Detailed syntax breakdown of Definition df-ldil
Step | Hyp | Ref
| Expression |
1 | | cldil 38121 |
. 2
class
LDil |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 38005 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6437 |
. . . 4
class
(LHyp‘𝑘) |
8 | | vx |
. . . . . . . . 9
setvar 𝑥 |
9 | 8 | cv 1538 |
. . . . . . . 8
class 𝑥 |
10 | 4 | cv 1538 |
. . . . . . . 8
class 𝑤 |
11 | | cple 16978 |
. . . . . . . . 9
class
le |
12 | 5, 11 | cfv 6437 |
. . . . . . . 8
class
(le‘𝑘) |
13 | 9, 10, 12 | wbr 5075 |
. . . . . . 7
wff 𝑥(le‘𝑘)𝑤 |
14 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
15 | 14 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
16 | 9, 15 | cfv 6437 |
. . . . . . . 8
class (𝑓‘𝑥) |
17 | 16, 9 | wceq 1539 |
. . . . . . 7
wff (𝑓‘𝑥) = 𝑥 |
18 | 13, 17 | wi 4 |
. . . . . 6
wff (𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥) |
19 | | cbs 16921 |
. . . . . . 7
class
Base |
20 | 5, 19 | cfv 6437 |
. . . . . 6
class
(Base‘𝑘) |
21 | 18, 8, 20 | wral 3065 |
. . . . 5
wff
∀𝑥 ∈
(Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥) |
22 | | claut 38006 |
. . . . . 6
class
LAut |
23 | 5, 22 | cfv 6437 |
. . . . 5
class
(LAut‘𝑘) |
24 | 21, 14, 23 | crab 3069 |
. . . 4
class {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)} |
25 | 4, 7, 24 | cmpt 5158 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)}) |
26 | 2, 3, 25 | cmpt 5158 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)})) |
27 | 1, 26 | wceq 1539 |
1
wff LDil =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)})) |