Step | Hyp | Ref
| Expression |
1 | | cldil 38959 |
. 2
class
LDil |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar π€ |
5 | 2 | cv 1540 |
. . . . 5
class π |
6 | | clh 38843 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6540 |
. . . 4
class
(LHypβπ) |
8 | | vx |
. . . . . . . . 9
setvar π₯ |
9 | 8 | cv 1540 |
. . . . . . . 8
class π₯ |
10 | 4 | cv 1540 |
. . . . . . . 8
class π€ |
11 | | cple 17200 |
. . . . . . . . 9
class
le |
12 | 5, 11 | cfv 6540 |
. . . . . . . 8
class
(leβπ) |
13 | 9, 10, 12 | wbr 5147 |
. . . . . . 7
wff π₯(leβπ)π€ |
14 | | vf |
. . . . . . . . . 10
setvar π |
15 | 14 | cv 1540 |
. . . . . . . . 9
class π |
16 | 9, 15 | cfv 6540 |
. . . . . . . 8
class (πβπ₯) |
17 | 16, 9 | wceq 1541 |
. . . . . . 7
wff (πβπ₯) = π₯ |
18 | 13, 17 | wi 4 |
. . . . . 6
wff (π₯(leβπ)π€ β (πβπ₯) = π₯) |
19 | | cbs 17140 |
. . . . . . 7
class
Base |
20 | 5, 19 | cfv 6540 |
. . . . . 6
class
(Baseβπ) |
21 | 18, 8, 20 | wral 3061 |
. . . . 5
wff
βπ₯ β
(Baseβπ)(π₯(leβπ)π€ β (πβπ₯) = π₯) |
22 | | claut 38844 |
. . . . . 6
class
LAut |
23 | 5, 22 | cfv 6540 |
. . . . 5
class
(LAutβπ) |
24 | 21, 14, 23 | crab 3432 |
. . . 4
class {π β (LAutβπ) β£ βπ₯ β (Baseβπ)(π₯(leβπ)π€ β (πβπ₯) = π₯)} |
25 | 4, 7, 24 | cmpt 5230 |
. . 3
class (π€ β (LHypβπ) β¦ {π β (LAutβπ) β£ βπ₯ β (Baseβπ)(π₯(leβπ)π€ β (πβπ₯) = π₯)}) |
26 | 2, 3, 25 | cmpt 5230 |
. 2
class (π β V β¦ (π€ β (LHypβπ) β¦ {π β (LAutβπ) β£ βπ₯ β (Baseβπ)(π₯(leβπ)π€ β (πβπ₯) = π₯)})) |
27 | 1, 26 | wceq 1541 |
1
wff LDil =
(π β V β¦ (π€ β (LHypβπ) β¦ {π β (LAutβπ) β£ βπ₯ β (Baseβπ)(π₯(leβπ)π€ β (πβπ₯) = π₯)})) |