Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem7 Structured version   Visualization version   GIF version

Theorem hbtlem7 43098
Description: Functionality of leading coefficient ideal sequence. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem7.t 𝑇 = (LIdeal‘𝑅)
Assertion
Ref Expression
hbtlem7 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑆𝐼):ℕ0𝑇)

Proof of Theorem hbtlem7
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) → 𝑦 = ((coe1𝑗)‘𝑥))
21reximi 3067 . . . . . . . 8 (∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) → ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥))
32ss2abi 4021 . . . . . . 7 {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ⊆ {𝑦 ∣ ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥)}
4 abrexexg 7903 . . . . . . 7 (𝐼𝑈 → {𝑦 ∣ ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥)} ∈ V)
5 ssexg 5265 . . . . . . 7 (({𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ⊆ {𝑦 ∣ ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥)} ∧ {𝑦 ∣ ∃𝑗𝐼 𝑦 = ((coe1𝑗)‘𝑥)} ∈ V) → {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V)
63, 4, 5sylancr 587 . . . . . 6 (𝐼𝑈 → {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V)
76ralrimivw 3125 . . . . 5 (𝐼𝑈 → ∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V)
87adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V)
9 eqid 2729 . . . . 5 (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})
109fnmpt 6626 . . . 4 (∀𝑥 ∈ ℕ0 {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} ∈ V → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) Fn ℕ0)
118, 10syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) Fn ℕ0)
12 hbtlem.s . . . . . . 7 𝑆 = (ldgIdlSeq‘𝑅)
13 elex 3459 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ V)
14 fveq2 6826 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
15 hbtlem.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
1614, 15eqtr4di 2782 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
1716fveq2d 6830 . . . . . . . . . . 11 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = (LIdeal‘𝑃))
18 hbtlem.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑃)
1917, 18eqtr4di 2782 . . . . . . . . . 10 (𝑟 = 𝑅 → (LIdeal‘(Poly1𝑟)) = 𝑈)
20 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑅 → (deg1𝑟) = (deg1𝑅))
2120fveq1d 6828 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅 → ((deg1𝑟)‘𝑗) = ((deg1𝑅)‘𝑗))
2221breq1d 5105 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (((deg1𝑟)‘𝑗) ≤ 𝑥 ↔ ((deg1𝑅)‘𝑗) ≤ 𝑥))
2322anbi1d 631 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → ((((deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) ↔ (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))))
2423rexbidv 3153 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (∃𝑗𝑖 (((deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) ↔ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))))
2524abbidv 2795 . . . . . . . . . . 11 (𝑟 = 𝑅 → {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} = {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})
2625mpteq2dv 5189 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
2719, 26mpteq12dv 5182 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
28 df-ldgis 43095 . . . . . . . . 9 ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑟)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
2927, 28, 18mptfvmpt 7168 . . . . . . . 8 (𝑅 ∈ V → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
3013, 29syl 17 . . . . . . 7 (𝑅 ∈ Ring → (ldgIdlSeq‘𝑅) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
3112, 30eqtrid 2776 . . . . . 6 (𝑅 ∈ Ring → 𝑆 = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})))
3231fveq1d 6828 . . . . 5 (𝑅 ∈ Ring → (𝑆𝐼) = ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))‘𝐼))
33 rexeq 3286 . . . . . . . 8 (𝑖 = 𝐼 → (∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥)) ↔ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))))
3433abbidv 2795 . . . . . . 7 (𝑖 = 𝐼 → {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))} = {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})
3534mpteq2dv 5189 . . . . . 6 (𝑖 = 𝐼 → (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
36 eqid 2729 . . . . . 6 (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))})) = (𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
37 nn0ex 12408 . . . . . . 7 0 ∈ V
3837mptex 7163 . . . . . 6 (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) ∈ V
3935, 36, 38fvmpt 6934 . . . . 5 (𝐼𝑈 → ((𝑖𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝑖 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
4032, 39sylan9eq 2784 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑆𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}))
4140fneq1d 6579 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((𝑆𝐼) Fn ℕ0 ↔ (𝑥 ∈ ℕ0 ↦ {𝑦 ∣ ∃𝑗𝐼 (((deg1𝑅)‘𝑗) ≤ 𝑥𝑦 = ((coe1𝑗)‘𝑥))}) Fn ℕ0))
4211, 41mpbird 257 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑆𝐼) Fn ℕ0)
43 hbtlem7.t . . . . 5 𝑇 = (LIdeal‘𝑅)
4415, 18, 12, 43hbtlem2 43097 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑥 ∈ ℕ0) → ((𝑆𝐼)‘𝑥) ∈ 𝑇)
45443expa 1118 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ 𝑥 ∈ ℕ0) → ((𝑆𝐼)‘𝑥) ∈ 𝑇)
4645ralrimiva 3121 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ∀𝑥 ∈ ℕ0 ((𝑆𝐼)‘𝑥) ∈ 𝑇)
47 ffnfv 7057 . 2 ((𝑆𝐼):ℕ0𝑇 ↔ ((𝑆𝐼) Fn ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑆𝐼)‘𝑥) ∈ 𝑇))
4842, 46, 47sylanbrc 583 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝑆𝐼):ℕ0𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3438  wss 3905   class class class wbr 5095  cmpt 5176   Fn wfn 6481  wf 6482  cfv 6486  cle 11169  0cn0 12402  Ringcrg 20136  LIdealclidl 21131  Poly1cpl1 22077  coe1cco1 22078  deg1cdg1 25975  ldgIdlSeqcldgis 43094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-cnfld 21280  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-coe1 22083  df-mdeg 25976  df-deg1 25977  df-ldgis 43095
This theorem is referenced by:  hbt  43103
  Copyright terms: Public domain W3C validator