Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem7 Structured version   Visualization version   GIF version

Theorem hbtlem7 39745
Description: Functionality of leading coefficient ideal sequence. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem7.t 𝑇 = (LIdeal‘𝑅)
Assertion
Ref Expression
hbtlem7 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑆𝐼):ℕ0𝑇)

Proof of Theorem hbtlem7
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . . . . 9 (((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) → 𝑦 = ((coe1𝑗)‘𝑥))
21reximi 3243 . . . . . . . 8 (∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) → ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥))
32ss2abi 4043 . . . . . . 7 {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ⊆ {𝑦 ∣ ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥)}
4 abrexexg 7662 . . . . . . 7 (𝐼𝑈 → {𝑦 ∣ ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥)} ∈ V)
5 ssexg 5227 . . . . . . 7 (({𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ⊆ {𝑦 ∣ ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥)} ∧ {𝑦 ∣ ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥)} ∈ V) → {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V)
63, 4, 5sylancr 589 . . . . . 6 (𝐼𝑈 → {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V)
76ralrimivw 3183 . . . . 5 (𝐼𝑈 → ∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V)
87adantl 484 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V)
9 eqid 2821 . . . . 5 (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})
109fnmpt 6488 . . . 4 (∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) Fn ℕ0)
118, 10syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) Fn ℕ0)
12 hbtlem.s . . . . . . 7 𝑆 = (ldgIdlSeq‘𝑅)
13 elex 3512 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ V)
14 fveq2 6670 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
15 hbtlem.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
1614, 15syl6eqr 2874 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
1716fveq2d 6674 . . . . . . . . . . 11 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = (LIdeal‘𝑃))
18 hbtlem.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑃)
1917, 18syl6eqr 2874 . . . . . . . . . 10 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = 𝑈)
20 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑅 → ( deg1𝑟) = ( deg1𝑅))
2120fveq1d 6672 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅 → (( deg1𝑟)‘𝑗) = (( deg1𝑅)‘𝑗))
2221breq1d 5076 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → ((( deg1𝑟)‘𝑗) ≤ 𝑥 ↔ (( deg1𝑅)‘𝑗) ≤ 𝑥))
2322anbi1d 631 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (((( deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) ↔ ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))))
2423rexbidv 3297 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (∃𝑗𝑖 ((( deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) ↔ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))))
2524abbidv 2885 . . . . . . . . . . 11 (𝑟 = 𝑅 → {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} = {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})
2625mpteq2dv 5162 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
2719, 26mpteq12dv 5151 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
28 df-ldgis 39742 . . . . . . . . 9 ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
2927, 28, 18mptfvmpt 6990 . . . . . . . 8 (𝑅 ∈ V → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
3013, 29syl 17 . . . . . . 7 (𝑅 ∈ Ring → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
3112, 30syl5eq 2868 . . . . . 6 (𝑅 ∈ Ring → 𝑆 = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
3231fveq1d 6672 . . . . 5 (𝑅 ∈ Ring → (𝑆𝐼) = ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))‘𝐼))
33 rexeq 3406 . . . . . . . 8 (𝑖 = 𝐼 → (∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) ↔ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))))
3433abbidv 2885 . . . . . . 7 (𝑖 = 𝐼 → {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} = {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})
3534mpteq2dv 5162 . . . . . 6 (𝑖 = 𝐼 → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
36 eqid 2821 . . . . . 6 (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
37 nn0ex 11904 . . . . . . 7 0 ∈ V
3837mptex 6986 . . . . . 6 (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) ∈ V
3935, 36, 38fvmpt 6768 . . . . 5 (𝐼𝑈 → ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
4032, 39sylan9eq 2876 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑆𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
4140fneq1d 6446 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑆𝐼) Fn ℕ0 ↔ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 ((( deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) Fn ℕ0))
4211, 41mpbird 259 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑆𝐼) Fn ℕ0)
43 hbtlem7.t . . . . 5 𝑇 = (LIdeal‘𝑅)
4415, 18, 12, 43hbtlem2 39744 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑥 ∈ ℕ0) → ((𝑆𝐼)‘𝑥) ∈ 𝑇)
45443expa 1114 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥 ∈ ℕ0) → ((𝑆𝐼)‘𝑥) ∈ 𝑇)
4645ralrimiva 3182 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ∀𝑥 ∈ ℕ0 ((𝑆𝐼)‘𝑥) ∈ 𝑇)
47 ffnfv 6882 . 2 ((𝑆𝐼):ℕ0𝑇 ↔ ((𝑆𝐼) Fn ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑆𝐼)‘𝑥) ∈ 𝑇))
4842, 46, 47sylanbrc 585 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑆𝐼):ℕ0𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  wss 3936   class class class wbr 5066  cmpt 5146   Fn wfn 6350  wf 6351  cfv 6355  cle 10676  0cn0 11898  Ringcrg 19297  LIdealclidl 19942  Poly1cpl1 20345  coe1cco1 20346   deg1 cdg1 24648  ldgIdlSeqcldgis 39741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-gsum 16716  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-subrg 19533  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138  df-opsr 20140  df-psr1 20348  df-vr1 20349  df-ply1 20350  df-coe1 20351  df-cnfld 20546  df-mdeg 24649  df-deg1 24650  df-ldgis 39742
This theorem is referenced by:  hbt  39750
  Copyright terms: Public domain W3C validator