Step | Hyp | Ref
| Expression |
1 | | lnrring 40937 |
. . 3
⊢ (𝑅 ∈ LNoeR → 𝑅 ∈ Ring) |
2 | | hbt.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
3 | 2 | ply1ring 21419 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
4 | 1, 3 | syl 17 |
. 2
⊢ (𝑅 ∈ LNoeR → 𝑃 ∈ Ring) |
5 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
6 | | eqid 2738 |
. . . . . . . 8
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
7 | 5, 6 | islnr3 40940 |
. . . . . . 7
⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧
(LIdeal‘𝑅) ∈
(NoeACS‘(Base‘𝑅)))) |
8 | 7 | simprbi 497 |
. . . . . 6
⊢ (𝑅 ∈ LNoeR →
(LIdeal‘𝑅) ∈
(NoeACS‘(Base‘𝑅))) |
9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → (LIdeal‘𝑅) ∈
(NoeACS‘(Base‘𝑅))) |
10 | | eqid 2738 |
. . . . . . 7
⊢
(LIdeal‘𝑃) =
(LIdeal‘𝑃) |
11 | | eqid 2738 |
. . . . . . 7
⊢
(ldgIdlSeq‘𝑅)
= (ldgIdlSeq‘𝑅) |
12 | 2, 10, 11, 6 | hbtlem7 40950 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ (LIdeal‘𝑃)) →
((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅)) |
13 | 1, 12 | sylan 580 |
. . . . 5
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) →
((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅)) |
14 | 1 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑅 ∈ Ring) |
15 | | simplr 766 |
. . . . . . 7
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑎 ∈ (LIdeal‘𝑃)) |
16 | | simpr 485 |
. . . . . . 7
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑏 ∈
ℕ0) |
17 | | peano2nn0 12273 |
. . . . . . . 8
⊢ (𝑏 ∈ ℕ0
→ (𝑏 + 1) ∈
ℕ0) |
18 | 17 | adantl 482 |
. . . . . . 7
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → (𝑏 + 1) ∈
ℕ0) |
19 | | nn0re 12242 |
. . . . . . . . 9
⊢ (𝑏 ∈ ℕ0
→ 𝑏 ∈
ℝ) |
20 | 19 | lep1d 11906 |
. . . . . . . 8
⊢ (𝑏 ∈ ℕ0
→ 𝑏 ≤ (𝑏 + 1)) |
21 | 20 | adantl 482 |
. . . . . . 7
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑏 ≤ (𝑏 + 1)) |
22 | 2, 10, 11, 14, 15, 16, 18, 21 | hbtlem4 40951 |
. . . . . 6
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) →
(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1))) |
23 | 22 | ralrimiva 3103 |
. . . . 5
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∀𝑏 ∈ ℕ0
(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1))) |
24 | | nacsfix 40534 |
. . . . 5
⊢
(((LIdeal‘𝑅)
∈ (NoeACS‘(Base‘𝑅)) ∧ ((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅) ∧ ∀𝑏 ∈ ℕ0
(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1))) → ∃𝑐 ∈ ℕ0 ∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
25 | 9, 13, 23, 24 | syl3anc 1370 |
. . . 4
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑐 ∈ ℕ0
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
26 | | fzfi 13692 |
. . . . . . 7
⊢
(0...𝑐) ∈
Fin |
27 | | eqid 2738 |
. . . . . . . . 9
⊢
(RSpan‘𝑃) =
(RSpan‘𝑃) |
28 | | simpll 764 |
. . . . . . . . 9
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑅 ∈ LNoeR) |
29 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑎 ∈ (LIdeal‘𝑃)) |
30 | | elfznn0 13349 |
. . . . . . . . . 10
⊢ (𝑒 ∈ (0...𝑐) → 𝑒 ∈ ℕ0) |
31 | 30 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑒 ∈ ℕ0) |
32 | 2, 10, 11, 27, 28, 29, 31 | hbtlem6 40954 |
. . . . . . . 8
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒)) |
33 | 32 | ralrimiva 3103 |
. . . . . . 7
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∀𝑒 ∈ (0...𝑐)∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒)) |
34 | | 2fveq3 6779 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑓‘𝑒) → ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏)) = ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))) |
35 | 34 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑏 = (𝑓‘𝑒) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒)) |
36 | 35 | sseq2d 3953 |
. . . . . . . 8
⊢ (𝑏 = (𝑓‘𝑒) → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) |
37 | 36 | ac6sfi 9058 |
. . . . . . 7
⊢
(((0...𝑐) ∈ Fin
∧ ∀𝑒 ∈
(0...𝑐)∃𝑏 ∈ (𝒫 𝑎 ∩
Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒)) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) |
38 | 26, 33, 37 | sylancr 587 |
. . . . . 6
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) |
39 | 38 | adantr 481 |
. . . . 5
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) |
40 | | frn 6607 |
. . . . . . . . . . . . 13
⊢ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑎 ∩ Fin)) |
41 | 40 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ran 𝑓 ⊆ (𝒫 𝑎 ∩ Fin)) |
42 | | inss1 4162 |
. . . . . . . . . . . 12
⊢
(𝒫 𝑎 ∩
Fin) ⊆ 𝒫 𝑎 |
43 | 41, 42 | sstrdi 3933 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ran 𝑓 ⊆ 𝒫 𝑎) |
44 | 43 | unissd 4849 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ⊆ ∪ 𝒫 𝑎) |
45 | | unipw 5366 |
. . . . . . . . . 10
⊢ ∪ 𝒫 𝑎 = 𝑎 |
46 | 44, 45 | sseqtrdi 3971 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ⊆ 𝑎) |
47 | | simpllr 773 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑎 ∈ (LIdeal‘𝑃)) |
48 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑃) =
(Base‘𝑃) |
49 | 48, 10 | lidlss 20481 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (LIdeal‘𝑃) → 𝑎 ⊆ (Base‘𝑃)) |
50 | 47, 49 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑎 ⊆ (Base‘𝑃)) |
51 | 46, 50 | sstrd 3931 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ⊆ (Base‘𝑃)) |
52 | | fvex 6787 |
. . . . . . . . 9
⊢
(Base‘𝑃)
∈ V |
53 | 52 | elpw2 5269 |
. . . . . . . 8
⊢ (∪ ran 𝑓 ∈ 𝒫 (Base‘𝑃) ↔ ∪ ran 𝑓 ⊆ (Base‘𝑃)) |
54 | 51, 53 | sylibr 233 |
. . . . . . 7
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ∈ 𝒫
(Base‘𝑃)) |
55 | | simprl 768 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin)) |
56 | | ffn 6600 |
. . . . . . . . 9
⊢ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) → 𝑓 Fn (0...𝑐)) |
57 | | fniunfv 7120 |
. . . . . . . . 9
⊢ (𝑓 Fn (0...𝑐) → ∪
𝑔 ∈ (0...𝑐)(𝑓‘𝑔) = ∪ ran 𝑓) |
58 | 55, 56, 57 | 3syl 18 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ 𝑔 ∈ (0...𝑐)(𝑓‘𝑔) = ∪ ran 𝑓) |
59 | | inss2 4163 |
. . . . . . . . . . 11
⊢
(𝒫 𝑎 ∩
Fin) ⊆ Fin |
60 | 55 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ (0...𝑐)) → (𝑓‘𝑔) ∈ (𝒫 𝑎 ∩ Fin)) |
61 | 59, 60 | sselid 3919 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ (0...𝑐)) → (𝑓‘𝑔) ∈ Fin) |
62 | 61 | ralrimiva 3103 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∀𝑔 ∈ (0...𝑐)(𝑓‘𝑔) ∈ Fin) |
63 | | iunfi 9107 |
. . . . . . . . 9
⊢
(((0...𝑐) ∈ Fin
∧ ∀𝑔 ∈
(0...𝑐)(𝑓‘𝑔) ∈ Fin) → ∪ 𝑔 ∈ (0...𝑐)(𝑓‘𝑔) ∈ Fin) |
64 | 26, 62, 63 | sylancr 587 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ 𝑔 ∈ (0...𝑐)(𝑓‘𝑔) ∈ Fin) |
65 | 58, 64 | eqeltrrd 2840 |
. . . . . . 7
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ∈
Fin) |
66 | 54, 65 | elind 4128 |
. . . . . 6
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ∈ (𝒫
(Base‘𝑃) ∩
Fin)) |
67 | 1 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑅 ∈ Ring) |
68 | 4 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑃 ∈ Ring) |
69 | 27, 48, 10 | rspcl 20493 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Ring ∧ ∪ ran 𝑓 ⊆ (Base‘𝑃)) → ((RSpan‘𝑃)‘∪ ran
𝑓) ∈
(LIdeal‘𝑃)) |
70 | 68, 51, 69 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘∪ ran
𝑓) ∈
(LIdeal‘𝑃)) |
71 | 27, 10 | rspssp 20497 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Ring ∧ 𝑎 ∈ (LIdeal‘𝑃) ∧ ∪ ran 𝑓 ⊆ 𝑎) → ((RSpan‘𝑃)‘∪ ran
𝑓) ⊆ 𝑎) |
72 | 68, 47, 46, 71 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘∪ ran
𝑓) ⊆ 𝑎) |
73 | | nn0re 12242 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ ℕ0
→ 𝑔 ∈
ℝ) |
74 | 73 | adantl 482 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑔 ∈
ℝ) |
75 | | simplrl 774 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑐 ∈ ℕ0) |
76 | 75 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑐 ∈
ℕ0) |
77 | 76 | nn0red 12294 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑐 ∈
ℝ) |
78 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → 𝑔 ∈ ℕ0) |
79 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → 𝑔 ≤ 𝑐) |
80 | 75 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → 𝑐 ∈ ℕ0) |
81 | | fznn0 13348 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ ℕ0
→ (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐))) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐))) |
83 | 78, 79, 82 | mpbir2and 710 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → 𝑔 ∈ (0...𝑐)) |
84 | | simplrr 775 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒)) |
85 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = 𝑔 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔)) |
86 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑔 → ((RSpan‘𝑃)‘(𝑓‘𝑒)) = ((RSpan‘𝑃)‘(𝑓‘𝑔))) |
87 | 86 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = 𝑔 → ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒))) = ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑔)))) |
88 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = 𝑔 → 𝑒 = 𝑔) |
89 | 87, 88 | fveq12d 6781 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = 𝑔 → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑔)))‘𝑔)) |
90 | 85, 89 | sseq12d 3954 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = 𝑔 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑔)))‘𝑔))) |
91 | 90 | rspcva 3559 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈ (0...𝑐) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑔)))‘𝑔)) |
92 | 83, 84, 91 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑔)))‘𝑔)) |
93 | 67 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → 𝑅 ∈ Ring) |
94 | | fvssunirn 6803 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓‘𝑔) ⊆ ∪ ran
𝑓 |
95 | 94, 51 | sstrid 3932 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → (𝑓‘𝑔) ⊆ (Base‘𝑃)) |
96 | 27, 48, 10 | rspcl 20493 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Ring ∧ (𝑓‘𝑔) ⊆ (Base‘𝑃)) → ((RSpan‘𝑃)‘(𝑓‘𝑔)) ∈ (LIdeal‘𝑃)) |
97 | 68, 95, 96 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘(𝑓‘𝑔)) ∈ (LIdeal‘𝑃)) |
98 | 97 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → ((RSpan‘𝑃)‘(𝑓‘𝑔)) ∈ (LIdeal‘𝑃)) |
99 | 70 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → ((RSpan‘𝑃)‘∪ ran
𝑓) ∈
(LIdeal‘𝑃)) |
100 | 67, 3 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑃 ∈ Ring) |
101 | 100 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → 𝑃 ∈ Ring) |
102 | 27, 48 | rspssid 20494 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ Ring ∧ ∪ ran 𝑓 ⊆ (Base‘𝑃)) → ∪ ran
𝑓 ⊆
((RSpan‘𝑃)‘∪ ran
𝑓)) |
103 | 68, 51, 102 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ⊆
((RSpan‘𝑃)‘∪ ran
𝑓)) |
104 | 103 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → ∪ ran
𝑓 ⊆
((RSpan‘𝑃)‘∪ ran
𝑓)) |
105 | 94, 104 | sstrid 3932 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → (𝑓‘𝑔) ⊆ ((RSpan‘𝑃)‘∪ ran
𝑓)) |
106 | 27, 10 | rspssp 20497 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ Ring ∧
((RSpan‘𝑃)‘∪ ran
𝑓) ∈
(LIdeal‘𝑃) ∧
(𝑓‘𝑔) ⊆ ((RSpan‘𝑃)‘∪ ran
𝑓)) →
((RSpan‘𝑃)‘(𝑓‘𝑔)) ⊆ ((RSpan‘𝑃)‘∪ ran
𝑓)) |
107 | 101, 99, 105, 106 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → ((RSpan‘𝑃)‘(𝑓‘𝑔)) ⊆ ((RSpan‘𝑃)‘∪ ran
𝑓)) |
108 | 2, 10, 11, 93, 98, 99, 107, 78 | hbtlem3 40952 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑔)))‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
109 | 92, 108 | sstrd 3931 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
110 | 109 | anassrs 468 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) ∧ 𝑔 ≤ 𝑐) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
111 | | nn0z 12343 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ ℕ0
→ 𝑐 ∈
ℤ) |
112 | 111 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ ℕ0
∧ (𝑔 ∈
ℕ0 ∧ 𝑐
≤ 𝑔)) → 𝑐 ∈
ℤ) |
113 | | nn0z 12343 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ ℕ0
→ 𝑔 ∈
ℤ) |
114 | 113 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ ℕ0
∧ (𝑔 ∈
ℕ0 ∧ 𝑐
≤ 𝑔)) → 𝑔 ∈
ℤ) |
115 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ ℕ0
∧ (𝑔 ∈
ℕ0 ∧ 𝑐
≤ 𝑔)) → 𝑐 ≤ 𝑔) |
116 | | eluz2 12588 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈
(ℤ≥‘𝑐) ↔ (𝑐 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑐 ≤ 𝑔)) |
117 | 112, 114,
115, 116 | syl3anbrc 1342 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ ℕ0
∧ (𝑔 ∈
ℕ0 ∧ 𝑐
≤ 𝑔)) → 𝑔 ∈
(ℤ≥‘𝑐)) |
118 | 75, 117 | sylan 580 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → 𝑔 ∈ (ℤ≥‘𝑐)) |
119 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
120 | 119 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
121 | | fveqeq2 6783 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑔 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) |
122 | 121 | rspcva 3559 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈
(ℤ≥‘𝑐) ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
123 | 118, 120,
122 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
124 | 75 | nn0red 12294 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑐 ∈ ℝ) |
125 | 124 | leidd 11541 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑐 ≤ 𝑐) |
126 | 109 | expr 457 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → (𝑔 ≤ 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔))) |
127 | 126 | ralrimiva 3103 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∀𝑔 ∈ ℕ0 (𝑔 ≤ 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔))) |
128 | | breq1 5077 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑐 → (𝑔 ≤ 𝑐 ↔ 𝑐 ≤ 𝑐)) |
129 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
130 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝑐 → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran
𝑓))‘𝑔) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐)) |
131 | 129, 130 | sseq12d 3954 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑐 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐))) |
132 | 128, 131 | imbi12d 345 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑐 → ((𝑔 ≤ 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) ↔ (𝑐 ≤ 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐)))) |
133 | 132 | rspcva 3559 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ ℕ0
∧ ∀𝑔 ∈
ℕ0 (𝑔 ≤
𝑐 →
(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔))) → (𝑐 ≤ 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐))) |
134 | 75, 127, 133 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → (𝑐 ≤ 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐))) |
135 | 125, 134 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐)) |
136 | 135 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐)) |
137 | 67 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → 𝑅 ∈ Ring) |
138 | 70 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → ((RSpan‘𝑃)‘∪ ran
𝑓) ∈
(LIdeal‘𝑃)) |
139 | 75 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → 𝑐 ∈ ℕ0) |
140 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → 𝑔 ∈ ℕ0) |
141 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → 𝑐 ≤ 𝑔) |
142 | 2, 10, 11, 137, 138, 139, 140, 141 | hbtlem4 40951 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
143 | 136, 142 | sstrd 3931 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
144 | 123, 143 | eqsstrd 3959 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
145 | 144 | anassrs 468 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) ∧ 𝑐 ≤ 𝑔) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
146 | 74, 77, 110, 145 | lecasei 11081 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) →
(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
147 | 146 | ralrimiva 3103 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∀𝑔 ∈ ℕ0
(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
148 | 2, 10, 11, 67, 70, 47, 72, 147 | hbtlem5 40953 |
. . . . . . 7
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘∪ ran
𝑓) = 𝑎) |
149 | 148 | eqcomd 2744 |
. . . . . 6
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑎 = ((RSpan‘𝑃)‘∪ ran
𝑓)) |
150 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑏 = ∪
ran 𝑓 →
((RSpan‘𝑃)‘𝑏) = ((RSpan‘𝑃)‘∪ ran
𝑓)) |
151 | 150 | rspceeqv 3575 |
. . . . . 6
⊢ ((∪ ran 𝑓 ∈ (𝒫 (Base‘𝑃) ∩ Fin) ∧ 𝑎 = ((RSpan‘𝑃)‘∪ ran 𝑓)) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)) |
152 | 66, 149, 151 | syl2anc 584 |
. . . . 5
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)) |
153 | 39, 152 | exlimddv 1938 |
. . . 4
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)) |
154 | 25, 153 | rexlimddv 3220 |
. . 3
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑏 ∈ (𝒫
(Base‘𝑃) ∩
Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)) |
155 | 154 | ralrimiva 3103 |
. 2
⊢ (𝑅 ∈ LNoeR →
∀𝑎 ∈
(LIdeal‘𝑃)∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)) |
156 | 48, 10, 27 | islnr2 40939 |
. 2
⊢ (𝑃 ∈ LNoeR ↔ (𝑃 ∈ Ring ∧ ∀𝑎 ∈ (LIdeal‘𝑃)∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))) |
157 | 4, 155, 156 | sylanbrc 583 |
1
⊢ (𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR) |