| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . . 9
⊢
((((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)) → 𝑦 = ((coe1‘𝑗)‘𝑥)) |
| 2 | 1 | reximi 3084 |
. . . . . . . 8
⊢
(∃𝑗 ∈
𝐼
(((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)) → ∃𝑗 ∈ 𝐼 𝑦 = ((coe1‘𝑗)‘𝑥)) |
| 3 | 2 | ss2abi 4067 |
. . . . . . 7
⊢ {𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ⊆ {𝑦 ∣ ∃𝑗 ∈ 𝐼 𝑦 = ((coe1‘𝑗)‘𝑥)} |
| 4 | | abrexexg 7985 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑈 → {𝑦 ∣ ∃𝑗 ∈ 𝐼 𝑦 = ((coe1‘𝑗)‘𝑥)} ∈ V) |
| 5 | | ssexg 5323 |
. . . . . . 7
⊢ (({𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ⊆ {𝑦 ∣ ∃𝑗 ∈ 𝐼 𝑦 = ((coe1‘𝑗)‘𝑥)} ∧ {𝑦 ∣ ∃𝑗 ∈ 𝐼 𝑦 = ((coe1‘𝑗)‘𝑥)} ∈ V) → {𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ∈ V) |
| 6 | 3, 4, 5 | sylancr 587 |
. . . . . 6
⊢ (𝐼 ∈ 𝑈 → {𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ∈ V) |
| 7 | 6 | ralrimivw 3150 |
. . . . 5
⊢ (𝐼 ∈ 𝑈 → ∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ∈ V) |
| 8 | 7 | adantl 481 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ∈ V) |
| 9 | | eqid 2737 |
. . . . 5
⊢ (𝑥 ∈ ℕ0
↦ {𝑦 ∣
∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) |
| 10 | 9 | fnmpt 6708 |
. . . 4
⊢
(∀𝑥 ∈
ℕ0 {𝑦
∣ ∃𝑗 ∈
𝐼
(((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} ∈ V → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) Fn ℕ0) |
| 11 | 8, 10 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) Fn ℕ0) |
| 12 | | hbtlem.s |
. . . . . . 7
⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
| 13 | | elex 3501 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) |
| 14 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
| 15 | | hbtlem.p |
. . . . . . . . . . . . 13
⊢ 𝑃 = (Poly1‘𝑅) |
| 16 | 14, 15 | eqtr4di 2795 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) = 𝑃) |
| 17 | 16 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 →
(LIdeal‘(Poly1‘𝑟)) = (LIdeal‘𝑃)) |
| 18 | | hbtlem.u |
. . . . . . . . . . 11
⊢ 𝑈 = (LIdeal‘𝑃) |
| 19 | 17, 18 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 →
(LIdeal‘(Poly1‘𝑟)) = 𝑈) |
| 20 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑅 → (deg1‘𝑟) = (deg1‘𝑅)) |
| 21 | 20 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑅 → ((deg1‘𝑟)‘𝑗) = ((deg1‘𝑅)‘𝑗)) |
| 22 | 21 | breq1d 5153 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑅 → (((deg1‘𝑟)‘𝑗) ≤ 𝑥 ↔ ((deg1‘𝑅)‘𝑗) ≤ 𝑥)) |
| 23 | 22 | anbi1d 631 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → ((((deg1‘𝑟)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)) ↔ (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)))) |
| 24 | 23 | rexbidv 3179 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (∃𝑗 ∈ 𝑖 (((deg1‘𝑟)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)) ↔ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)))) |
| 25 | 24 | abbidv 2808 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑟)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} = {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) |
| 26 | 25 | mpteq2dv 5244 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑟)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) |
| 27 | 19, 26 | mpteq12dv 5233 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑟)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))) |
| 28 | | df-ldgis 43134 |
. . . . . . . . 9
⊢ ldgIdlSeq
= (𝑟 ∈ V ↦
(𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑟)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))) |
| 29 | 27, 28, 18 | mptfvmpt 7248 |
. . . . . . . 8
⊢ (𝑅 ∈ V →
(ldgIdlSeq‘𝑅) =
(𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))) |
| 30 | 13, 29 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(ldgIdlSeq‘𝑅) =
(𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))) |
| 31 | 12, 30 | eqtrid 2789 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑆 = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))) |
| 32 | 31 | fveq1d 6908 |
. . . . 5
⊢ (𝑅 ∈ Ring → (𝑆‘𝐼) = ((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))‘𝐼)) |
| 33 | | rexeq 3322 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → (∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)) ↔ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥)))) |
| 34 | 33 | abbidv 2808 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))} = {𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) |
| 35 | 34 | mpteq2dv 5244 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) |
| 36 | | eqid 2737 |
. . . . . 6
⊢ (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) |
| 37 | | nn0ex 12532 |
. . . . . . 7
⊢
ℕ0 ∈ V |
| 38 | 37 | mptex 7243 |
. . . . . 6
⊢ (𝑥 ∈ ℕ0
↦ {𝑦 ∣
∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) ∈ V |
| 39 | 35, 36, 38 | fvmpt 7016 |
. . . . 5
⊢ (𝐼 ∈ 𝑈 → ((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝑖 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}))‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) |
| 40 | 32, 39 | sylan9eq 2797 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑆‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))})) |
| 41 | 40 | fneq1d 6661 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((𝑆‘𝐼) Fn ℕ0 ↔ (𝑥 ∈ ℕ0
↦ {𝑦 ∣
∃𝑗 ∈ 𝐼 (((deg1‘𝑅)‘𝑗) ≤ 𝑥 ∧ 𝑦 = ((coe1‘𝑗)‘𝑥))}) Fn
ℕ0)) |
| 42 | 11, 41 | mpbird 257 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑆‘𝐼) Fn ℕ0) |
| 43 | | hbtlem7.t |
. . . . 5
⊢ 𝑇 = (LIdeal‘𝑅) |
| 44 | 15, 18, 12, 43 | hbtlem2 43136 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑥) ∈ 𝑇) |
| 45 | 44 | 3expa 1119 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 𝑥 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑥) ∈ 𝑇) |
| 46 | 45 | ralrimiva 3146 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ ℕ0 ((𝑆‘𝐼)‘𝑥) ∈ 𝑇) |
| 47 | | ffnfv 7139 |
. 2
⊢ ((𝑆‘𝐼):ℕ0⟶𝑇 ↔ ((𝑆‘𝐼) Fn ℕ0 ∧ ∀𝑥 ∈ ℕ0
((𝑆‘𝐼)‘𝑥) ∈ 𝑇)) |
| 48 | 42, 46, 47 | sylanbrc 583 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑆‘𝐼):ℕ0⟶𝑇) |