Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem1 Structured version   Visualization version   GIF version

Theorem hbtlem1 40864
Description: Value of the leading coefficient sequence function. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem.d 𝐷 = ( deg1𝑅)
Assertion
Ref Expression
hbtlem1 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
Distinct variable groups:   𝑗,𝐼,𝑘   𝑅,𝑗,𝑘   𝑗,𝑋,𝑘
Allowed substitution hints:   𝐷(𝑗,𝑘)   𝑃(𝑗,𝑘)   𝑆(𝑗,𝑘)   𝑈(𝑗,𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem hbtlem1
Dummy variables 𝑖 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem.s . . . . . 6 𝑆 = (ldgIdlSeq‘𝑅)
2 elex 3440 . . . . . . 7 (𝑅𝑉𝑅 ∈ V)
3 fveq2 6756 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
4 hbtlem.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
53, 4eqtr4di 2797 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
65fveq2d 6760 . . . . . . . . . 10 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = (LIdeal‘𝑃))
7 hbtlem.u . . . . . . . . . 10 𝑈 = (LIdeal‘𝑃)
86, 7eqtr4di 2797 . . . . . . . . 9 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = 𝑈)
9 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑅 → ( deg1𝑟) = ( deg1𝑅))
10 hbtlem.d . . . . . . . . . . . . . . . 16 𝐷 = ( deg1𝑅)
119, 10eqtr4di 2797 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅 → ( deg1𝑟) = 𝐷)
1211fveq1d 6758 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (( deg1𝑟)‘𝑘) = (𝐷𝑘))
1312breq1d 5080 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → ((( deg1𝑟)‘𝑘) ≤ 𝑥 ↔ (𝐷𝑘) ≤ 𝑥))
1413anbi1d 629 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))))
1514rexbidv 3225 . . . . . . . . . . 11 (𝑟 = 𝑅 → (∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))))
1615abbidv 2808 . . . . . . . . . 10 (𝑟 = 𝑅 → {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})
1716mpteq2dv 5172 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
188, 17mpteq12dv 5161 . . . . . . . 8 (𝑟 = 𝑅 → (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
19 df-ldgis 40863 . . . . . . . 8 ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
2018, 19, 7mptfvmpt 7086 . . . . . . 7 (𝑅 ∈ V → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
212, 20syl 17 . . . . . 6 (𝑅𝑉 → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
221, 21syl5eq 2791 . . . . 5 (𝑅𝑉𝑆 = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
2322fveq1d 6758 . . . 4 (𝑅𝑉 → (𝑆𝐼) = ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼))
2423fveq1d 6758 . . 3 (𝑅𝑉 → ((𝑆𝐼)‘𝑋) = (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋))
25243ad2ant1 1131 . 2 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋))
26 rexeq 3334 . . . . . . 7 (𝑖 = 𝐼 → (∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))))
2726abbidv 2808 . . . . . 6 (𝑖 = 𝐼 → {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})
2827mpteq2dv 5172 . . . . 5 (𝑖 = 𝐼 → (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
29 eqid 2738 . . . . 5 (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
30 nn0ex 12169 . . . . . 6 0 ∈ V
3130mptex 7081 . . . . 5 (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) ∈ V
3228, 29, 31fvmpt 6857 . . . 4 (𝐼𝑈 → ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
3332fveq1d 6758 . . 3 (𝐼𝑈 → (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋) = ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})‘𝑋))
34333ad2ant2 1132 . 2 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋) = ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})‘𝑋))
35 eqid 2738 . . 3 (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})
36 breq2 5074 . . . . . 6 (𝑥 = 𝑋 → ((𝐷𝑘) ≤ 𝑥 ↔ (𝐷𝑘) ≤ 𝑋))
37 fveq2 6756 . . . . . . 7 (𝑥 = 𝑋 → ((coe1𝑘)‘𝑥) = ((coe1𝑘)‘𝑋))
3837eqeq2d 2749 . . . . . 6 (𝑥 = 𝑋 → (𝑗 = ((coe1𝑘)‘𝑥) ↔ 𝑗 = ((coe1𝑘)‘𝑋)))
3936, 38anbi12d 630 . . . . 5 (𝑥 = 𝑋 → (((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))))
4039rexbidv 3225 . . . 4 (𝑥 = 𝑋 → (∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))))
4140abbidv 2808 . . 3 (𝑥 = 𝑋 → {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
42 simp3 1136 . . 3 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0)
43 simpr 484 . . . . . 6 (((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋)) → 𝑗 = ((coe1𝑘)‘𝑋))
4443reximi 3174 . . . . 5 (∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋)) → ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋))
4544ss2abi 3996 . . . 4 {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ⊆ {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)}
46 abrexexg 7777 . . . . 5 (𝐼𝑈 → {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∈ V)
47463ad2ant2 1132 . . . 4 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∈ V)
48 ssexg 5242 . . . 4 (({𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ⊆ {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∧ {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∈ V) → {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ∈ V)
4945, 47, 48sylancr 586 . . 3 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ∈ V)
5035, 41, 42, 49fvmptd3 6880 . 2 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})‘𝑋) = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
5125, 34, 503eqtrd 2782 1 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  cfv 6418  cle 10941  0cn0 12163  LIdealclidl 20347  Poly1cpl1 21258  coe1cco1 21259   deg1 cdg1 25121  ldgIdlSeqcldgis 40862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-n0 12164  df-ldgis 40863
This theorem is referenced by:  hbtlem2  40865  hbtlem4  40867  hbtlem3  40868  hbtlem5  40869  hbtlem6  40870
  Copyright terms: Public domain W3C validator