Step | Hyp | Ref
| Expression |
1 | | hbtlem.s |
. . . . . 6
⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
2 | | elex 3440 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
3 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
4 | | hbtlem.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (Poly1‘𝑅) |
5 | 3, 4 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) = 𝑃) |
6 | 5 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 →
(LIdeal‘(Poly1‘𝑟)) = (LIdeal‘𝑃)) |
7 | | hbtlem.u |
. . . . . . . . . 10
⊢ 𝑈 = (LIdeal‘𝑃) |
8 | 6, 7 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 →
(LIdeal‘(Poly1‘𝑟)) = 𝑈) |
9 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑅 → ( deg1 ‘𝑟) = ( deg1
‘𝑅)) |
10 | | hbtlem.d |
. . . . . . . . . . . . . . . 16
⊢ 𝐷 = ( deg1
‘𝑅) |
11 | 9, 10 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑅 → ( deg1 ‘𝑟) = 𝐷) |
12 | 11 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑅 → (( deg1 ‘𝑟)‘𝑘) = (𝐷‘𝑘)) |
13 | 12 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ↔ (𝐷‘𝑘) ≤ 𝑥)) |
14 | 13 | anbi1d 629 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) ↔ ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)))) |
15 | 14 | rexbidv 3225 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) ↔ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)))) |
16 | 15 | abbidv 2808 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) |
17 | 16 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) |
18 | 8, 17 | mpteq12dv 5161 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
19 | | df-ldgis 40863 |
. . . . . . . 8
⊢ ldgIdlSeq
= (𝑟 ∈ V ↦
(𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
20 | 18, 19, 7 | mptfvmpt 7086 |
. . . . . . 7
⊢ (𝑅 ∈ V →
(ldgIdlSeq‘𝑅) =
(𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
21 | 2, 20 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (ldgIdlSeq‘𝑅) = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
22 | 1, 21 | syl5eq 2791 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
23 | 22 | fveq1d 6758 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (𝑆‘𝐼) = ((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))‘𝐼)) |
24 | 23 | fveq1d 6758 |
. . 3
⊢ (𝑅 ∈ 𝑉 → ((𝑆‘𝐼)‘𝑋) = (((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))‘𝐼)‘𝑋)) |
25 | 24 | 3ad2ant1 1131 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = (((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))‘𝐼)‘𝑋)) |
26 | | rexeq 3334 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → (∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) ↔ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)))) |
27 | 26 | abbidv 2808 |
. . . . . 6
⊢ (𝑖 = 𝐼 → {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) |
28 | 27 | mpteq2dv 5172 |
. . . . 5
⊢ (𝑖 = 𝐼 → (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) |
29 | | eqid 2738 |
. . . . 5
⊢ (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) |
30 | | nn0ex 12169 |
. . . . . 6
⊢
ℕ0 ∈ V |
31 | 30 | mptex 7081 |
. . . . 5
⊢ (𝑥 ∈ ℕ0
↦ {𝑗 ∣
∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) ∈ V |
32 | 28, 29, 31 | fvmpt 6857 |
. . . 4
⊢ (𝐼 ∈ 𝑈 → ((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) |
33 | 32 | fveq1d 6758 |
. . 3
⊢ (𝐼 ∈ 𝑈 → (((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))‘𝐼)‘𝑋) = ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})‘𝑋)) |
34 | 33 | 3ad2ant2 1132 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → (((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))‘𝐼)‘𝑋) = ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})‘𝑋)) |
35 | | eqid 2738 |
. . 3
⊢ (𝑥 ∈ ℕ0
↦ {𝑗 ∣
∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) |
36 | | breq2 5074 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝐷‘𝑘) ≤ 𝑥 ↔ (𝐷‘𝑘) ≤ 𝑋)) |
37 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((coe1‘𝑘)‘𝑥) = ((coe1‘𝑘)‘𝑋)) |
38 | 37 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑗 = ((coe1‘𝑘)‘𝑥) ↔ 𝑗 = ((coe1‘𝑘)‘𝑋))) |
39 | 36, 38 | anbi12d 630 |
. . . . 5
⊢ (𝑥 = 𝑋 → (((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) ↔ ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋)))) |
40 | 39 | rexbidv 3225 |
. . . 4
⊢ (𝑥 = 𝑋 → (∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) ↔ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋)))) |
41 | 40 | abbidv 2808 |
. . 3
⊢ (𝑥 = 𝑋 → {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))}) |
42 | | simp3 1136 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈
ℕ0) |
43 | | simpr 484 |
. . . . . 6
⊢ (((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋)) → 𝑗 = ((coe1‘𝑘)‘𝑋)) |
44 | 43 | reximi 3174 |
. . . . 5
⊢
(∃𝑘 ∈
𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋)) → ∃𝑘 ∈ 𝐼 𝑗 = ((coe1‘𝑘)‘𝑋)) |
45 | 44 | ss2abi 3996 |
. . . 4
⊢ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))} ⊆ {𝑗 ∣ ∃𝑘 ∈ 𝐼 𝑗 = ((coe1‘𝑘)‘𝑋)} |
46 | | abrexexg 7777 |
. . . . 5
⊢ (𝐼 ∈ 𝑈 → {𝑗 ∣ ∃𝑘 ∈ 𝐼 𝑗 = ((coe1‘𝑘)‘𝑋)} ∈ V) |
47 | 46 | 3ad2ant2 1132 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → {𝑗 ∣ ∃𝑘 ∈ 𝐼 𝑗 = ((coe1‘𝑘)‘𝑋)} ∈ V) |
48 | | ssexg 5242 |
. . . 4
⊢ (({𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))} ⊆ {𝑗 ∣ ∃𝑘 ∈ 𝐼 𝑗 = ((coe1‘𝑘)‘𝑋)} ∧ {𝑗 ∣ ∃𝑘 ∈ 𝐼 𝑗 = ((coe1‘𝑘)‘𝑋)} ∈ V) → {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))} ∈ V) |
49 | 45, 47, 48 | sylancr 586 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))} ∈ V) |
50 | 35, 41, 42, 49 | fvmptd3 6880 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑥 ∈ ℕ0
↦ {𝑗 ∣
∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})‘𝑋) = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))}) |
51 | 25, 34, 50 | 3eqtrd 2782 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))}) |