Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem1 Structured version   Visualization version   GIF version

Theorem hbtlem1 39227
Description: Value of the leading coefficient sequence function. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem.d 𝐷 = ( deg1𝑅)
Assertion
Ref Expression
hbtlem1 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
Distinct variable groups:   𝑗,𝐼,𝑘   𝑅,𝑗,𝑘   𝑗,𝑋,𝑘
Allowed substitution hints:   𝐷(𝑗,𝑘)   𝑃(𝑗,𝑘)   𝑆(𝑗,𝑘)   𝑈(𝑗,𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem hbtlem1
Dummy variables 𝑖 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem.s . . . . . 6 𝑆 = (ldgIdlSeq‘𝑅)
2 elex 3455 . . . . . . 7 (𝑅𝑉𝑅 ∈ V)
3 fveq2 6538 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
4 hbtlem.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
53, 4syl6eqr 2849 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
65fveq2d 6542 . . . . . . . . . 10 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = (LIdeal‘𝑃))
7 hbtlem.u . . . . . . . . . 10 𝑈 = (LIdeal‘𝑃)
86, 7syl6eqr 2849 . . . . . . . . 9 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = 𝑈)
9 fveq2 6538 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑅 → ( deg1𝑟) = ( deg1𝑅))
10 hbtlem.d . . . . . . . . . . . . . . . 16 𝐷 = ( deg1𝑅)
119, 10syl6eqr 2849 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅 → ( deg1𝑟) = 𝐷)
1211fveq1d 6540 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (( deg1𝑟)‘𝑘) = (𝐷𝑘))
1312breq1d 4972 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → ((( deg1𝑟)‘𝑘) ≤ 𝑥 ↔ (𝐷𝑘) ≤ 𝑥))
1413anbi1d 629 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))))
1514rexbidv 3260 . . . . . . . . . . 11 (𝑟 = 𝑅 → (∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))))
1615abbidv 2860 . . . . . . . . . 10 (𝑟 = 𝑅 → {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})
1716mpteq2dv 5056 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
188, 17mpteq12dv 5045 . . . . . . . 8 (𝑟 = 𝑅 → (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
19 df-ldgis 39226 . . . . . . . 8 ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((( deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
2018, 19, 7mptfvmpt 6856 . . . . . . 7 (𝑅 ∈ V → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
212, 20syl 17 . . . . . 6 (𝑅𝑉 → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
221, 21syl5eq 2843 . . . . 5 (𝑅𝑉𝑆 = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
2322fveq1d 6540 . . . 4 (𝑅𝑉 → (𝑆𝐼) = ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼))
2423fveq1d 6540 . . 3 (𝑅𝑉 → ((𝑆𝐼)‘𝑋) = (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋))
25243ad2ant1 1126 . 2 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋))
26 rexeq 3366 . . . . . . 7 (𝑖 = 𝐼 → (∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))))
2726abbidv 2860 . . . . . 6 (𝑖 = 𝐼 → {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})
2827mpteq2dv 5056 . . . . 5 (𝑖 = 𝐼 → (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
29 eqid 2795 . . . . 5 (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
30 nn0ex 11751 . . . . . 6 0 ∈ V
3130mptex 6852 . . . . 5 (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) ∈ V
3228, 29, 31fvmpt 6635 . . . 4 (𝐼𝑈 → ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))
3332fveq1d 6540 . . 3 (𝐼𝑈 → (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋) = ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})‘𝑋))
34333ad2ant2 1127 . 2 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → (((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}))‘𝐼)‘𝑋) = ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})‘𝑋))
35 eqid 2795 . . 3 (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})
36 breq2 4966 . . . . . 6 (𝑥 = 𝑋 → ((𝐷𝑘) ≤ 𝑥 ↔ (𝐷𝑘) ≤ 𝑋))
37 fveq2 6538 . . . . . . 7 (𝑥 = 𝑋 → ((coe1𝑘)‘𝑥) = ((coe1𝑘)‘𝑋))
3837eqeq2d 2805 . . . . . 6 (𝑥 = 𝑋 → (𝑗 = ((coe1𝑘)‘𝑥) ↔ 𝑗 = ((coe1𝑘)‘𝑋)))
3936, 38anbi12d 630 . . . . 5 (𝑥 = 𝑋 → (((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))))
4039rexbidv 3260 . . . 4 (𝑥 = 𝑋 → (∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥)) ↔ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))))
4140abbidv 2860 . . 3 (𝑥 = 𝑋 → {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
42 simp3 1131 . . 3 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0)
43 simpr 485 . . . . . 6 (((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋)) → 𝑗 = ((coe1𝑘)‘𝑋))
4443reximi 3207 . . . . 5 (∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋)) → ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋))
4544ss2abi 3964 . . . 4 {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ⊆ {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)}
46 abrexexg 7518 . . . . 5 (𝐼𝑈 → {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∈ V)
47463ad2ant2 1127 . . . 4 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∈ V)
48 ssexg 5118 . . . 4 (({𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ⊆ {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∧ {𝑗 ∣ ∃𝑘𝐼 𝑗 = ((coe1𝑘)‘𝑋)} ∈ V) → {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ∈ V)
4945, 47, 48sylancr 587 . . 3 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))} ∈ V)
5035, 41, 42, 49fvmptd3 6657 . 2 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})‘𝑋) = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
5125, 34, 503eqtrd 2835 1 ((𝑅𝑉𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘𝐼 ((𝐷𝑘) ≤ 𝑋𝑗 = ((coe1𝑘)‘𝑋))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  {cab 2775  wrex 3106  Vcvv 3437  wss 3859   class class class wbr 4962  cmpt 5041  cfv 6225  cle 10522  0cn0 11745  LIdealclidl 19632  Poly1cpl1 20028  coe1cco1 20029   deg1 cdg1 24331  ldgIdlSeqcldgis 39225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-1cn 10441  ax-addcl 10443
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-nn 11487  df-n0 11746  df-ldgis 39226
This theorem is referenced by:  hbtlem2  39228  hbtlem4  39230  hbtlem3  39231  hbtlem5  39232  hbtlem6  39233
  Copyright terms: Public domain W3C validator