Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem7 Structured version   Visualization version   GIF version

Theorem hbtlem7 42471
Description: Functionality of leading coefficient ideal sequence. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1β€˜π‘…)
hbtlem.u π‘ˆ = (LIdealβ€˜π‘ƒ)
hbtlem.s 𝑆 = (ldgIdlSeqβ€˜π‘…)
hbtlem7.t 𝑇 = (LIdealβ€˜π‘…)
Assertion
Ref Expression
hbtlem7 ((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘ˆ) β†’ (π‘†β€˜πΌ):β„•0βŸΆπ‘‡)

Proof of Theorem hbtlem7
Dummy variables 𝑖 𝑗 π‘₯ 𝑦 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 (((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯)) β†’ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))
21reximi 3079 . . . . . . . 8 (βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯)) β†’ βˆƒπ‘— ∈ 𝐼 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))
32ss2abi 4059 . . . . . . 7 {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))} βŠ† {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯)}
4 abrexexg 7958 . . . . . . 7 (𝐼 ∈ π‘ˆ β†’ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯)} ∈ V)
5 ssexg 5317 . . . . . . 7 (({𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))} βŠ† {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯)} ∧ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯)} ∈ V) β†’ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))} ∈ V)
63, 4, 5sylancr 586 . . . . . 6 (𝐼 ∈ π‘ˆ β†’ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))} ∈ V)
76ralrimivw 3145 . . . . 5 (𝐼 ∈ π‘ˆ β†’ βˆ€π‘₯ ∈ β„•0 {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))} ∈ V)
87adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘ˆ) β†’ βˆ€π‘₯ ∈ β„•0 {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))} ∈ V)
9 eqid 2727 . . . . 5 (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}) = (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))})
109fnmpt 6689 . . . 4 (βˆ€π‘₯ ∈ β„•0 {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))} ∈ V β†’ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}) Fn β„•0)
118, 10syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘ˆ) β†’ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}) Fn β„•0)
12 hbtlem.s . . . . . . 7 𝑆 = (ldgIdlSeqβ€˜π‘…)
13 elex 3488 . . . . . . . 8 (𝑅 ∈ Ring β†’ 𝑅 ∈ V)
14 fveq2 6891 . . . . . . . . . . . . 13 (π‘Ÿ = 𝑅 β†’ (Poly1β€˜π‘Ÿ) = (Poly1β€˜π‘…))
15 hbtlem.p . . . . . . . . . . . . 13 𝑃 = (Poly1β€˜π‘…)
1614, 15eqtr4di 2785 . . . . . . . . . . . 12 (π‘Ÿ = 𝑅 β†’ (Poly1β€˜π‘Ÿ) = 𝑃)
1716fveq2d 6895 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ (LIdealβ€˜(Poly1β€˜π‘Ÿ)) = (LIdealβ€˜π‘ƒ))
18 hbtlem.u . . . . . . . . . . 11 π‘ˆ = (LIdealβ€˜π‘ƒ)
1917, 18eqtr4di 2785 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (LIdealβ€˜(Poly1β€˜π‘Ÿ)) = π‘ˆ)
20 fveq2 6891 . . . . . . . . . . . . . . . 16 (π‘Ÿ = 𝑅 β†’ ( deg1 β€˜π‘Ÿ) = ( deg1 β€˜π‘…))
2120fveq1d 6893 . . . . . . . . . . . . . . 15 (π‘Ÿ = 𝑅 β†’ (( deg1 β€˜π‘Ÿ)β€˜π‘—) = (( deg1 β€˜π‘…)β€˜π‘—))
2221breq1d 5152 . . . . . . . . . . . . . 14 (π‘Ÿ = 𝑅 β†’ ((( deg1 β€˜π‘Ÿ)β€˜π‘—) ≀ π‘₯ ↔ (( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯))
2322anbi1d 629 . . . . . . . . . . . . 13 (π‘Ÿ = 𝑅 β†’ (((( deg1 β€˜π‘Ÿ)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯)) ↔ ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))))
2423rexbidv 3173 . . . . . . . . . . . 12 (π‘Ÿ = 𝑅 β†’ (βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘Ÿ)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯)) ↔ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))))
2524abbidv 2796 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘Ÿ)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))} = {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))})
2625mpteq2dv 5244 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘Ÿ)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}) = (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}))
2719, 26mpteq12dv 5233 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (𝑖 ∈ (LIdealβ€˜(Poly1β€˜π‘Ÿ)) ↦ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘Ÿ)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))})) = (𝑖 ∈ π‘ˆ ↦ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))})))
28 df-ldgis 42468 . . . . . . . . 9 ldgIdlSeq = (π‘Ÿ ∈ V ↦ (𝑖 ∈ (LIdealβ€˜(Poly1β€˜π‘Ÿ)) ↦ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘Ÿ)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))})))
2927, 28, 18mptfvmpt 7234 . . . . . . . 8 (𝑅 ∈ V β†’ (ldgIdlSeqβ€˜π‘…) = (𝑖 ∈ π‘ˆ ↦ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))})))
3013, 29syl 17 . . . . . . 7 (𝑅 ∈ Ring β†’ (ldgIdlSeqβ€˜π‘…) = (𝑖 ∈ π‘ˆ ↦ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))})))
3112, 30eqtrid 2779 . . . . . 6 (𝑅 ∈ Ring β†’ 𝑆 = (𝑖 ∈ π‘ˆ ↦ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))})))
3231fveq1d 6893 . . . . 5 (𝑅 ∈ Ring β†’ (π‘†β€˜πΌ) = ((𝑖 ∈ π‘ˆ ↦ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}))β€˜πΌ))
33 rexeq 3316 . . . . . . . 8 (𝑖 = 𝐼 β†’ (βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯)) ↔ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))))
3433abbidv 2796 . . . . . . 7 (𝑖 = 𝐼 β†’ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))} = {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))})
3534mpteq2dv 5244 . . . . . 6 (𝑖 = 𝐼 β†’ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}) = (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}))
36 eqid 2727 . . . . . 6 (𝑖 ∈ π‘ˆ ↦ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))})) = (𝑖 ∈ π‘ˆ ↦ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}))
37 nn0ex 12500 . . . . . . 7 β„•0 ∈ V
3837mptex 7229 . . . . . 6 (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}) ∈ V
3935, 36, 38fvmpt 6999 . . . . 5 (𝐼 ∈ π‘ˆ β†’ ((𝑖 ∈ π‘ˆ ↦ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝑖 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}))β€˜πΌ) = (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}))
4032, 39sylan9eq 2787 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘ˆ) β†’ (π‘†β€˜πΌ) = (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}))
4140fneq1d 6641 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘ˆ) β†’ ((π‘†β€˜πΌ) Fn β„•0 ↔ (π‘₯ ∈ β„•0 ↦ {𝑦 ∣ βˆƒπ‘— ∈ 𝐼 ((( deg1 β€˜π‘…)β€˜π‘—) ≀ π‘₯ ∧ 𝑦 = ((coe1β€˜π‘—)β€˜π‘₯))}) Fn β„•0))
4211, 41mpbird 257 . 2 ((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘ˆ) β†’ (π‘†β€˜πΌ) Fn β„•0)
43 hbtlem7.t . . . . 5 𝑇 = (LIdealβ€˜π‘…)
4415, 18, 12, 43hbtlem2 42470 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘ˆ ∧ π‘₯ ∈ β„•0) β†’ ((π‘†β€˜πΌ)β€˜π‘₯) ∈ 𝑇)
45443expa 1116 . . 3 (((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘ˆ) ∧ π‘₯ ∈ β„•0) β†’ ((π‘†β€˜πΌ)β€˜π‘₯) ∈ 𝑇)
4645ralrimiva 3141 . 2 ((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘ˆ) β†’ βˆ€π‘₯ ∈ β„•0 ((π‘†β€˜πΌ)β€˜π‘₯) ∈ 𝑇)
47 ffnfv 7123 . 2 ((π‘†β€˜πΌ):β„•0βŸΆπ‘‡ ↔ ((π‘†β€˜πΌ) Fn β„•0 ∧ βˆ€π‘₯ ∈ β„•0 ((π‘†β€˜πΌ)β€˜π‘₯) ∈ 𝑇))
4842, 46, 47sylanbrc 582 1 ((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘ˆ) β†’ (π‘†β€˜πΌ):β„•0βŸΆπ‘‡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  {cab 2704  βˆ€wral 3056  βˆƒwrex 3065  Vcvv 3469   βŠ† wss 3944   class class class wbr 5142   ↦ cmpt 5225   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542   ≀ cle 11271  β„•0cn0 12494  Ringcrg 20164  LIdealclidl 21091  Poly1cpl1 22083  coe1cco1 22084   deg1 cdg1 25974  ldgIdlSeqcldgis 42467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-cring 20167  df-subrng 20472  df-subrg 20497  df-lmod 20734  df-lss 20805  df-sra 21047  df-rgmod 21048  df-lidl 21093  df-cnfld 21267  df-ascl 21776  df-psr 21829  df-mvr 21830  df-mpl 21831  df-opsr 21833  df-psr1 22086  df-vr1 22087  df-ply1 22088  df-coe1 22089  df-mdeg 25975  df-deg1 25976  df-ldgis 42468
This theorem is referenced by:  hbt  42476
  Copyright terms: Public domain W3C validator