Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbt Structured version   Visualization version   GIF version

Theorem hbt 43107
Description: The Hilbert Basis Theorem - the ring of univariate polynomials over a Noetherian ring is a Noetherian ring. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypothesis
Ref Expression
hbt.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
hbt (𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR)

Proof of Theorem hbt
Dummy variables 𝑎 𝑏 𝑐 𝑒 𝑓 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnrring 43089 . . 3 (𝑅 ∈ LNoeR → 𝑅 ∈ Ring)
2 hbt.p . . . 4 𝑃 = (Poly1𝑅)
32ply1ring 22130 . . 3 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . 2 (𝑅 ∈ LNoeR → 𝑃 ∈ Ring)
5 eqid 2729 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2729 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
75, 6islnr3 43092 . . . . . . 7 (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ (LIdeal‘𝑅) ∈ (NoeACS‘(Base‘𝑅))))
87simprbi 496 . . . . . 6 (𝑅 ∈ LNoeR → (LIdeal‘𝑅) ∈ (NoeACS‘(Base‘𝑅)))
98adantr 480 . . . . 5 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → (LIdeal‘𝑅) ∈ (NoeACS‘(Base‘𝑅)))
10 eqid 2729 . . . . . . 7 (LIdeal‘𝑃) = (LIdeal‘𝑃)
11 eqid 2729 . . . . . . 7 (ldgIdlSeq‘𝑅) = (ldgIdlSeq‘𝑅)
122, 10, 11, 6hbtlem7 43102 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅))
131, 12sylan 580 . . . . 5 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅))
141ad2antrr 726 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑅 ∈ Ring)
15 simplr 768 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑎 ∈ (LIdeal‘𝑃))
16 simpr 484 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑏 ∈ ℕ0)
17 peano2nn0 12424 . . . . . . . 8 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
1817adantl 481 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → (𝑏 + 1) ∈ ℕ0)
19 nn0re 12393 . . . . . . . . 9 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
2019lep1d 12056 . . . . . . . 8 (𝑏 ∈ ℕ0𝑏 ≤ (𝑏 + 1))
2120adantl 481 . . . . . . 7 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑏 ≤ (𝑏 + 1))
222, 10, 11, 14, 15, 16, 18, 21hbtlem4 43103 . . . . . 6 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1)))
2322ralrimiva 3121 . . . . 5 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∀𝑏 ∈ ℕ0 (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1)))
24 nacsfix 42689 . . . . 5 (((LIdeal‘𝑅) ∈ (NoeACS‘(Base‘𝑅)) ∧ ((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅) ∧ ∀𝑏 ∈ ℕ0 (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1))) → ∃𝑐 ∈ ℕ0𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
259, 13, 23, 24syl3anc 1373 . . . 4 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑐 ∈ ℕ0𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
26 fzfi 13879 . . . . . . 7 (0...𝑐) ∈ Fin
27 eqid 2729 . . . . . . . . 9 (RSpan‘𝑃) = (RSpan‘𝑃)
28 simpll 766 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑅 ∈ LNoeR)
29 simplr 768 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑎 ∈ (LIdeal‘𝑃))
30 elfznn0 13523 . . . . . . . . . 10 (𝑒 ∈ (0...𝑐) → 𝑒 ∈ ℕ0)
3130adantl 481 . . . . . . . . 9 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑒 ∈ ℕ0)
322, 10, 11, 27, 28, 29, 31hbtlem6 43106 . . . . . . . 8 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒))
3332ralrimiva 3121 . . . . . . 7 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∀𝑒 ∈ (0...𝑐)∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒))
34 2fveq3 6827 . . . . . . . . . 10 (𝑏 = (𝑓𝑒) → ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏)) = ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒))))
3534fveq1d 6824 . . . . . . . . 9 (𝑏 = (𝑓𝑒) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))
3635sseq2d 3968 . . . . . . . 8 (𝑏 = (𝑓𝑒) → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)))
3736ac6sfi 9173 . . . . . . 7 (((0...𝑐) ∈ Fin ∧ ∀𝑒 ∈ (0...𝑐)∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒)) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)))
3826, 33, 37sylancr 587 . . . . . 6 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)))
3938adantr 480 . . . . 5 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)))
40 frn 6659 . . . . . . . . . . . . 13 (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑎 ∩ Fin))
4140ad2antrl 728 . . . . . . . . . . . 12 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ⊆ (𝒫 𝑎 ∩ Fin))
42 inss1 4188 . . . . . . . . . . . 12 (𝒫 𝑎 ∩ Fin) ⊆ 𝒫 𝑎
4341, 42sstrdi 3948 . . . . . . . . . . 11 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ⊆ 𝒫 𝑎)
4443unissd 4868 . . . . . . . . . 10 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 𝒫 𝑎)
45 unipw 5393 . . . . . . . . . 10 𝒫 𝑎 = 𝑎
4644, 45sseqtrdi 3976 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓𝑎)
47 simpllr 775 . . . . . . . . . 10 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑎 ∈ (LIdeal‘𝑃))
48 eqid 2729 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
4948, 10lidlss 21119 . . . . . . . . . 10 (𝑎 ∈ (LIdeal‘𝑃) → 𝑎 ⊆ (Base‘𝑃))
5047, 49syl 17 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑎 ⊆ (Base‘𝑃))
5146, 50sstrd 3946 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ⊆ (Base‘𝑃))
52 fvex 6835 . . . . . . . . 9 (Base‘𝑃) ∈ V
5352elpw2 5273 . . . . . . . 8 ( ran 𝑓 ∈ 𝒫 (Base‘𝑃) ↔ ran 𝑓 ⊆ (Base‘𝑃))
5451, 53sylibr 234 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ∈ 𝒫 (Base‘𝑃))
55 simprl 770 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin))
56 ffn 6652 . . . . . . . . 9 (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) → 𝑓 Fn (0...𝑐))
57 fniunfv 7183 . . . . . . . . 9 (𝑓 Fn (0...𝑐) → 𝑔 ∈ (0...𝑐)(𝑓𝑔) = ran 𝑓)
5855, 56, 573syl 18 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑔 ∈ (0...𝑐)(𝑓𝑔) = ran 𝑓)
59 inss2 4189 . . . . . . . . . . 11 (𝒫 𝑎 ∩ Fin) ⊆ Fin
6055ffvelcdmda 7018 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ (0...𝑐)) → (𝑓𝑔) ∈ (𝒫 𝑎 ∩ Fin))
6159, 60sselid 3933 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ (0...𝑐)) → (𝑓𝑔) ∈ Fin)
6261ralrimiva 3121 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ∀𝑔 ∈ (0...𝑐)(𝑓𝑔) ∈ Fin)
63 iunfi 9233 . . . . . . . . 9 (((0...𝑐) ∈ Fin ∧ ∀𝑔 ∈ (0...𝑐)(𝑓𝑔) ∈ Fin) → 𝑔 ∈ (0...𝑐)(𝑓𝑔) ∈ Fin)
6426, 62, 63sylancr 587 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑔 ∈ (0...𝑐)(𝑓𝑔) ∈ Fin)
6558, 64eqeltrrd 2829 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ∈ Fin)
6654, 65elind 4151 . . . . . 6 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ∈ (𝒫 (Base‘𝑃) ∩ Fin))
671ad3antrrr 730 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑅 ∈ Ring)
684ad3antrrr 730 . . . . . . . . 9 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑃 ∈ Ring)
6927, 48, 10rspcl 21142 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ ran 𝑓 ⊆ (Base‘𝑃)) → ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃))
7068, 51, 69syl2anc 584 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃))
7127, 10rspssp 21146 . . . . . . . . 9 ((𝑃 ∈ Ring ∧ 𝑎 ∈ (LIdeal‘𝑃) ∧ ran 𝑓𝑎) → ((RSpan‘𝑃)‘ ran 𝑓) ⊆ 𝑎)
7268, 47, 46, 71syl3anc 1373 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘ ran 𝑓) ⊆ 𝑎)
73 nn0re 12393 . . . . . . . . . . 11 (𝑔 ∈ ℕ0𝑔 ∈ ℝ)
7473adantl 481 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑔 ∈ ℝ)
75 simplrl 776 . . . . . . . . . . . 12 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑐 ∈ ℕ0)
7675adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑐 ∈ ℕ0)
7776nn0red 12446 . . . . . . . . . 10 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑐 ∈ ℝ)
78 simprl 770 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑔 ∈ ℕ0)
79 simprr 772 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑔𝑐)
8075adantr 480 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑐 ∈ ℕ0)
81 fznn0 13522 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℕ0 → (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ ℕ0𝑔𝑐)))
8280, 81syl 17 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ ℕ0𝑔𝑐)))
8378, 79, 82mpbir2and 713 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑔 ∈ (0...𝑐))
84 simplrr 777 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))
85 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑒 = 𝑔 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔))
86 2fveq3 6827 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑔 → ((RSpan‘𝑃)‘(𝑓𝑒)) = ((RSpan‘𝑃)‘(𝑓𝑔)))
8786fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑔 → ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒))) = ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔))))
88 id 22 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑔𝑒 = 𝑔)
8987, 88fveq12d 6829 . . . . . . . . . . . . . . 15 (𝑒 = 𝑔 → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔))
9085, 89sseq12d 3969 . . . . . . . . . . . . . 14 (𝑒 = 𝑔 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔)))
9190rspcva 3575 . . . . . . . . . . . . 13 ((𝑔 ∈ (0...𝑐) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔))
9283, 84, 91syl2anc 584 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔))
9367adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑅 ∈ Ring)
94 fvssunirn 6853 . . . . . . . . . . . . . . . 16 (𝑓𝑔) ⊆ ran 𝑓
9594, 51sstrid 3947 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → (𝑓𝑔) ⊆ (Base‘𝑃))
9627, 48, 10rspcl 21142 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Ring ∧ (𝑓𝑔) ⊆ (Base‘𝑃)) → ((RSpan‘𝑃)‘(𝑓𝑔)) ∈ (LIdeal‘𝑃))
9768, 95, 96syl2anc 584 . . . . . . . . . . . . . 14 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘(𝑓𝑔)) ∈ (LIdeal‘𝑃))
9897adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ((RSpan‘𝑃)‘(𝑓𝑔)) ∈ (LIdeal‘𝑃))
9970adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃))
10067, 3syl 17 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑃 ∈ Ring)
101100adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → 𝑃 ∈ Ring)
10227, 48rspssid 21143 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Ring ∧ ran 𝑓 ⊆ (Base‘𝑃)) → ran 𝑓 ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
10368, 51, 102syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ran 𝑓 ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
104103adantr 480 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ran 𝑓 ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
10594, 104sstrid 3947 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (𝑓𝑔) ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
10627, 10rspssp 21146 . . . . . . . . . . . . . 14 ((𝑃 ∈ Ring ∧ ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃) ∧ (𝑓𝑔) ⊆ ((RSpan‘𝑃)‘ ran 𝑓)) → ((RSpan‘𝑃)‘(𝑓𝑔)) ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
107101, 99, 105, 106syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → ((RSpan‘𝑃)‘(𝑓𝑔)) ⊆ ((RSpan‘𝑃)‘ ran 𝑓))
1082, 10, 11, 93, 98, 99, 107, 78hbtlem3 43104 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑔)))‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
10992, 108sstrd 3946 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑔𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
110109anassrs 467 . . . . . . . . . 10 ((((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) ∧ 𝑔𝑐) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
111 nn0z 12496 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℕ0𝑐 ∈ ℤ)
112111adantr 480 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℕ0 ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑐 ∈ ℤ)
113 nn0z 12496 . . . . . . . . . . . . . . . 16 (𝑔 ∈ ℕ0𝑔 ∈ ℤ)
114113ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℕ0 ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑔 ∈ ℤ)
115 simprr 772 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℕ0 ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑐𝑔)
116 eluz2 12741 . . . . . . . . . . . . . . 15 (𝑔 ∈ (ℤ𝑐) ↔ (𝑐 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑐𝑔))
117112, 114, 115, 116syl3anbrc 1344 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℕ0 ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑔 ∈ (ℤ𝑐))
11875, 117sylan 580 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑔 ∈ (ℤ𝑐))
119 simprr 772 . . . . . . . . . . . . . 14 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
120119ad2antrr 726 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
121 fveqeq2 6831 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)))
122121rspcva 3575 . . . . . . . . . . . . 13 ((𝑔 ∈ (ℤ𝑐) ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
123118, 120, 122syl2anc 584 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
12475nn0red 12446 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑐 ∈ ℝ)
125124leidd 11686 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑐𝑐)
126109expr 456 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → (𝑔𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔)))
127126ralrimiva 3121 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ∀𝑔 ∈ ℕ0 (𝑔𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔)))
128 breq1 5095 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑐 → (𝑔𝑐𝑐𝑐))
129 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))
130 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑐 → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐))
131129, 130sseq12d 3969 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑐 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐)))
132128, 131imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑐 → ((𝑔𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔)) ↔ (𝑐𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐))))
133132rspcva 3575 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℕ0 ∧ ∀𝑔 ∈ ℕ0 (𝑔𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))) → (𝑐𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐)))
13475, 127, 133syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → (𝑐𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐)))
135125, 134mpd 15 . . . . . . . . . . . . . 14 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐))
136135adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐))
13767adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑅 ∈ Ring)
13870adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → ((RSpan‘𝑃)‘ ran 𝑓) ∈ (LIdeal‘𝑃))
13975adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑐 ∈ ℕ0)
140 simprl 770 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑔 ∈ ℕ0)
141 simprr 772 . . . . . . . . . . . . . 14 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → 𝑐𝑔)
1422, 10, 11, 137, 138, 139, 140, 141hbtlem4 43103 . . . . . . . . . . . . 13 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
143136, 142sstrd 3946 . . . . . . . . . . . 12 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
144123, 143eqsstrd 3970 . . . . . . . . . . 11 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0𝑐𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
145144anassrs 467 . . . . . . . . . 10 ((((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) ∧ 𝑐𝑔) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
14674, 77, 110, 145lecasei 11222 . . . . . . . . 9 (((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
147146ralrimiva 3121 . . . . . . . 8 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ∀𝑔 ∈ ℕ0 (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘ ran 𝑓))‘𝑔))
1482, 10, 11, 67, 70, 47, 72, 147hbtlem5 43105 . . . . . . 7 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘ ran 𝑓) = 𝑎)
149148eqcomd 2735 . . . . . 6 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → 𝑎 = ((RSpan‘𝑃)‘ ran 𝑓))
150 fveq2 6822 . . . . . . 7 (𝑏 = ran 𝑓 → ((RSpan‘𝑃)‘𝑏) = ((RSpan‘𝑃)‘ ran 𝑓))
151150rspceeqv 3600 . . . . . 6 (( ran 𝑓 ∈ (𝒫 (Base‘𝑃) ∩ Fin) ∧ 𝑎 = ((RSpan‘𝑃)‘ ran 𝑓)) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
15266, 149, 151syl2anc 584 . . . . 5 ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓𝑒)))‘𝑒))) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
15339, 152exlimddv 1935 . . . 4 (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧ ∀𝑑 ∈ (ℤ𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
15425, 153rexlimddv 3136 . . 3 ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
155154ralrimiva 3121 . 2 (𝑅 ∈ LNoeR → ∀𝑎 ∈ (LIdeal‘𝑃)∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))
15648, 10, 27islnr2 43091 . 2 (𝑃 ∈ LNoeR ↔ (𝑃 ∈ Ring ∧ ∀𝑎 ∈ (LIdeal‘𝑃)∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)))
1574, 155, 156sylanbrc 583 1 (𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  cin 3902  wss 3903  𝒫 cpw 4551   cuni 4858   ciun 4941   class class class wbr 5092  ran crn 5620   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  Fincfn 8872  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  cle 11150  0cn0 12384  cz 12471  cuz 12735  ...cfz 13410  Basecbs 17120  Ringcrg 20118  LIdealclidl 21113  RSpancrsp 21114  Poly1cpl1 22059  NoeACScnacs 42679  LNoeRclnr 43086  ldgIdlSeqcldgis 43098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-drs 18201  df-poset 18219  df-ipo 18434  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-cnfld 21262  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-mdeg 25958  df-deg1 25959  df-nacs 42680  df-lfig 43045  df-lnm 43053  df-lnr 43087  df-ldgis 43099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator