Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem1 Structured version   Visualization version   GIF version

Theorem hbtlem1 40064
Description: Value of the leading coefficient sequence function. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem.d 𝐷 = ( deg1𝑅)
Assertion
Ref Expression
hbtlem1 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
Distinct variable groups:   𝑗,𝐼,𝑘   𝑅,𝑗,𝑘   𝑗,𝑋,𝑘
Allowed substitution hints:   𝐷(𝑗,𝑘)   𝑃(𝑗,𝑘)   𝑆(𝑗,𝑘)   𝑈(𝑗,𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem hbtlem1
Dummy variables 𝑖 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem.s . . . . . 6 𝑆 = (ldgIdlSeq‘𝑅)
2 elex 3462 . . . . . . 7 (𝑅𝑉𝑅 ∈ V)
3 fveq2 6649 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
4 hbtlem.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
53, 4eqtr4di 2854 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
65fveq2d 6653 . . . . . . . . . 10 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = (LIdeal‘𝑃))
7 hbtlem.u . . . . . . . . . 10 𝑈 = (LIdeal‘𝑃)
86, 7eqtr4di 2854 . . . . . . . . 9 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = 𝑈)
9 fveq2 6649 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑅 → ( deg1𝑟) = ( deg1𝑅))
10 hbtlem.d . . . . . . . . . . . . . . . 16 𝐷 = ( deg1𝑅)
119, 10eqtr4di 2854 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅 → ( deg1𝑟) = 𝐷)
1211fveq1d 6651 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (( deg1𝑟)‘𝑘) = (𝐷𝑘))
1312breq1d 5043 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → ((( deg1𝑟)‘𝑘) ≤ 𝑥 ↔ (𝐷𝑘) ≤ 𝑥))
1413anbi1d 632 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))))
1514rexbidv 3259 . . . . . . . . . . 11 (𝑟 = 𝑅 → (∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))))
1615abbidv 2865 . . . . . . . . . 10 (𝑟 = 𝑅 → {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})
1716mpteq2dv 5129 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
188, 17mpteq12dv 5118 . . . . . . . 8 (𝑟 = 𝑅 → (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
19 df-ldgis 40063 . . . . . . . 8 ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
2018, 19, 7mptfvmpt 6972 . . . . . . 7 (𝑅 ∈ V → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
212, 20syl 17 . . . . . 6 (𝑅𝑉 → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
221, 21syl5eq 2848 . . . . 5 (𝑅𝑉𝑆 = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
2322fveq1d 6651 . . . 4 (𝑅𝑉 → (𝑆𝐼) = ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼))
2423fveq1d 6651 . . 3 (𝑅𝑉 → ((𝑆𝐼)‘𝑋) = (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋))
25243ad2ant1 1130 . 2 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋))
26 rexeq 3362 . . . . . . 7 (𝑖 = 𝐼 → (∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))))
2726abbidv 2865 . . . . . 6 (𝑖 = 𝐼 → {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})
2827mpteq2dv 5129 . . . . 5 (𝑖 = 𝐼 → (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
29 eqid 2801 . . . . 5 (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
30 nn0ex 11895 . . . . . 6 0 ∈ V
3130mptex 6967 . . . . 5 (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) ∈ V
3228, 29, 31fvmpt 6749 . . . 4 (𝐼𝑈 → ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
3332fveq1d 6651 . . 3 (𝐼𝑈 → (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋) = ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})‘𝑋))
34333ad2ant2 1131 . 2 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋) = ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})‘𝑋))
35 eqid 2801 . . 3 (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})
36 breq2 5037 . . . . . 6 (𝑥 = 𝑋 → ((𝐷𝑘) ≤ 𝑥 ↔ (𝐷𝑘) ≤ 𝑋))
37 fveq2 6649 . . . . . . 7 (𝑥 = 𝑋 → ((coe1𝑘)‘𝑥) = ((coe1𝑘)‘𝑋))
3837eqeq2d 2812 . . . . . 6 (𝑥 = 𝑋 → (𝑗 = ((coe1𝑘)‘𝑥) ↔ 𝑗 = ((coe1𝑘)‘𝑋)))
3936, 38anbi12d 633 . . . . 5 (𝑥 = 𝑋 → (((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))))
4039rexbidv 3259 . . . 4 (𝑥 = 𝑋 → (∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))))
4140abbidv 2865 . . 3 (𝑥 = 𝑋 → {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
42 simp3 1135 . . 3 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0)
43 simpr 488 . . . . . 6 (((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋)) → 𝑗 = ((coe1𝑘)‘𝑋))
4443reximi 3209 . . . . 5 (∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋)) → ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋))
4544ss2abi 3997 . . . 4 {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ⊆ {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)}
46 abrexexg 7648 . . . . 5 (𝐼𝑈 → {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∈ V)
47463ad2ant2 1131 . . . 4 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∈ V)
48 ssexg 5194 . . . 4 (({𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ⊆ {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∧ {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∈ V) → {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ∈ V)
4945, 47, 48sylancr 590 . . 3 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ∈ V)
5035, 41, 42, 49fvmptd3 6772 . 2 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})‘𝑋) = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
5125, 34, 503eqtrd 2840 1 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  {cab 2779  wrex 3110  Vcvv 3444  wss 3884   class class class wbr 5033  cmpt 5113  cfv 6328  cle 10669  0cn0 11889  LIdealclidl 19939  Poly1cpl1 20810  coe1cco1 20811   deg1 cdg1 24659  ldgIdlSeqcldgis 40062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-1cn 10588  ax-addcl 10590
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-nn 11630  df-n0 11890  df-ldgis 40063
This theorem is referenced by:  hbtlem2  40065  hbtlem4  40067  hbtlem3  40068  hbtlem5  40069  hbtlem6  40070
  Copyright terms: Public domain W3C validator