Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ldil Structured version   Visualization version   GIF version

Definition df-ldil 38963
Description: Define set of all lattice dilations. Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
Assertion
Ref Expression
df-ldil LDil = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {𝑓 ∈ (LAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)}))
Distinct variable group:   𝑀,π‘˜,𝑓,π‘₯

Detailed syntax breakdown of Definition df-ldil
StepHypRef Expression
1 cldil 38959 . 2 class LDil
2 vk . . 3 setvar π‘˜
3 cvv 3474 . . 3 class V
4 vw . . . 4 setvar 𝑀
52cv 1540 . . . . 5 class π‘˜
6 clh 38843 . . . . 5 class LHyp
75, 6cfv 6540 . . . 4 class (LHypβ€˜π‘˜)
8 vx . . . . . . . . 9 setvar π‘₯
98cv 1540 . . . . . . . 8 class π‘₯
104cv 1540 . . . . . . . 8 class 𝑀
11 cple 17200 . . . . . . . . 9 class le
125, 11cfv 6540 . . . . . . . 8 class (leβ€˜π‘˜)
139, 10, 12wbr 5147 . . . . . . 7 wff π‘₯(leβ€˜π‘˜)𝑀
14 vf . . . . . . . . . 10 setvar 𝑓
1514cv 1540 . . . . . . . . 9 class 𝑓
169, 15cfv 6540 . . . . . . . 8 class (π‘“β€˜π‘₯)
1716, 9wceq 1541 . . . . . . 7 wff (π‘“β€˜π‘₯) = π‘₯
1813, 17wi 4 . . . . . 6 wff (π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)
19 cbs 17140 . . . . . . 7 class Base
205, 19cfv 6540 . . . . . 6 class (Baseβ€˜π‘˜)
2118, 8, 20wral 3061 . . . . 5 wff βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)
22 claut 38844 . . . . . 6 class LAut
235, 22cfv 6540 . . . . 5 class (LAutβ€˜π‘˜)
2421, 14, 23crab 3432 . . . 4 class {𝑓 ∈ (LAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)}
254, 7, 24cmpt 5230 . . 3 class (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {𝑓 ∈ (LAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)})
262, 3, 25cmpt 5230 . 2 class (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {𝑓 ∈ (LAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)}))
271, 26wceq 1541 1 wff LDil = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {𝑓 ∈ (LAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)}))
Colors of variables: wff setvar class
This definition is referenced by:  ldilfset  38967
  Copyright terms: Public domain W3C validator