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔)) ↔ (𝑐𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐))))
133132rspcva 3568 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℕ0 ∧ ∀𝑔 ∈ ℕ0 (𝑔𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))) → (𝑐𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐)))
13475, 127, 133syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → (𝑐𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐)))
135125, 134mpd 15 . . . . . . . . . . . . . 14 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐))
136135adantr 481 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐))
13767adantr 481 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑅 ∈ Ring)
13870adantr 481 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃))
13975adantr 481 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑐 ∈ ℕ0)
140 simprl 768 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑔 ∈ ℕ0)
141 simprr 770 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑐𝑔)
1422, 10, 11, 137, 138, 139, 140, 141hbtlem4 41202 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
143136, 142sstrd 3941 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
144123, 143eqsstrd 3969 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
145144anassrs 468 . . . . . . . . . 10 ((((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) ∧ 𝑐𝑔) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
14674, 77, 110, 145lecasei 11174 . . . . . . . . 9 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
147146ralrimiva 3139 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ∀𝑔 ∈ ℕ0 (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
1482, 10, 11, 67, 70, 47, 72, 147hbtlem5 41204 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘ ran 𝑓) = 𝑎)
149148eqcomd 2742 . . . . . 6 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑎 = ((RSpan‘𝑃)‘ ran 𝑓))
150 fveq2 6819 . . . . . . 7 (𝑏 = ran 𝑓 → ((RSpan‘𝑃)‘𝑏) = ((RSpan‘𝑃)‘ ran 𝑓))
151150rspceeqv 3584 . . . . . 6 (( ran 𝑓 ∈ (𝒫 (Base‘𝑃) ∩ Fin) ∧ 𝑎 = ((RSpan‘𝑃)‘ ran 𝑓)) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
15266, 149, 151syl2anc 584 . . . . 5 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
15339, 152exlimddv 1937 . . . 4 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
15425, 153rexlimddv 3154 . . 3 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
155154ralrimiva 3139 . 2 (𝑅 ∈ LNoeR → ∀𝑎 ∈ (LIdeal‘𝑃)∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
15648, 10, 27islnr2 41190 . 2 (𝑃 ∈ LNoeR ↔ (𝑃 ∈ Ring ∧ ∀𝑎 ∈ (LIdeal‘𝑃)∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)))
1574, 155, 156sylanbrc 583 1 (𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wex 1780  wcel 2105  wral 3061  wrex 3070  cin 3896  wss 3897  𝒫 cpw 4546   cuni 4851   ciun 4938   class class class wbr 5089  ran crn 5615   Fn wfn 6468  wf 6469  cfv 6473  (class class class)co 7329  Fincfn 8796  cr 10963  0cc0 10964  1c1 10965   + caddc 10967  cle 11103  0cn0 12326  cz 12412  cuz 12675  ...cfz 13332  Basecbs 17001  Ringcrg 19870  LIdealclidl 20530  RSpancrsp 20531  Poly1cpl1 21446  NoeACScnacs 40774  LNoeRclnr 41185  ldgIdlSeqcldgis 41197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042  ax-addf 11043  ax-mulf 11044
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-of 7587  df-ofr 7588  df-om 7773  df-1st 7891  df-2nd 7892  df-supp 8040  df-tpos 8104  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-map 8680  df-pm 8681  df-ixp 8749  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-fsupp 9219  df-sup 9291  df-oi 9359  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-fz 13333  df-fzo 13476  df-seq 13815  df-hash 14138  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-starv 17066  df-sca 17067  df-vsca 17068  df-ip 17069  df-tset 17070  df-ple 17071  df-ocomp 17072  df-ds 17073  df-unif 17074  df-0g 17241  df-gsum 17242  df-mre 17384  df-mrc 17385  df-acs 17387  df-proset 18102  df-drs 18103  df-poset 18120  df-ipo 18335  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-mhm 18519  df-submnd 18520  df-grp 18668  df-minusg 18669  df-sbg 18670  df-mulg 18789  df-subg 18840  df-ghm 18920  df-cntz 19011  df-cmn 19475  df-abl 19476  df-mgp 19808  df-ur 19825  df-ring 19872  df-cring 19873  df-oppr 19949  df-dvdsr 19970  df-unit 19971  df-invr 20001  df-subrg 20119  df-lmod 20223  df-lss 20292  df-lsp 20332  df-sra 20532  df-rgmod 20533  df-lidl 20534  df-rsp 20535  df-rlreg 20652  df-cnfld 20696  df-ascl 21160  df-psr 21210  df-mvr 21211  df-mpl 21212  df-opsr 21214  df-psr1 21449  df-vr1 21450  df-ply1 21451  df-coe1 21452  df-mdeg 25315  df-deg1 25316  df-nacs 40775  df-lfig 41144  df-lnm 41152  df-lnr 41186  df-ldgis 41198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator