Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbt Structured version   Visualization version   GIF version

Theorem hbt 41857
Description: The Hilbert Basis Theorem - the ring of univariate polynomials over a Noetherian ring is a Noetherian ring. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
hbt.p 𝑃 = (Poly1β€˜π‘…)
Assertion
Ref Expression
hbt (𝑅 ∈ LNoeR β†’ 𝑃 ∈ LNoeR)

Proof of Theorem hbt
Dummy variables π‘Ž 𝑏 𝑐 𝑒 𝑓 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnrring 41839 . . 3 (𝑅 ∈ LNoeR β†’ 𝑅 ∈ Ring)
2 hbt.p . . . 4 𝑃 = (Poly1β€˜π‘…)
32ply1ring 21761 . . 3 (𝑅 ∈ Ring β†’ 𝑃 ∈ Ring)
41, 3syl 17 . 2 (𝑅 ∈ LNoeR β†’ 𝑃 ∈ Ring)
5 eqid 2732 . . . . . . . 8 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
6 eqid 2732 . . . . . . . 8 (LIdealβ€˜π‘…) = (LIdealβ€˜π‘…)
75, 6islnr3 41842 . . . . . . 7 (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ (LIdealβ€˜π‘…) ∈ (NoeACSβ€˜(Baseβ€˜π‘…))))
87simprbi 497 . . . . . 6 (𝑅 ∈ LNoeR β†’ (LIdealβ€˜π‘…) ∈ (NoeACSβ€˜(Baseβ€˜π‘…)))
98adantr 481 . . . . 5 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ (LIdealβ€˜π‘…) ∈ (NoeACSβ€˜(Baseβ€˜π‘…)))
10 eqid 2732 . . . . . . 7 (LIdealβ€˜π‘ƒ) = (LIdealβ€˜π‘ƒ)
11 eqid 2732 . . . . . . 7 (ldgIdlSeqβ€˜π‘…) = (ldgIdlSeqβ€˜π‘…)
122, 10, 11, 6hbtlem7 41852 . . . . . 6 ((𝑅 ∈ Ring ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ ((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž):β„•0⟢(LIdealβ€˜π‘…))
131, 12sylan 580 . . . . 5 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ ((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž):β„•0⟢(LIdealβ€˜π‘…))
141ad2antrr 724 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑏 ∈ β„•0) β†’ 𝑅 ∈ Ring)
15 simplr 767 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑏 ∈ β„•0) β†’ π‘Ž ∈ (LIdealβ€˜π‘ƒ))
16 simpr 485 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑏 ∈ β„•0) β†’ 𝑏 ∈ β„•0)
17 peano2nn0 12508 . . . . . . . 8 (𝑏 ∈ β„•0 β†’ (𝑏 + 1) ∈ β„•0)
1817adantl 482 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑏 ∈ β„•0) β†’ (𝑏 + 1) ∈ β„•0)
19 nn0re 12477 . . . . . . . . 9 (𝑏 ∈ β„•0 β†’ 𝑏 ∈ ℝ)
2019lep1d 12141 . . . . . . . 8 (𝑏 ∈ β„•0 β†’ 𝑏 ≀ (𝑏 + 1))
2120adantl 482 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑏 ∈ β„•0) β†’ 𝑏 ≀ (𝑏 + 1))
222, 10, 11, 14, 15, 16, 18, 21hbtlem4 41853 . . . . . 6 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑏 ∈ β„•0) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜(𝑏 + 1)))
2322ralrimiva 3146 . . . . 5 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ βˆ€π‘ ∈ β„•0 (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜(𝑏 + 1)))
24 nacsfix 41435 . . . . 5 (((LIdealβ€˜π‘…) ∈ (NoeACSβ€˜(Baseβ€˜π‘…)) ∧ ((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž):β„•0⟢(LIdealβ€˜π‘…) ∧ βˆ€π‘ ∈ β„•0 (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜(𝑏 + 1))) β†’ βˆƒπ‘ ∈ β„•0 βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
259, 13, 23, 24syl3anc 1371 . . . 4 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ βˆƒπ‘ ∈ β„•0 βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
26 fzfi 13933 . . . . . . 7 (0...𝑐) ∈ Fin
27 eqid 2732 . . . . . . . . 9 (RSpanβ€˜π‘ƒ) = (RSpanβ€˜π‘ƒ)
28 simpll 765 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑒 ∈ (0...𝑐)) β†’ 𝑅 ∈ LNoeR)
29 simplr 767 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑒 ∈ (0...𝑐)) β†’ π‘Ž ∈ (LIdealβ€˜π‘ƒ))
30 elfznn0 13590 . . . . . . . . . 10 (𝑒 ∈ (0...𝑐) β†’ 𝑒 ∈ β„•0)
3130adantl 482 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑒 ∈ (0...𝑐)) β†’ 𝑒 ∈ β„•0)
322, 10, 11, 27, 28, 29, 31hbtlem6 41856 . . . . . . . 8 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ 𝑒 ∈ (0...𝑐)) β†’ βˆƒπ‘ ∈ (𝒫 π‘Ž ∩ Fin)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜π‘))β€˜π‘’))
3332ralrimiva 3146 . . . . . . 7 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ βˆ€π‘’ ∈ (0...𝑐)βˆƒπ‘ ∈ (𝒫 π‘Ž ∩ Fin)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜π‘))β€˜π‘’))
34 2fveq3 6893 . . . . . . . . . 10 (𝑏 = (π‘“β€˜π‘’) β†’ ((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜π‘)) = ((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’))))
3534fveq1d 6890 . . . . . . . . 9 (𝑏 = (π‘“β€˜π‘’) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜π‘))β€˜π‘’) = (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))
3635sseq2d 4013 . . . . . . . 8 (𝑏 = (π‘“β€˜π‘’) β†’ ((((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜π‘))β€˜π‘’) ↔ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’)))
3736ac6sfi 9283 . . . . . . 7 (((0...𝑐) ∈ Fin ∧ βˆ€π‘’ ∈ (0...𝑐)βˆƒπ‘ ∈ (𝒫 π‘Ž ∩ Fin)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜π‘))β€˜π‘’)) β†’ βˆƒπ‘“(𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’)))
3826, 33, 37sylancr 587 . . . . . 6 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ βˆƒπ‘“(𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’)))
3938adantr 481 . . . . 5 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) β†’ βˆƒπ‘“(𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’)))
40 frn 6721 . . . . . . . . . . . . 13 (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) β†’ ran 𝑓 βŠ† (𝒫 π‘Ž ∩ Fin))
4140ad2antrl 726 . . . . . . . . . . . 12 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ ran 𝑓 βŠ† (𝒫 π‘Ž ∩ Fin))
42 inss1 4227 . . . . . . . . . . . 12 (𝒫 π‘Ž ∩ Fin) βŠ† 𝒫 π‘Ž
4341, 42sstrdi 3993 . . . . . . . . . . 11 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ ran 𝑓 βŠ† 𝒫 π‘Ž)
4443unissd 4917 . . . . . . . . . 10 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 βŠ† βˆͺ 𝒫 π‘Ž)
45 unipw 5449 . . . . . . . . . 10 βˆͺ 𝒫 π‘Ž = π‘Ž
4644, 45sseqtrdi 4031 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 βŠ† π‘Ž)
47 simpllr 774 . . . . . . . . . 10 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ π‘Ž ∈ (LIdealβ€˜π‘ƒ))
48 eqid 2732 . . . . . . . . . . 11 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
4948, 10lidlss 20825 . . . . . . . . . 10 (π‘Ž ∈ (LIdealβ€˜π‘ƒ) β†’ π‘Ž βŠ† (Baseβ€˜π‘ƒ))
5047, 49syl 17 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ π‘Ž βŠ† (Baseβ€˜π‘ƒ))
5146, 50sstrd 3991 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 βŠ† (Baseβ€˜π‘ƒ))
52 fvex 6901 . . . . . . . . 9 (Baseβ€˜π‘ƒ) ∈ V
5352elpw2 5344 . . . . . . . 8 (βˆͺ ran 𝑓 ∈ 𝒫 (Baseβ€˜π‘ƒ) ↔ βˆͺ ran 𝑓 βŠ† (Baseβ€˜π‘ƒ))
5451, 53sylibr 233 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 ∈ 𝒫 (Baseβ€˜π‘ƒ))
55 simprl 769 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin))
56 ffn 6714 . . . . . . . . 9 (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) β†’ 𝑓 Fn (0...𝑐))
57 fniunfv 7242 . . . . . . . . 9 (𝑓 Fn (0...𝑐) β†’ βˆͺ 𝑔 ∈ (0...𝑐)(π‘“β€˜π‘”) = βˆͺ ran 𝑓)
5855, 56, 573syl 18 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ 𝑔 ∈ (0...𝑐)(π‘“β€˜π‘”) = βˆͺ ran 𝑓)
59 inss2 4228 . . . . . . . . . . 11 (𝒫 π‘Ž ∩ Fin) βŠ† Fin
6055ffvelcdmda 7083 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ (0...𝑐)) β†’ (π‘“β€˜π‘”) ∈ (𝒫 π‘Ž ∩ Fin))
6159, 60sselid 3979 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ (0...𝑐)) β†’ (π‘“β€˜π‘”) ∈ Fin)
6261ralrimiva 3146 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆ€π‘” ∈ (0...𝑐)(π‘“β€˜π‘”) ∈ Fin)
63 iunfi 9336 . . . . . . . . 9 (((0...𝑐) ∈ Fin ∧ βˆ€π‘” ∈ (0...𝑐)(π‘“β€˜π‘”) ∈ Fin) β†’ βˆͺ 𝑔 ∈ (0...𝑐)(π‘“β€˜π‘”) ∈ Fin)
6426, 62, 63sylancr 587 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ 𝑔 ∈ (0...𝑐)(π‘“β€˜π‘”) ∈ Fin)
6558, 64eqeltrrd 2834 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 ∈ Fin)
6654, 65elind 4193 . . . . . 6 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin))
671ad3antrrr 728 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑅 ∈ Ring)
684ad3antrrr 728 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑃 ∈ Ring)
6927, 48, 10rspcl 20839 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ βˆͺ ran 𝑓 βŠ† (Baseβ€˜π‘ƒ)) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) ∈ (LIdealβ€˜π‘ƒ))
7068, 51, 69syl2anc 584 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) ∈ (LIdealβ€˜π‘ƒ))
7127, 10rspssp 20843 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ) ∧ βˆͺ ran 𝑓 βŠ† π‘Ž) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) βŠ† π‘Ž)
7268, 47, 46, 71syl3anc 1371 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) βŠ† π‘Ž)
73 nn0re 12477 . . . . . . . . . . 11 (𝑔 ∈ β„•0 β†’ 𝑔 ∈ ℝ)
7473adantl 482 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) β†’ 𝑔 ∈ ℝ)
75 simplrl 775 . . . . . . . . . . . 12 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑐 ∈ β„•0)
7675adantr 481 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) β†’ 𝑐 ∈ β„•0)
7776nn0red 12529 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) β†’ 𝑐 ∈ ℝ)
78 simprl 769 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ 𝑔 ∈ β„•0)
79 simprr 771 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ 𝑔 ≀ 𝑐)
8075adantr 481 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ 𝑐 ∈ β„•0)
81 fznn0 13589 . . . . . . . . . . . . . . 15 (𝑐 ∈ β„•0 β†’ (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)))
8280, 81syl 17 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)))
8378, 79, 82mpbir2and 711 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ 𝑔 ∈ (0...𝑐))
84 simplrr 776 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))
85 fveq2 6888 . . . . . . . . . . . . . . 15 (𝑒 = 𝑔 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”))
86 2fveq3 6893 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑔 β†’ ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)) = ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)))
8786fveq2d 6892 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑔 β†’ ((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’))) = ((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”))))
88 id 22 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑔 β†’ 𝑒 = 𝑔)
8987, 88fveq12d 6895 . . . . . . . . . . . . . . 15 (𝑒 = 𝑔 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’) = (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)))β€˜π‘”))
9085, 89sseq12d 4014 . . . . . . . . . . . . . 14 (𝑒 = 𝑔 β†’ ((((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’) ↔ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)))β€˜π‘”)))
9190rspcva 3610 . . . . . . . . . . . . 13 ((𝑔 ∈ (0...𝑐) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)))β€˜π‘”))
9283, 84, 91syl2anc 584 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)))β€˜π‘”))
9367adantr 481 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ 𝑅 ∈ Ring)
94 fvssunirn 6921 . . . . . . . . . . . . . . . 16 (π‘“β€˜π‘”) βŠ† βˆͺ ran 𝑓
9594, 51sstrid 3992 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ (π‘“β€˜π‘”) βŠ† (Baseβ€˜π‘ƒ))
9627, 48, 10rspcl 20839 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Ring ∧ (π‘“β€˜π‘”) βŠ† (Baseβ€˜π‘ƒ)) β†’ ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)) ∈ (LIdealβ€˜π‘ƒ))
9768, 95, 96syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)) ∈ (LIdealβ€˜π‘ƒ))
9897adantr 481 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)) ∈ (LIdealβ€˜π‘ƒ))
9970adantr 481 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) ∈ (LIdealβ€˜π‘ƒ))
10067, 3syl 17 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑃 ∈ Ring)
101100adantr 481 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ 𝑃 ∈ Ring)
10227, 48rspssid 20840 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Ring ∧ βˆͺ ran 𝑓 βŠ† (Baseβ€˜π‘ƒ)) β†’ βˆͺ ran 𝑓 βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
10368, 51, 102syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆͺ ran 𝑓 βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
104103adantr 481 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ βˆͺ ran 𝑓 βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
10594, 104sstrid 3992 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ (π‘“β€˜π‘”) βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
10627, 10rspssp 20843 . . . . . . . . . . . . . 14 ((𝑃 ∈ Ring ∧ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) ∈ (LIdealβ€˜π‘ƒ) ∧ (π‘“β€˜π‘”) βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓)) β†’ ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)) βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
107101, 99, 105, 106syl3anc 1371 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ ((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)) βŠ† ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
1082, 10, 11, 93, 98, 99, 107, 78hbtlem3 41854 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘”)))β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
10992, 108sstrd 3991 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑔 ≀ 𝑐)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
110109anassrs 468 . . . . . . . . . 10 ((((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) ∧ 𝑔 ≀ 𝑐) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
111 nn0z 12579 . . . . . . . . . . . . . . . 16 (𝑐 ∈ β„•0 β†’ 𝑐 ∈ β„€)
112111adantr 481 . . . . . . . . . . . . . . 15 ((𝑐 ∈ β„•0 ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑐 ∈ β„€)
113 nn0z 12579 . . . . . . . . . . . . . . . 16 (𝑔 ∈ β„•0 β†’ 𝑔 ∈ β„€)
114113ad2antrl 726 . . . . . . . . . . . . . . 15 ((𝑐 ∈ β„•0 ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑔 ∈ β„€)
115 simprr 771 . . . . . . . . . . . . . . 15 ((𝑐 ∈ β„•0 ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑐 ≀ 𝑔)
116 eluz2 12824 . . . . . . . . . . . . . . 15 (𝑔 ∈ (β„€β‰₯β€˜π‘) ↔ (𝑐 ∈ β„€ ∧ 𝑔 ∈ β„€ ∧ 𝑐 ≀ 𝑔))
117112, 114, 115, 116syl3anbrc 1343 . . . . . . . . . . . . . 14 ((𝑐 ∈ β„•0 ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑔 ∈ (β„€β‰₯β€˜π‘))
11875, 117sylan 580 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑔 ∈ (β„€β‰₯β€˜π‘))
119 simprr 771 . . . . . . . . . . . . . 14 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) β†’ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
120119ad2antrr 724 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
121 fveqeq2 6897 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 β†’ ((((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) ↔ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘)))
122121rspcva 3610 . . . . . . . . . . . . 13 ((𝑔 ∈ (β„€β‰₯β€˜π‘) ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
123118, 120, 122syl2anc 584 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
12475nn0red 12529 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑐 ∈ ℝ)
125124leidd 11776 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ 𝑐 ≀ 𝑐)
126109expr 457 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) β†’ (𝑔 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”)))
127126ralrimiva 3146 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆ€π‘” ∈ β„•0 (𝑔 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”)))
128 breq1 5150 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑐 β†’ (𝑔 ≀ 𝑐 ↔ 𝑐 ≀ 𝑐))
129 fveq2 6888 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))
130 fveq2 6888 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”) = (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘))
131129, 130sseq12d 4014 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑐 β†’ ((((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”) ↔ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘)))
132128, 131imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑐 β†’ ((𝑔 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”)) ↔ (𝑐 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘))))
133132rspcva 3610 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ β„•0 ∧ βˆ€π‘” ∈ β„•0 (𝑔 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))) β†’ (𝑐 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘)))
13475, 127, 133syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ (𝑐 ≀ 𝑐 β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘)))
135125, 134mpd 15 . . . . . . . . . . . . . 14 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘))
136135adantr 481 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘))
13767adantr 481 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑅 ∈ Ring)
13870adantr 481 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) ∈ (LIdealβ€˜π‘ƒ))
13975adantr 481 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑐 ∈ β„•0)
140 simprl 769 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑔 ∈ β„•0)
141 simprr 771 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ 𝑐 ≀ 𝑔)
1422, 10, 11, 137, 138, 139, 140, 141hbtlem4 41853 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
143136, 142sstrd 3991 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
144123, 143eqsstrd 4019 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ (𝑔 ∈ β„•0 ∧ 𝑐 ≀ 𝑔)) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
145144anassrs 468 . . . . . . . . . 10 ((((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) ∧ 𝑐 ≀ 𝑔) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
14674, 77, 110, 145lecasei 11316 . . . . . . . . 9 (((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) ∧ 𝑔 ∈ β„•0) β†’ (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
147146ralrimiva 3146 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆ€π‘” ∈ β„•0 (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘”) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))β€˜π‘”))
1482, 10, 11, 67, 70, 47, 72, 147hbtlem5 41855 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓) = π‘Ž)
149148eqcomd 2738 . . . . . 6 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
150 fveq2 6888 . . . . . . 7 (𝑏 = βˆͺ ran 𝑓 β†’ ((RSpanβ€˜π‘ƒ)β€˜π‘) = ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓))
151150rspceeqv 3632 . . . . . 6 ((βˆͺ ran 𝑓 ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin) ∧ π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜βˆͺ ran 𝑓)) β†’ βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin)π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜π‘))
15266, 149, 151syl2anc 584 . . . . 5 ((((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) ∧ (𝑓:(0...𝑐)⟢(𝒫 π‘Ž ∩ Fin) ∧ βˆ€π‘’ ∈ (0...𝑐)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘’) βŠ† (((ldgIdlSeqβ€˜π‘…)β€˜((RSpanβ€˜π‘ƒ)β€˜(π‘“β€˜π‘’)))β€˜π‘’))) β†’ βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin)π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜π‘))
15339, 152exlimddv 1938 . . . 4 (((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) ∧ (𝑐 ∈ β„•0 ∧ βˆ€π‘‘ ∈ (β„€β‰₯β€˜π‘)(((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘‘) = (((ldgIdlSeqβ€˜π‘…)β€˜π‘Ž)β€˜π‘))) β†’ βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin)π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜π‘))
15425, 153rexlimddv 3161 . . 3 ((𝑅 ∈ LNoeR ∧ π‘Ž ∈ (LIdealβ€˜π‘ƒ)) β†’ βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin)π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜π‘))
155154ralrimiva 3146 . 2 (𝑅 ∈ LNoeR β†’ βˆ€π‘Ž ∈ (LIdealβ€˜π‘ƒ)βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin)π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜π‘))
15648, 10, 27islnr2 41841 . 2 (𝑃 ∈ LNoeR ↔ (𝑃 ∈ Ring ∧ βˆ€π‘Ž ∈ (LIdealβ€˜π‘ƒ)βˆƒπ‘ ∈ (𝒫 (Baseβ€˜π‘ƒ) ∩ Fin)π‘Ž = ((RSpanβ€˜π‘ƒ)β€˜π‘)))
1574, 155, 156sylanbrc 583 1 (𝑅 ∈ LNoeR β†’ 𝑃 ∈ LNoeR)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601  βˆͺ cuni 4907  βˆͺ ciun 4996   class class class wbr 5147  ran crn 5676   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   ≀ cle 11245  β„•0cn0 12468  β„€cz 12554  β„€β‰₯cuz 12818  ...cfz 13480  Basecbs 17140  Ringcrg 20049  LIdealclidl 20775  RSpancrsp 20776  Poly1cpl1 21692  NoeACScnacs 41425  LNoeRclnr 41836  ldgIdlSeqcldgis 41848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ocomp 17214  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-proset 18244  df-drs 18245  df-poset 18262  df-ipo 18477  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lsp 20575  df-sra 20777  df-rgmod 20778  df-lidl 20779  df-rsp 20780  df-rlreg 20891  df-cnfld 20937  df-ascl 21401  df-psr 21453  df-mvr 21454  df-mpl 21455  df-opsr 21457  df-psr1 21695  df-vr1 21696  df-ply1 21697  df-coe1 21698  df-mdeg 25561  df-deg1 25562  df-nacs 41426  df-lfig 41795  df-lnm 41803  df-lnr 41837  df-ldgis 41849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator