HomeHome Metamath Proof Explorer
Theorem List (p. 393 of 454)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28701)
  Hilbert Space Explorer  Hilbert Space Explorer
(28702-30224)
  Users' Mathboxes  Users' Mathboxes
(30225-45333)
 

Theorem List for Metamath Proof Explorer - 39201-39300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhdmapipcl 39201 The inner product (Hermitian form) (𝑋, 𝑌) will be defined as ((𝑆𝑌)‘𝑋). Show closure. (Contributed by NM, 7-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → ((𝑆𝑌)‘𝑋) ∈ 𝐵)
 
Theoremhdmapln1 39202 Linearity property that will be used for inner product. TODO: try to combine hypotheses in hdmap*ln* series. (Contributed by NM, 7-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    = (+g𝑅)    &    × = (.r𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &   (𝜑𝐴𝐵)       (𝜑 → ((𝑆𝑍)‘((𝐴 · 𝑋) + 𝑌)) = ((𝐴 × ((𝑆𝑍)‘𝑋)) ((𝑆𝑍)‘𝑌)))
 
Theoremhdmaplna1 39203 Additive property of first (inner product) argument. (Contributed by NM, 11-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &   𝑅 = (Scalar‘𝑈)    &    = (+g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)       (𝜑 → ((𝑆𝑍)‘(𝑋 + 𝑌)) = (((𝑆𝑍)‘𝑋) ((𝑆𝑍)‘𝑌)))
 
Theoremhdmaplns1 39204 Subtraction property of first (inner product) argument. (Contributed by NM, 12-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝑁 = (-g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)       (𝜑 → ((𝑆𝑍)‘(𝑋 𝑌)) = (((𝑆𝑍)‘𝑋)𝑁((𝑆𝑍)‘𝑌)))
 
Theoremhdmaplnm1 39205 Multiplicative property of first (inner product) argument. (Contributed by NM, 11-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    × = (.r𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐴𝐵)       (𝜑 → ((𝑆𝑌)‘(𝐴 · 𝑋)) = (𝐴 × ((𝑆𝑌)‘𝑋)))
 
Theoremhdmaplna2 39206 Additive property of second (inner product) argument. (Contributed by NM, 10-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &   𝑅 = (Scalar‘𝑈)    &    = (+g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)       (𝜑 → ((𝑆‘(𝑌 + 𝑍))‘𝑋) = (((𝑆𝑌)‘𝑋) ((𝑆𝑍)‘𝑋)))
 
Theoremhdmapglnm2 39207 g-linear property of second (inner product) argument. Line 19 in [Holland95] p. 14. (Contributed by NM, 10-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    × = (.r𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐴𝐵)       (𝜑 → ((𝑆‘(𝐴 · 𝑌))‘𝑋) = (((𝑆𝑌)‘𝑋) × (𝐺𝐴)))
 
Theoremhdmapgln2 39208 g-linear property that will be used for inner product. (Contributed by NM, 14-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    = (+g𝑅)    &    × = (.r𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑍𝑉)    &   (𝜑𝐴𝐵)       (𝜑 → ((𝑆‘((𝐴 · 𝑌) + 𝑍))‘𝑋) = ((((𝑆𝑌)‘𝑋) × (𝐺𝐴)) ((𝑆𝑍)‘𝑋)))
 
Theoremhdmaplkr 39209 Kernel of the vector to dual map. Line 16 in [Holland95] p. 14. TODO: eliminate 𝐹 hypothesis. (Contributed by NM, 9-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝑌 = (LKer‘𝑈)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → (𝑌‘(𝑆𝑋)) = (𝑂‘{𝑋}))
 
Theoremhdmapellkr 39210 Membership in the kernel (as shown by hdmaplkr 39209) of the vector to dual map. Line 17 in [Holland95] p. 14. (Contributed by NM, 16-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &    0 = (0g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (((𝑆𝑋)‘𝑌) = 0𝑌 ∈ (𝑂‘{𝑋})))
 
Theoremhdmapip0 39211 Zero property that will be used for inner product. (Contributed by NM, 9-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝑍 = (0g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → (((𝑆𝑋)‘𝑋) = 𝑍𝑋 = 0 ))
 
Theoremhdmapip1 39212 Construct a proportional vector 𝑌 whose inner product with the original 𝑋 equals one. (Contributed by NM, 13-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &    0 = (0g𝑈)    &   𝑅 = (Scalar‘𝑈)    &    1 = (1r𝑅)    &   𝑁 = (invr𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   𝑌 = ((𝑁‘((𝑆𝑋)‘𝑋)) · 𝑋)       (𝜑 → ((𝑆𝑋)‘𝑌) = 1 )
 
Theoremhdmapip0com 39213 Commutation property of Baer's sigma map (Holland's A map). Line 20 of [Holland95] p. 14. Also part of Lemma 1 of [Baer] p. 110 line 7. (Contributed by NM, 9-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &    0 = (0g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (((𝑆𝑋)‘𝑌) = 0 ↔ ((𝑆𝑌)‘𝑋) = 0 ))
 
Theoremhdmapinvlem1 39214 Line 27 in [Baer] p. 110. We use 𝐶 for Baer's u. Our unit vector 𝐸 has the required properties for his w by hdmapevec2 39132. Our ((𝑆𝐸)‘𝐶) means the inner product 𝐶, 𝐸 i.e. his f(u,w) (note argument reversal). (Contributed by NM, 11-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐶 ∈ (𝑂‘{𝐸}))       (𝜑 → ((𝑆𝐸)‘𝐶) = 0 )
 
Theoremhdmapinvlem2 39215 Line 28 in [Baer] p. 110, 0 = f(w,u). (Contributed by NM, 11-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐶 ∈ (𝑂‘{𝐸}))       (𝜑 → ((𝑆𝐶)‘𝐸) = 0 )
 
Theoremhdmapinvlem3 39216 Line 30 in [Baer] p. 110, f(sw + u, tw - v) = 0. (Contributed by NM, 12-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    = (-g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    × = (.r𝑅)    &    0 = (0g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐶 ∈ (𝑂‘{𝐸}))    &   (𝜑𝐷 ∈ (𝑂‘{𝐸}))    &   (𝜑𝐼𝐵)    &   (𝜑𝐽𝐵)    &   (𝜑 → (𝐼 × (𝐺𝐽)) = ((𝑆𝐷)‘𝐶))       (𝜑 → ((𝑆‘((𝐽 · 𝐸) 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 )
 
Theoremhdmapinvlem4 39217 Part 1.1 of Proposition 1 of [Baer] p. 110. We use 𝐶, 𝐷, 𝐼, and 𝐽 for Baer's u, v, s, and t. Our unit vector 𝐸 has the required properties for his w by hdmapevec2 39132. Our ((𝑆𝐷)‘𝐶) means his f(u,v) (note argument reversal). (Contributed by NM, 12-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    = (-g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    × = (.r𝑅)    &    0 = (0g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐶 ∈ (𝑂‘{𝐸}))    &   (𝜑𝐷 ∈ (𝑂‘{𝐸}))    &   (𝜑𝐼𝐵)    &   (𝜑𝐽𝐵)    &   (𝜑 → (𝐼 × (𝐺𝐽)) = ((𝑆𝐷)‘𝐶))       (𝜑 → (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷))
 
Theoremhdmapglem5 39218 Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    = (-g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    × = (.r𝑅)    &    0 = (0g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐶 ∈ (𝑂‘{𝐸}))    &   (𝜑𝐷 ∈ (𝑂‘{𝐸}))    &   (𝜑𝐼𝐵)    &   (𝜑𝐽𝐵)       (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) = ((𝑆𝐶)‘𝐷))
 
Theoremhgmapvvlem1 39219 Involution property of scalar sigma map. Line 10 in [Baer] p. 111, t sigma squared = t. Our 𝐸, 𝐶, 𝐷, 𝑌, 𝑋 correspond to Baer's w, h, k, s, t. (Contributed by NM, 13-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    × = (.r𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑁 = (invr𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝐵 ∖ { 0 }))    &   (𝜑𝐶 ∈ (𝑂‘{𝐸}))    &   (𝜑𝐷 ∈ (𝑂‘{𝐸}))    &   (𝜑 → ((𝑆𝐷)‘𝐶) = 1 )    &   (𝜑𝑌 ∈ (𝐵 ∖ { 0 }))    &   (𝜑 → (𝑌 × (𝐺𝑋)) = 1 )       (𝜑 → (𝐺‘(𝐺𝑋)) = 𝑋)
 
Theoremhgmapvvlem2 39220 Lemma for hgmapvv 39222. Eliminate 𝑌 (Baer's s). (Contributed by NM, 13-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    × = (.r𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑁 = (invr𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝐵 ∖ { 0 }))    &   (𝜑𝐶 ∈ (𝑂‘{𝐸}))    &   (𝜑𝐷 ∈ (𝑂‘{𝐸}))    &   (𝜑 → ((𝑆𝐷)‘𝐶) = 1 )       (𝜑 → (𝐺‘(𝐺𝑋)) = 𝑋)
 
Theoremhgmapvvlem3 39221 Lemma for hgmapvv 39222. Eliminate ((𝑆𝐷)‘𝐶) = 1 (Baer's f(h,k)=1). (Contributed by NM, 13-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    × = (.r𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑁 = (invr𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝐵 ∖ { 0 }))       (𝜑 → (𝐺‘(𝐺𝑋)) = 𝑋)
 
Theoremhgmapvv 39222 Value of a double involution. Part 1.2 of [Baer] p. 110 line 37. (Contributed by NM, 13-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐵)       (𝜑 → (𝐺‘(𝐺𝑋)) = 𝑋)
 
Theoremhdmapglem7a 39223* Lemma for hdmapg 39226. (Contributed by NM, 14-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢))
 
Theoremhdmapglem7b 39224 Lemma for hdmapg 39226. (Contributed by NM, 14-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &    × = (.r𝑅)    &    0 = (0g𝑅)    &    = (+g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   (𝜑𝑥 ∈ (𝑂‘{𝐸}))    &   (𝜑𝑦 ∈ (𝑂‘{𝐸}))    &   (𝜑𝑚𝐵)    &   (𝜑𝑛𝐵)       (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × (𝐺𝑚)) ((𝑆𝑥)‘𝑦)))
 
Theoremhdmapglem7 39225 Lemma for hdmapg 39226. Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). In the proof, our 𝐸, (𝑂‘{𝐸}) 𝑋, 𝑌, 𝑘, 𝑢, 𝑙, 𝑣 correspond to Baer's w, H, x, y, x', x'', y' , y'', and our ((𝑆𝑌)‘𝑋) corresponds to Baer's f(x,y). (Contributed by NM, 14-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &    × = (.r𝑅)    &    0 = (0g𝑅)    &    = (+g𝑅)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   (𝜑𝑌𝑉)       (𝜑 → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))
 
Theoremhdmapg 39226 Apply the scalar sigma function (involution) 𝐺 to an inner product reverses the arguments. The inner product of 𝑋 and 𝑌 is represented by ((𝑆𝑌)‘𝑋). Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). (Contributed by NM, 14-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝐺‘((𝑆𝑌)‘𝑋)) = ((𝑆𝑋)‘𝑌))
 
Theoremhdmapoc 39227* Express our constructed orthocomplement (polarity) in terms of the Hilbert space definition of orthocomplement. Lines 24 and 25 in [Holland95] p. 14. (Contributed by NM, 17-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &    0 = (0g𝑅)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → (𝑂𝑋) = {𝑦𝑉 ∣ ∀𝑧𝑋 ((𝑆𝑧)‘𝑦) = 0 })
 
Syntaxchlh 39228 Extend class notation with the final constructed Hilbert space.
class HLHil
 
Definitiondf-hlhil 39229* Define our final Hilbert space constructed from a Hilbert lattice. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
HLHil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})))
 
Theoremhlhilset 39230* The final Hilbert space constructed from a Hilbert lattice 𝐾 and an arbitrary hyperplane 𝑊 in 𝐾. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐿 = ((HLHil‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &   𝐸 = ((EDRing‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)    &    · = ( ·𝑠𝑈)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &    , = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝐿 = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}))
 
Theoremhlhilsca 39231 The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝐸 = ((EDRing‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)       (𝜑𝑅 = (Scalar‘𝑈))
 
Theoremhlhilbase 39232 The base set of the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑀 = (Base‘𝐿)       (𝜑𝑀 = (Base‘𝑈))
 
Theoremhlhilplus 39233 The vector addition for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝐿)       (𝜑+ = (+g𝑈))
 
Theoremhlhilslem 39234 Lemma for hlhilsbase2 39238. (Contributed by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ((EDRing‘𝐾)‘𝑊)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝐹 = Slot 𝑁    &   𝑁 ∈ ℕ    &   𝑁 < 4    &   𝐶 = (𝐹𝐸)       (𝜑𝐶 = (𝐹𝑅))
 
Theoremhlhilsbase 39235 The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ((EDRing‘𝐾)‘𝑊)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝐶 = (Base‘𝐸)       (𝜑𝐶 = (Base‘𝑅))
 
Theoremhlhilsplus 39236 Scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ((EDRing‘𝐾)‘𝑊)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &    + = (+g𝐸)       (𝜑+ = (+g𝑅))
 
Theoremhlhilsmul 39237 Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ((EDRing‘𝐾)‘𝑊)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &    · = (.r𝐸)       (𝜑· = (.r𝑅))
 
Theoremhlhilsbase2 39238 The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐿)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝐶 = (Base‘𝑆)       (𝜑𝐶 = (Base‘𝑅))
 
Theoremhlhilsplus2 39239 Scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐿)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &    + = (+g𝑆)       (𝜑+ = (+g𝑅))
 
Theoremhlhilsmul2 39240 Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐿)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &    · = (.r𝑆)       (𝜑· = (.r𝑅))
 
Theoremhlhils0 39241 The scalar ring zero for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐿)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &    0 = (0g𝑆)       (𝜑0 = (0g𝑅))
 
Theoremhlhils1N 39242 The scalar ring unity for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐿)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &    1 = (1r𝑆)       (𝜑1 = (1r𝑅))
 
Theoremhlhilvsca 39243 The scalar product for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &    · = ( ·𝑠𝐿)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑· = ( ·𝑠𝑈))
 
Theoremhlhilip 39244* Inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐿)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &    , = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))       (𝜑, = (·𝑖𝑈))
 
Theoremhlhilipval 39245 Value of inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐿)    &   𝑆 = ((HDMap‘𝐾)‘𝑊)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &    , = (·𝑖𝑈)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → (𝑋 , 𝑌) = ((𝑆𝑌)‘𝑋))
 
Theoremhlhilnvl 39246 The involution operation of the star division ring for the final constructed Hilbert space. (Contributed by NM, 20-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &    = ((HGMap‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 = (*𝑟𝑅))
 
Theoremhlhillvec 39247 The final constructed Hilbert space is a vector space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑈 ∈ LVec)
 
Theoremhlhildrng 39248 The star division ring for the final constructed Hilbert space is a division ring. (Contributed by NM, 20-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝑅 = (Scalar‘𝑈)       (𝜑𝑅 ∈ DivRing)
 
Theoremhlhilsrnglem 39249 Lemma for hlhilsrng 39250. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝑅 = (Scalar‘𝑈)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐿)    &   𝐵 = (Base‘𝑆)    &    + = (+g𝑆)    &    · = (.r𝑆)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)       (𝜑𝑅 ∈ *-Ring)
 
Theoremhlhilsrng 39250 The star division ring for the final constructed Hilbert space is a division ring. (Contributed by NM, 21-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝑅 = (Scalar‘𝑈)       (𝜑𝑅 ∈ *-Ring)
 
Theoremhlhil0 39251 The zero vector for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &    0 = (0g𝐿)       (𝜑0 = (0g𝑈))
 
Theoremhlhillsm 39252 The vector sum operation for the final constructed Hilbert space. (Contributed by NM, 23-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &    = (LSSum‘𝐿)       (𝜑 = (LSSum‘𝑈))
 
Theoremhlhilocv 39253 The orthocomplement for the final constructed Hilbert space. (Contributed by NM, 23-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝑉 = (Base‘𝐿)    &   𝑁 = ((ocH‘𝐾)‘𝑊)    &   𝑂 = (ocv‘𝑈)    &   (𝜑𝑋𝑉)       (𝜑 → (𝑂𝑋) = (𝑁𝑋))
 
Theoremhlhillcs 39254 The closed subspaces of the final constructed Hilbert space. TODO: hlhilbase 39232 is applied over and over to conclusion rather than applied once to antecedent - would compressed proof be shorter if applied once to antecedent? (Contributed by NM, 23-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   𝐶 = (ClSubSp‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝐶 = ran 𝐼)
 
Theoremhlhilphllem 39255* Lemma for hlhil 24047. (Contributed by NM, 23-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝐹 = (Scalar‘𝑈)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐿)    &    + = (+g𝐿)    &    · = ( ·𝑠𝐿)    &   𝑅 = (Scalar‘𝐿)    &   𝐵 = (Base‘𝑅)    &    = (+g𝑅)    &    × = (.r𝑅)    &   𝑄 = (0g𝑅)    &    0 = (0g𝐿)    &    , = (·𝑖𝑈)    &   𝐽 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   𝐸 = (𝑥𝑉, 𝑦𝑉 ↦ ((𝐽𝑦)‘𝑥))       (𝜑𝑈 ∈ PreHil)
 
Theoremhlhilhillem 39256* Lemma for hlhil 24047. (Contributed by NM, 23-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝐹 = (Scalar‘𝑈)    &   𝐿 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐿)    &    + = (+g𝐿)    &    · = ( ·𝑠𝐿)    &   𝑅 = (Scalar‘𝐿)    &   𝐵 = (Base‘𝑅)    &    = (+g𝑅)    &    × = (.r𝑅)    &   𝑄 = (0g𝑅)    &    0 = (0g𝐿)    &    , = (·𝑖𝑈)    &   𝐽 = ((HDMap‘𝐾)‘𝑊)    &   𝐺 = ((HGMap‘𝐾)‘𝑊)    &   𝐸 = (𝑥𝑉, 𝑦𝑉 ↦ ((𝐽𝑦)‘𝑥))    &   𝑂 = (ocv‘𝑈)    &   𝐶 = (ClSubSp‘𝑈)       (𝜑𝑈 ∈ Hil)
 
Theoremhlathil 39257 Construction of a Hilbert space (df-hil 20393) 𝑈 from a Hilbert lattice (df-hlat 36647) 𝐾, where 𝑊 is a fixed but arbitrary hyperplane (co-atom) in 𝐾.

The Hilbert space 𝑈 is identical to the vector space ((DVecH‘𝐾)‘𝑊) (see dvhlvec 38405) except that it is extended with involution and inner product components. The construction of these two components is provided by Theorem 3.6 in [Holland95] p. 13, whose proof we follow loosely.

An example of involution is the complex conjugate when the division ring is the field of complex numbers. The nature of the division ring we constructed is indeterminate, however, until we specialize the initial Hilbert lattice with additional conditions found by Maria Solèr in 1995 and refined by René Mayet in 1998 that result in a division ring isomorphic to . See additional discussion at https://us.metamath.org/qlegif/mmql.html#what 38405.

𝑊 corresponds to the w in the proof of Theorem 13.4 of [Crawley] p. 111. Such a 𝑊 always exists since HL has lattice rank of at least 4 by df-hil 20393. It can be eliminated if we just want to show the existence of a Hilbert space, as is done in the literature. (Contributed by NM, 23-Jun-2015.)

𝐻 = (LHyp‘𝐾)    &   𝑈 = ((HLHil‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑈 ∈ Hil)
 
20.25  Mathbox for metakunt
 
20.25.1  General helpful statements
 
Theoremleexp1ad 39258 Weak mantissa ordering relationship for exponentiation, a deduction version. (Contributed by metakunt, 22-May-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴𝑁) ≤ (𝐵𝑁))
 
Theoremrelogbcld 39259 Closure of the general logarithm with a positive real base on positive reals, a deduction version. (Contributed by metakunt, 22-May-2024.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐵)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑 → 0 < 𝑋)    &   (𝜑𝐵 ≠ 1)       (𝜑 → (𝐵 logb 𝑋) ∈ ℝ)
 
Theoremrelogbexpd 39260 Identity law for general logarithm: the logarithm of a power to the base is the exponent, a deduction version. (Contributed by metakunt, 22-May-2024.)
(𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐵 ≠ 1)    &   (𝜑𝑀 ∈ ℤ)       (𝜑 → (𝐵 logb (𝐵𝑀)) = 𝑀)
 
Theoremrelogbzexpd 39261 Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power, a deduction version (Contributed by metakunt, 22-May-2024.)
(𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐵 ≠ 1)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝐵 logb (𝐶𝑁)) = (𝑁 · (𝐵 logb 𝐶)))
 
Theoremlogblebd 39262 The general logarithm is monotone/increasing, a deduction version. (Contributed by metakunt, 22-May-2024.)
(𝜑𝐵 ∈ ℤ)    &   (𝜑 → 2 ≤ 𝐵)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑 → 0 < 𝑋)    &   (𝜑𝑌 ∈ ℝ)    &   (𝜑 → 0 < 𝑌)    &   (𝜑𝑋𝑌)       (𝜑 → (𝐵 logb 𝑋) ≤ (𝐵 logb 𝑌))
 
Theoremfzindd 39263* Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024.)
(𝑥 = 𝑀 → (𝜓𝜒))    &   (𝑥 = 𝑦 → (𝜓𝜃))    &   (𝑥 = (𝑦 + 1) → (𝜓𝜏))    &   (𝑥 = 𝐴 → (𝜓𝜂))    &   (𝜑𝜒)    &   ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) ∧ 𝜃) → 𝜏)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑀𝑁)       ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → 𝜂)
 
Theoremuzindd 39264* Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024.)
(𝑗 = 𝑀 → (𝜓𝜒))    &   (𝑗 = 𝑘 → (𝜓𝜃))    &   (𝑗 = (𝑘 + 1) → (𝜓𝜏))    &   (𝑗 = 𝑁 → (𝜓𝜂))    &   (𝜑𝜒)    &   ((𝜑𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀𝑘)) → 𝜏)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑀𝑁)       (𝜑𝜂)
 
Theoremfzadd2d 39265 Membership of a sum in a finite interval of integers, a deduction version. (Contributed by metakunt, 10-May-2024.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑂 ∈ ℤ)    &   (𝜑𝑃 ∈ ℤ)    &   (𝜑𝐽 ∈ (𝑀...𝑁))    &   (𝜑𝐾 ∈ (𝑂...𝑃))    &   (𝜑𝑄 = (𝑀 + 𝑂))    &   (𝜑𝑅 = (𝑁 + 𝑃))       (𝜑 → (𝐽 + 𝐾) ∈ (𝑄...𝑅))
 
Theoremzltlem1d 39266 Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
 
Theoremzltp1led 39267 Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
 
Theoremfzne2d 39268 Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐾𝑁)       (𝜑𝐾 < 𝑁)
 
Theoremeqfnfv2d2 39269* Equality of functions is determined by their values, a deduction version. (Contributed by metakunt, 28-May-2024.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))       (𝜑𝐹 = 𝐺)
 
Theoremfzsplitnd 39270 Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024.)
(𝜑𝐾 ∈ (𝑀...𝑁))       (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
 
Theoremfzsplitnr 39271 Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀𝐾)    &   (𝜑𝐾𝑁)       (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
 
Theoremaddassnni 39272 Associative law for addition. (Contributed by metakunt, 25-Apr-2024.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ    &   𝐶 ∈ ℕ       ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
 
Theoremaddcomnni 39273 Commutative law for addition. (Contributed by metakunt, 25-Apr-2024.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ       (𝐴 + 𝐵) = (𝐵 + 𝐴)
 
Theoremmulassnni 39274 Associative law for multiplication. (Contributed by metakunt, 25-Apr-2024.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ    &   𝐶 ∈ ℕ       ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
 
Theoremmulcomnni 39275 Commutative law for multiplication. (Contributed by metakunt, 25-Apr-2024.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ       (𝐴 · 𝐵) = (𝐵 · 𝐴)
 
Theoremgcdcomnni 39276 Commutative law for gcd. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ       (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)
 
Theoremgcdnegnni 39277 Negation invariance for gcd. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ       (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁)
 
Theoremneggcdnni 39278 Negation invariance for gcd. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ       (-𝑀 gcd 𝑁) = (𝑀 gcd 𝑁)
 
Theorembccl2d 39279 Closure of the binomial coefficient, a deduction version. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑𝐾𝑁)       (𝜑 → (𝑁C𝐾) ∈ ℕ)
 
Theoremrecbothd 39280 Take reciprocal on both sides. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 ≠ 0)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 ≠ 0)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐷 ≠ 0)       (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐵 / 𝐴) = (𝐷 / 𝐶)))
 
Theoremgcdmultiplei 39281 The GCD of a multiple of a positive integer is the positive integer itself. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ       (𝑀 gcd (𝑀 · 𝑁)) = 𝑀
 
Theoremgcdaddmzz2nni 39282 Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝐾 ∈ ℤ       (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀)))
 
Theoremgcdaddmzz2nncomi 39283 Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝐾 ∈ ℤ       (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))
 
Theoremgcdnncli 39284 Closure of the gcd operator. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ       (𝑀 gcd 𝑁) ∈ ℕ
 
Theoremdvdstrd 39285 The divides relation is transitive, a deduction version of dvdstr 15638. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)    &   (𝜑𝑀𝑁)       (𝜑𝐾𝑁)
 
Theoremmuldvds1d 39286 If a product divides an integer, so does one of its factors, a deduction version. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → (𝐾 · 𝑀) ∥ 𝑁)       (𝜑𝐾𝑁)
 
Theoremmuldvds2d 39287 If a product divides an integer, so does one of its factors, a deduction version. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → (𝐾 · 𝑀) ∥ 𝑁)       (𝜑𝑀𝑁)
 
Theoremnndivdvdsd 39288 A positive integer divides a natural number if and only if the quotient is a positive integer, a deduction version of nndivdvds 15608. (Contributed by metakunt, 12-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℕ))
 
Theoremnnproddivdvdsd 39289 A product of natural numbers divides a natural number if and only if a factor divides the quotient, a deduction version. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐾 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → ((𝐾 · 𝑀) ∥ 𝑁𝐾 ∥ (𝑁 / 𝑀)))
 
Theoremcoprmdvds2d 39290 If an integer is divisible by two coprime integers, then it is divisible by their product, a deduction version. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → (𝐾 gcd 𝑀) = 1)    &   (𝜑𝐾𝑁)    &   (𝜑𝑀𝑁)       (𝜑 → (𝐾 · 𝑀) ∥ 𝑁)
 
20.25.2  Some gcd and lcm results
 
Theorem12gcd5e1 39291 The gcd of 12 and 5 is 1. (Contributed by metakunt, 25-Apr-2024.)
(12 gcd 5) = 1
 
Theorem60gcd6e6 39292 The gcd of 60 and 6 is 6. (Contributed by metakunt, 25-Apr-2024.)
(60 gcd 6) = 6
 
Theorem60gcd7e1 39293 The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024.)
(60 gcd 7) = 1
 
Theorem420gcd8e4 39294 The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.)
(420 gcd 8) = 4
 
Theoremlcmeprodgcdi 39295 Calculate the least common multiple of two natural numbers. (Contributed by metakunt, 25-Apr-2024.)
𝑀 ∈ ℕ    &   𝑁 ∈ ℕ    &   𝐺 ∈ ℕ    &   𝐻 ∈ ℕ    &   (𝑀 gcd 𝑁) = 𝐺    &   (𝐺 · 𝐻) = 𝐴    &   (𝑀 · 𝑁) = 𝐴       (𝑀 lcm 𝑁) = 𝐻
 
Theorem12lcm5e60 39296 The lcm of 12 and 5 is 60. (Contributed by metakunt, 25-Apr-2024.)
(12 lcm 5) = 60
 
Theorem60lcm6e60 39297 The lcm of 60 and 6 is 60. (Contributed by metakunt, 25-Apr-2024.)
(60 lcm 6) = 60
 
Theorem60lcm7e420 39298 The lcm of 60 and 7 is 420. (Contributed by metakunt, 25-Apr-2024.)
(60 lcm 7) = 420
 
Theorem420lcm8e840 39299 The lcm of 420 and 8 is 840. (Contributed by metakunt, 25-Apr-2024.)
(420 lcm 8) = 840
 
Theoremlcmfunnnd 39300 Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → (lcm‘(1...𝑁)) = ((lcm‘(1...(𝑁 − 1))) lcm 𝑁))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45333
  Copyright terms: Public domain < Previous  Next >