Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbt Structured version   Visualization version   GIF version

Theorem hbt 42386
Description: The Hilbert Basis Theorem - the ring of univariate polynomials over a Noetherian ring is a Noetherian ring. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
hbt.p 𝑃 = (Poly1β€˜π‘…)
Assertion
Ref Expression
hbt (𝑅 ∈ LNoeR β†’ 𝑃 ∈ LNoeR)

Proof of Theorem hbt
Dummy variables π‘Ž 𝑏 𝑐 𝑒 𝑓 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnrring 42368 . . 3 (𝑅 ∈ LNoeR β†’ 𝑅 ∈ Ring)
2 hbt.p . . . 4 𝑃 = (Poly1β€˜π‘…)
32ply1ring 22091 . . 3 (𝑅 ∈ Ring β†’ 𝑃 ∈ Ring)
41, 3syl 17 . 2 (𝑅 ∈ LNoeR β†’ 𝑃 ∈ Ring)
5 eqid 2724 . . . . . . . 8 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
6 eqid 2724 . . . . . . . 8 (LIdealβ€˜π‘…) = (LIdealβ€˜π‘…)
75, 6islnr3 42371 . . . . . . 7 (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ (LIdealβ€˜π‘…) ∈ (NoeACSβ€˜(Baseβ€˜π‘…))))
87simprbi 496 . . . . . 6 (𝑅 ∈ LNoeR β†’ (LIdealβ€˜π‘…) ∈ (NoeACSβ€˜(Baseβ€˜π‘…)))
98adantr 480 . . . . 5 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ (LIdealβ€˜π‘…) ∈ (NoeACSβ€˜(Baseβ€˜π‘…)))
10 eqid 2724 . . . . . . 7 (LIdealβ€˜π‘ƒ) = (LIdealβ€˜π‘ƒ)
11 eqid 2724 . . . . . . 7 (ldgIdlSeqβ€˜π‘…) = (ldgIdlSeqβ€˜π‘…)
122, 10, 11, 6hbtlem7 42381 . . . . . 6 ((𝑅 ∈ Ring ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ ((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž):β„•0⟢(LIdealβ€˜π‘…))
131, 12sylan 579 . . . . 5 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ ((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž):β„•0⟢(LIdealβ€˜π‘…))
141ad2antrr 723 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑏 ∈ β„•0) β†’ 𝑅 ∈ Ring)
15 simplr 766 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑏 ∈ β„•0) β†’ π‘Ž ∈ (LIdealβ€˜π‘ƒ))
16 simpr 484 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑏 ∈ β„•0) β†’ 𝑏 ∈ β„•0)
17 peano2nn0 12510 . . . . . . . 8 (𝑏 ∈ β„•0 β†’ (𝑏 + 1) ∈ β„•0)
1817adantl 481 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑏 ∈ β„•0) β†’ (𝑏 + 1) ∈ β„•0)
19 nn0re 12479 . . . . . . . . 9 (𝑏 ∈ β„•0 β†’ 𝑏 ∈ ℝ)
2019lep1d 12143 . . . . . . . 8 (𝑏 ∈ β„•0 β†’ 𝑏 ≀ (𝑏 + 1))
2120adantl 481 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑏 ∈ β„•0) β†’ 𝑏 ≀ (𝑏 + 1))
222, 10, 11, 14, 15, 16, 18, 21hbtlem4 42382 . . . . . 6 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑏 ∈ β„•0) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜(𝑏 + 1)))
2322ralrimiva 3138 . . . . 5 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ βˆ€π‘ ∈ β„•0 (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜(𝑏 + 1)))
24 nacsfix 41964 . . . . 5 (((LIdealβ€˜π‘…) ∈ (NoeACSβ€˜(Baseβ€˜π‘…)) ∧ ((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž):β„•0⟢(LIdealβ€˜π‘…) ∧ βˆ€π‘ ∈ β„•0 (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜(𝑏 + 1))) β†’ βˆƒπ‘ ∈ β„•0 βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
259, 13, 23, 24syl3anc 1368 . . . 4 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ βˆƒπ‘ ∈ β„•0 βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
26 fzfi 13935 . . . . . . 7 (0...𝑐) ∈ Fin
27 eqid 2724 . . . . . . . . 9 (RSpanβ€˜π‘ƒ) = (RSpanβ€˜π‘ƒ)
28 simpll 764 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑒 ∈ (0...𝑐)) β†’ 𝑅 ∈ LNoeR)
29 simplr 766 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑒 ∈ (0...𝑐)) β†’ π‘Ž ∈ (LIdealβ€˜π‘ƒ))
30 elfznn0 13592 . . . . . . . . . 10 (𝑒 ∈ (0...𝑐) β†’ 𝑒 ∈ β„•0)
3130adantl 481 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑒 ∈ (0...𝑐)) β†’ 𝑒 ∈ β„•0)
322, 10, 11, 27, 28, 29, 31hbtlem6 42385 . . . . . . . 8 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑒 ∈ (0...𝑐)) β†’ βˆƒπ‘ ∈ (𝒫 π‘Ž ∩ Fin)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜π‘))β€˜π‘’))
3332ralrimiva 3138 . . . . . . 7 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ βˆ€π‘’ ∈ (0...𝑐)βˆƒπ‘ ∈ (𝒫 π‘Ž ∩ Fin)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜π‘))β€˜π‘’))
34 2fveq3 6887 . . . . . . . . . 10 (𝑏 = (π‘“β€˜π‘’) β†’ ((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜π‘)) = ((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’))))
3534fveq1d 6884 . . . . . . . . 9 (𝑏 = (π‘“β€˜π‘’) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜π‘))β€˜π‘’) = (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))
3635sseq2d 4007 . . . . . . . 8 (𝑏 = (π‘“β€˜π‘’) β†’ ((((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜π‘))β€˜π‘’) ↔ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’)))
3736ac6sfi 9284 . . . . . . 7 (((0...𝑐) ∈ Fin ∧ βˆ€π‘’ ∈ (0...𝑐)βˆƒπ‘ ∈ (𝒫 π‘Ž ∩ Fin)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜π‘))β€˜π‘’)) β†’ βˆƒπ‘“(𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’)))
3826, 33, 37sylancr 586 . . . . . 6 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ βˆƒπ‘“(𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’)))
3938adantr 480 . . . . 5 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) β†’ βˆƒπ‘“(𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’)))
40 frn 6715 . . . . . . . . . . . . 13 (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) β†’ ran 𝑓 βŠ† (𝒫 π‘Ž ∩ Fin))
4140ad2antrl 725 . . . . . . . . . . . 12 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ ran 𝑓 βŠ† (𝒫 π‘Ž ∩ Fin))
42 inss1 4221 . . . . . . . . . . . 12 (𝒫 π‘Ž ∩ Fin) βŠ† 𝒫 π‘Ž
4341, 42sstrdi 3987 . . . . . . . . . . 11 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ ran 𝑓 βŠ† 𝒫 π‘Ž)
4443unissd 4910 . . . . . . . . . 10 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 βŠ† βˆͺ 𝒫 π‘Ž)
45 unipw 5441 . . . . . . . . . 10 βˆͺ 𝒫 π‘Ž = π‘Ž
4644, 45sseqtrdi 4025 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 βŠ† π‘Ž)
47 simpllr 773 . . . . . . . . . 10 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ π‘Ž ∈ (LIdealβ€˜π‘ƒ))
48 eqid 2724 . . . . . . . . . . 11 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
4948, 10lidlss 21063 . . . . . . . . . 10 (π‘Ž ∈ (LIdealβ€˜π‘ƒ) β†’ π‘Ž βŠ† (Baseβ€˜π‘ƒ))
5047, 49syl 17 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ π‘Ž βŠ† (Baseβ€˜π‘ƒ))
5146, 50sstrd 3985 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 βŠ† (Baseβ€˜π‘ƒ))
52 fvex 6895 . . . . . . . . 9 (Baseβ€˜π‘ƒ) ∈ V
5352elpw2 5336 . . . . . . . 8 (βˆͺ ran 𝑓 ∈ 𝒫 (Baseβ€˜π‘ƒ) ↔ βˆͺ ran 𝑓 βŠ† (Baseβ€˜π‘ƒ))
5451, 53sylibr 233 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 ∈ 𝒫 (Baseβ€˜π‘ƒ))
55 simprl 768 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin))
56 ffn 6708 . . . . . . . . 9 (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) β†’ 𝑓 Fn (0...𝑐))
57 fniunfv 7239 . . . . . . . . 9 (𝑓 Fn (0...𝑐) β†’ βˆͺ 𝑔 ∈ (0...𝑐)(π‘“β€˜π‘”) = βˆͺ ran 𝑓)
5855, 56, 573syl 18 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ 𝑔 ∈ (0...𝑐)(π‘“β€˜π‘”) = βˆͺ ran 𝑓)
59 inss2 4222 . . . . . . . . . . 11 (𝒫 π‘Ž ∩ Fin) βŠ† Fin
6055ffvelcdmda 7077 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ (0...𝑐)) β†’ (π‘“β€˜π‘”) ∈ (𝒫 π‘Ž ∩ Fin))
6159, 60sselid 3973 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ (0...𝑐)) β†’ (π‘“β€˜π‘”) ∈ Fin)
6261ralrimiva 3138 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆ€π‘” ∈ (0...𝑐)(π‘“β€˜π‘”) ∈ Fin)
63 iunfi 9337 . . . . . . . . 9 (((0...𝑐) ∈ Fin ∧ βˆ€π‘” ∈ (0...𝑐)(π‘“β€˜π‘”) ∈ Fin) β†’ βˆͺ 𝑔 ∈ (0...𝑐)(π‘“β€˜π‘”) ∈ Fin)
6426, 62, 63sylancr 586 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ 𝑔 ∈ (0...𝑐)(π‘“β€˜π‘”) ∈ Fin)
6558, 64eqeltrrd 2826 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 ∈ Fin)
6654, 65elind 4187 . . . . . 6 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin))
671ad3antrrr 727 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑅 ∈ Ring)
684ad3antrrr 727 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑃 ∈ Ring)
6927, 48, 10rspcl 21086 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ βˆͺ ran 𝑓 βŠ† (Baseβ€˜π‘ƒ)) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) ∈ (LIdealβ€˜π‘ƒ))
7068, 51, 69syl2anc 583 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) ∈ (LIdealβ€˜π‘ƒ))
7127, 10rspssp 21090 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ) ∧ βˆͺ ran 𝑓 βŠ† π‘Ž) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) βŠ† π‘Ž)
7268, 47, 46, 71syl3anc 1368 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) βŠ† π‘Ž)
73 nn0re 12479 . . . . . . . . . . 11 (𝑔 ∈ β„•0 β†’ 𝑔 ∈ ℝ)
7473adantl 481 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) β†’ 𝑔 ∈ ℝ)
75 simplrl 774 . . . . . . . . . . . 12 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑐 ∈ β„•0)
7675adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) β†’ 𝑐 ∈ β„•0)
7776nn0red 12531 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) β†’ 𝑐 ∈ ℝ)
78 simprl 768 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ 𝑔 ∈ β„•0)
79 simprr 770 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ 𝑔 ≀ 𝑐)
8075adantr 480 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ 𝑐 ∈ β„•0)
81 fznn0 13591 . . . . . . . . . . . . . . 15 (𝑐 ∈ β„•0 β†’ (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)))
8280, 81syl 17 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)))
8378, 79, 82mpbir2and 710 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ 𝑔 ∈ (0...𝑐))
84 simplrr 775 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))
85 fveq2 6882 . . . . . . . . . . . . . . 15 (𝑒 = 𝑔 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”))
86 2fveq3 6887 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑔 β†’ ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)) = ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)))
8786fveq2d 6886 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑔 β†’ ((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’))) = ((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”))))
88 id 22 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑔 β†’ 𝑒 = 𝑔)
8987, 88fveq12d 6889 . . . . . . . . . . . . . . 15 (𝑒 = 𝑔 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’) = (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)))β€˜π‘”))
9085, 89sseq12d 4008 . . . . . . . . . . . . . 14 (𝑒 = 𝑔 β†’ ((((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’) ↔ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)))β€˜π‘”)))
9190rspcva 3602 . . . . . . . . . . . . 13 ((𝑔 ∈ (0...𝑐) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)))β€˜π‘”))
9283, 84, 91syl2anc 583 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)))β€˜π‘”))
9367adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ 𝑅 ∈ Ring)
94 fvssunirn 6915 . . . . . . . . . . . . . . . 16 (π‘“β€˜π‘”) βŠ† βˆͺ ran 𝑓
9594, 51sstrid 3986 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ (π‘“β€˜π‘”) βŠ† (Baseβ€˜π‘ƒ))
9627, 48, 10rspcl 21086 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Ring ∧ (π‘“β€˜π‘”) βŠ† (Baseβ€˜π‘ƒ)) β†’ ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)) ∈ (LIdealβ€˜π‘ƒ))
9768, 95, 96syl2anc 583 . . . . . . . . . . . . . 14 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)) ∈ (LIdealβ€˜π‘ƒ))
9897adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)) ∈ (LIdealβ€˜π‘ƒ))
9970adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) ∈ (LIdealβ€˜π‘ƒ))
10067, 3syl 17 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑃 ∈ Ring)
101100adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ 𝑃 ∈ Ring)
10227, 48rspssid 21087 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Ring ∧ βˆͺ ran 𝑓 βŠ† (Baseβ€˜π‘ƒ)) β†’ βˆͺ ran 𝑓 βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
10368, 51, 102syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
104103adantr 480 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ βˆͺ ran 𝑓 βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
10594, 104sstrid 3986 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ (π‘“β€˜π‘”) βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
10627, 10rspssp 21090 . . . . . . . . . . . . . 14 ((𝑃 ∈ Ring ∧ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) ∈ (LIdealβ€˜π‘ƒ) ∧ (π‘“β€˜π‘”) βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓)) β†’ ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)) βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
107101, 99, 105, 106syl3anc 1368 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)) βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
1082, 10, 11, 93, 98, 99, 107, 78hbtlem3 42383 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)))β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
10992, 108sstrd 3985 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
110109anassrs 467 . . . . . . . . . 10 ((((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) ∧ 𝑔 ≀ 𝑐) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
111 nn0z 12581 . . . . . . . . . . . . . . . 16 (𝑐 ∈ β„•0 β†’ 𝑐 ∈ β„€)
112111adantr 480 . . . . . . . . . . . . . . 15 ((𝑐 ∈ β„•0 ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑐 ∈ β„€)
113 nn0z 12581 . . . . . . . . . . . . . . . 16 (𝑔 ∈ β„•0 β†’ 𝑔 ∈ β„€)
114113ad2antrl 725 . . . . . . . . . . . . . . 15 ((𝑐 ∈ β„•0 ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑔 ∈ β„€)
115 simprr 770 . . . . . . . . . . . . . . 15 ((𝑐 ∈ β„•0 ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑐 ≀ 𝑔)
116 eluz2 12826 . . . . . . . . . . . . . . 15 (𝑔 ∈ (β„€β‰₯β€˜π‘) ↔ (𝑐 ∈ β„€ ∧ 𝑔 ∈ β„€ ∧ 𝑐 ≀ 𝑔))
117112, 114, 115, 116syl3anbrc 1340 . . . . . . . . . . . . . 14 ((𝑐 ∈ β„•0 ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑔 ∈ (β„€β‰₯β€˜π‘))
11875, 117sylan 579 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑔 ∈ (β„€β‰₯β€˜π‘))
119 simprr 770 . . . . . . . . . . . . . 14 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) β†’ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
120119ad2antrr 723 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
121 fveqeq2 6891 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 β†’ ((((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) ↔ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘)))
122121rspcva 3602 . . . . . . . . . . . . 13 ((𝑔 ∈ (β„€β‰₯β€˜π‘) ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
123118, 120, 122syl2anc 583 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
12475nn0red 12531 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑐 ∈ ℝ)
125124leidd 11778 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑐 ≀ 𝑐)
126109expr 456 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) β†’ (𝑔 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”)))
127126ralrimiva 3138 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆ€π‘” ∈ β„•0 (𝑔 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”)))
128 breq1 5142 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑐 β†’ (𝑔 ≀ 𝑐 ↔ 𝑐 ≀ 𝑐))
129 fveq2 6882 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
130 fveq2 6882 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”) = (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘))
131129, 130sseq12d 4008 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑐 β†’ ((((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”) ↔ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘)))
132128, 131imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑐 β†’ ((𝑔 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”)) ↔ (𝑐 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘))))
133132rspcva 3602 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ β„•0 ∧ βˆ€π‘” ∈ β„•0 (𝑔 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))) β†’ (𝑐 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘)))
13475, 127, 133syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ (𝑐 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘)))
135125, 134mpd 15 . . . . . . . . . . . . . 14 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘))
136135adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘))
13767adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑅 ∈ Ring)
13870adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) ∈ (LIdealβ€˜π‘ƒ))
13975adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑐 ∈ β„•0)
140 simprl 768 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑔 ∈ β„•0)
141 simprr 770 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑐 ≀ 𝑔)
1422, 10, 11, 137, 138, 139, 140, 141hbtlem4 42382 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
143136, 142sstrd 3985 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
144123, 143eqsstrd 4013 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
145144anassrs 467 . . . . . . . . . 10 ((((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) ∧ 𝑐 ≀ 𝑔) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
14674, 77, 110, 145lecasei 11318 . . . . . . . . 9 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
147146ralrimiva 3138 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆ€π‘” ∈ β„•0 (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
1482, 10, 11, 67, 70, 47, 72, 147hbtlem5 42384 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) = π‘Ž)
149148eqcomd 2730 . . . . . 6 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
150 fveq2 6882 . . . . . . 7 (𝑏 = βˆͺ ran 𝑓 β†’ ((RSpanβ€˜π‘ƒ)β€˜π‘) = ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
151150rspceeqv 3626 . . . . . 6 ((βˆͺ ran 𝑓 ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin) ∧ π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓)) β†’ βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin)π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜π‘))
15266, 149, 151syl2anc 583 . . . . 5 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin)π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜π‘))
15339, 152exlimddv 1930 . . . 4 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) β†’ βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin)π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜π‘))
15425, 153rexlimddv 3153 . . 3 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin)π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜π‘))
155154ralrimiva 3138 . 2 (𝑅 ∈ LNoeR β†’ βˆ€π‘Ž ∈ (LIdealβ€˜π‘ƒ)βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin)π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜π‘))
15648, 10, 27islnr2 42370 . 2 (𝑃 ∈ LNoeR ↔ (𝑃 ∈ Ring ∧ βˆ€π‘Ž ∈ (LIdealβ€˜π‘ƒ)βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin)π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜π‘)))
1574, 155, 156sylanbrc 582 1 (𝑅 ∈ LNoeR β†’ 𝑃 ∈ LNoeR)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  βˆ€wral 3053  βˆƒwrex 3062   ∩ cin 3940   βŠ† wss 3941  π’« cpw 4595  βˆͺ cuni 4900  βˆͺ ciun 4988   class class class wbr 5139  ran crn 5668   Fn wfn 6529  βŸΆwf 6530  β€˜cfv 6534  (class class class)co 7402  Fincfn 8936  β„cr 11106  0cc0 11107  1c1 11108   + caddc 11110   ≀ cle 11247  β„•0cn0 12470  β„€cz 12556  β„€β‰₯cuz 12820  ...cfz 13482  Basecbs 17145  Ringcrg 20130  LIdealclidl 21057  RSpancrsp 21058  Poly1cpl1 22021  NoeACScnacs 41954  LNoeRclnr 42365  ldgIdlSeqcldgis 42377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-ofr 7665  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-sup 9434  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-fz 13483  df-fzo 13626  df-seq 13965  df-hash 14289  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ocomp 17219  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-0g 17388  df-gsum 17389  df-prds 17394  df-pws 17396  df-mre 17531  df-mrc 17532  df-acs 17534  df-proset 18252  df-drs 18253  df-poset 18270  df-ipo 18485  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-grp 18858  df-minusg 18859  df-sbg 18860  df-mulg 18988  df-subg 19042  df-ghm 19131  df-cntz 19225  df-cmn 19694  df-abl 19695  df-mgp 20032  df-rng 20050  df-ur 20079  df-ring 20132  df-cring 20133  df-oppr 20228  df-dvdsr 20251  df-unit 20252  df-invr 20282  df-subrng 20438  df-subrg 20463  df-lmod 20700  df-lss 20771  df-lsp 20811  df-sra 21013  df-rgmod 21014  df-lidl 21059  df-rsp 21060  df-rlreg 21185  df-cnfld 21231  df-ascl 21720  df-psr 21773  df-mvr 21774  df-mpl 21775  df-opsr 21777  df-psr1 22024  df-vr1 22025  df-ply1 22026  df-coe1 22027  df-mdeg 25912  df-deg1 25913  df-nacs 41955  df-lfig 42324  df-lnm 42332  df-lnr 42366  df-ldgis 42378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator