HomeHome Metamath Proof Explorer
Theorem List (p. 393 of 450)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28695)
  Hilbert Space Explorer  Hilbert Space Explorer
(28696-30218)
  Users' Mathboxes  Users' Mathboxes
(30219-44955)
 

Theorem List for Metamath Proof Explorer - 39201-39300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
20.26.2  Arithmetic theorems

Towards the start of this section are several proofs regarding the different complex number axioms that could be used to prove some results.

For example, ax-1rid 10607 is used in mulid1 10639 related theorems, so one could trade off the extra axioms in mulid1 10639 for the axioms needed to prove that something is a real number. Another example is avoiding complex number closure laws by using real number closure laws and then using ax-resscn 10594; in the other direction, real number closure laws can be avoided by using ax-resscn 10594 and then the complex number closure laws. (This only works if the result of (𝐴 + 𝐵) only needs to be a complex number).

The natural numbers are especially amenable to axiom reductions, as the set is the recursive set {1, (1 + 1), ((1 + 1) + 1)}, etc., i.e. the set of numbers formed by only additions of 1. The digits 2 through 9 are defined so that they expand into additions of 1. This makes adding natural numbers conveniently only require the rearrangement of parentheses, as shown with the following:

(4 + 3) = 7

((3 + 1) + (2 + 1)) = (6 + 1)

((((1 + 1) + 1) + 1) + ((1 + 1) + 1)) =

((((((1 + 1) + 1) + 1) + 1) + 1) + 1)

This only requires ax-addass 10602, ax-1cn 10595, and ax-addcl 10597. (And in practice, the expression isn't completely expanded into ones.)

Multiplication by 1 requires either mulid2i 10646 or (ax-1rid 10607 and 1re 10641) as seen in 1t1e1 11800 and 1t1e1ALT 39204. Multiplying with greater natural numbers uses ax-distr 10604. Still, this takes fewer axioms than adding zero. When zero is involved in the decimal constructor, there's an implicit addition operation which causes such theorems (e.g. (9 + 1) = 10) to use almost every complex number axiom.

 
Theoremc0exALT 39201 Alternate proof of c0ex 10635 using more set theory axioms but fewer complex number axioms (add ax-10 2145, ax-11 2161, ax-13 2390, ax-nul 5210, and remove ax-1cn 10595, ax-icn 10596, ax-addcl 10597, and ax-mulcl 10599). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
0 ∈ V
 
Theorem0cnALT3 39202 Alternate proof of 0cn 10633 using ax-resscn 10594, ax-addrcl 10598, ax-rnegex 10608, ax-cnre 10610 instead of ax-icn 10596, ax-addcl 10597, ax-mulcl 10599, ax-i2m1 10605. Version of 0cnALT 10874 using ax-1cn 10595 instead of ax-icn 10596. (Contributed by Steven Nguyen, 7-Jan-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
0 ∈ ℂ
 
Theoremelre0re 39203 Specialized version of 0red 10644 without using ax-1cn 10595 and ax-cnre 10610. (Contributed by Steven Nguyen, 28-Jan-2023.)
(𝐴 ∈ ℝ → 0 ∈ ℝ)
 
Theorem1t1e1ALT 39204 Alternate proof of 1t1e1 11800 using a different set of axioms (add ax-mulrcl 10600, ax-i2m1 10605, ax-1ne0 10606, ax-rrecex 10609 and remove ax-resscn 10594, ax-mulcom 10601, ax-mulass 10603, ax-distr 10604). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(1 · 1) = 1
 
Theoremremulcan2d 39205 mulcan2d 11274 for real numbers using fewer axioms. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremreaddid1addid2d 39206 Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 10814, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (𝐵 + 𝐴) = 𝐵)       ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶)
 
Theoremsn-1ne2 39207 A proof of 1ne2 11846 without using ax-mulcom 10601, ax-mulass 10603, ax-pre-mulgt0 10614. Based on mul02lem2 10817. (Contributed by SN, 13-Dec-2023.)
1 ≠ 2
 
Theoremnnn1suc 39208* A positive integer that is not 1 is a successor of some other positive integer. (Contributed by Steven Nguyen, 19-Aug-2023.)
((𝐴 ∈ ℕ ∧ 𝐴 ≠ 1) → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)
 
Theoremnnadd1com 39209 Addition with 1 is commutative for natural numbers. (Contributed by Steven Nguyen, 9-Dec-2022.)
(𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴))
 
Theoremnnaddcom 39210 Addition is commutative for natural numbers. Uses fewer axioms than addcom 10826. (Contributed by Steven Nguyen, 9-Dec-2022.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremnnaddcomli 39211 Version of addcomli 10832 for natural numbers. (Contributed by Steven Nguyen, 1-Aug-2023.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ    &   (𝐴 + 𝐵) = 𝐶       (𝐵 + 𝐴) = 𝐶
 
Theoremnnadddir 39212 Right-distributivity for natural numbers without ax-mulcom 10601. (Contributed by SN, 5-Feb-2024.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
 
Theoremnnmul1com 39213 Multiplication with 1 is commutative for natural numbers, without ax-mulcom 10601. Since (𝐴 · 1) is 𝐴 by ax-1rid 10607, this is equivalent to remulid2 39298 for natural numbers, but using fewer axioms (avoiding ax-resscn 10594, ax-addass 10602, ax-mulass 10603, ax-rnegex 10608, ax-pre-lttri 10611, ax-pre-lttrn 10612, ax-pre-ltadd 10613). (Contributed by SN, 5-Feb-2024.)
(𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1))
 
Theoremnnmulcom 39214 Multiplication is commutative for natural numbers. (Contributed by SN, 5-Feb-2024.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremaddsubeq4com 39215 Relation between sums and differences. (Contributed by Steven Nguyen, 5-Jan-2023.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴𝐶) = (𝐷𝐵)))
 
Theoremsqsumi 39216 A sum squared. (Contributed by Steven Nguyen, 16-Sep-2022.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 · 𝐴) + (𝐵 · 𝐵)) + (2 · (𝐴 · 𝐵)))
 
Theoremnegn0nposznnd 39217 Lemma for dffltz 39320. (Contributed by Steven Nguyen, 27-Feb-2023.)
(𝜑𝐴 ≠ 0)    &   (𝜑 → ¬ 0 < 𝐴)    &   (𝜑𝐴 ∈ ℤ)       (𝜑 → -𝐴 ∈ ℕ)
 
Theoremsqmid3api 39218 Value of the square of the middle term of a 3-term arithmetic progression. (Contributed by Steven Nguyen, 20-Sep-2022.)
𝐴 ∈ ℂ    &   𝑁 ∈ ℂ    &   (𝐴 + 𝑁) = 𝐵    &   (𝐵 + 𝑁) = 𝐶       (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
 
Theoremdecaddcom 39219 Commute ones place in addition. (Contributed by Steven Nguyen, 29-Jan-2023.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0       (𝐴𝐵 + 𝐶) = (𝐴𝐶 + 𝐵)
 
Theoremsqn5i 39220 The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.)
𝐴 ∈ ℕ0       (𝐴5 · 𝐴5) = (𝐴 · (𝐴 + 1))25
 
Theoremsqn5ii 39221 The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.)
𝐴 ∈ ℕ0    &   (𝐴 + 1) = 𝐵    &   (𝐴 · 𝐵) = 𝐶       (𝐴5 · 𝐴5) = 𝐶25
 
Theoremdecpmulnc 39222 Partial products algorithm for two digit multiplication, no carry. Compare muladdi 11091. (Contributed by Steven Nguyen, 9-Dec-2022.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   (𝐴 · 𝐶) = 𝐸    &   ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹    &   (𝐵 · 𝐷) = 𝐺       (𝐴𝐵 · 𝐶𝐷) = 𝐸𝐹𝐺
 
Theoremdecpmul 39223 Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   (𝐴 · 𝐶) = 𝐸    &   ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹    &   (𝐵 · 𝐷) = 𝐺𝐻    &   (𝐸𝐺 + 𝐹) = 𝐼    &   𝐺 ∈ ℕ0    &   𝐻 ∈ ℕ0       (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐻
 
Theoremsqdeccom12 39224 The square of a number in terms of its digits switched. (Contributed by Steven Nguyen, 3-Jan-2023.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       ((𝐴𝐵 · 𝐴𝐵) − (𝐵𝐴 · 𝐵𝐴)) = (99 · ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
 
Theoremsq3deccom12 39225 Variant of sqdeccom12 39224 with a three digit square. (Contributed by Steven Nguyen, 3-Jan-2023.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   (𝐴 + 𝐶) = 𝐷       ((𝐴𝐵𝐶 · 𝐴𝐵𝐶) − (𝐷𝐵 · 𝐷𝐵)) = (99 · ((𝐴𝐵 · 𝐴𝐵) − (𝐶 · 𝐶)))
 
Theorem235t711 39226 Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 10650 saving the lower level uses of mulcomli 10650 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12208 are added then this proof would benefit more than ex-decpmul 39227.

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 11773 or 8t7e56 12219. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.)

(235 · 711) = 167085
 
Theoremex-decpmul 39227 Example usage of decpmul 39223. This proof is significantly longer than 235t711 39226. There is more unnecessary carrying compared to 235t711 39226. Although saving 5 visual steps, using mulcomli 10650 early on increases the compressed proof length. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
(235 · 711) = 167085
 
20.26.3  Exponents
 
Theoremoexpreposd 39228 Lemma for dffltz 39320. (Contributed by Steven Nguyen, 4-Mar-2023.)
(𝜑𝑁 ∈ ℝ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑 → ¬ (𝑀 / 2) ∈ ℕ)       (𝜑 → (0 < 𝑁 ↔ 0 < (𝑁𝑀)))
 
Theoremcxpgt0d 39229 Exponentiation with a positive mantissa is positive. (Contributed by Steven Nguyen, 6-Apr-2023.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℝ)       (𝜑 → 0 < (𝐴𝑐𝑁))
 
Theoremdvdsexpim 39230 dvdssqim 15904 generalized to nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝐵 → (𝐴𝑁) ∥ (𝐵𝑁)))
 
Theoremnn0rppwr 39231 If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵𝑁. rppwr 15908 extended to nonnegative integers. (Contributed by Steven Nguyen, 4-Apr-2023.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
 
Theoremexpgcd 39232 Exponentiation distributes over GCD. sqgcd 15909 extended to nonnegative exponents. (Contributed by Steven Nguyen, 4-Apr-2023.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
 
Theoremnn0expgcd 39233 Exponentiation distributes over GCD. nn0gcdsq 16092 extended to nonnegative exponents. expgcd 39232 extended to nonnegative bases. (Contributed by Steven Nguyen, 5-Apr-2023.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
 
Theoremzexpgcd 39234 Exponentiation distributes over GCD. zgcdsq 16093 extended to nonnegative exponents. nn0expgcd 39233 extended to integer bases by symmetry. (Contributed by Steven Nguyen, 5-Apr-2023.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴𝑁) gcd (𝐵𝑁)))
 
Theoremnumdenexp 39235 numdensq 16094 extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → ((numer‘(𝐴𝑁)) = ((numer‘𝐴)↑𝑁) ∧ (denom‘(𝐴𝑁)) = ((denom‘𝐴)↑𝑁)))
 
Theoremnumexp 39236 numsq 16095 extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (numer‘(𝐴𝑁)) = ((numer‘𝐴)↑𝑁))
 
Theoremdenexp 39237 densq 16096 extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (denom‘(𝐴𝑁)) = ((denom‘𝐴)↑𝑁))
 
Theoremexp11d 39238 sq11d 13622 for positive real bases and nonzero exponents. (Contributed by Steven Nguyen, 6-Apr-2023.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑁 ≠ 0)    &   (𝜑 → (𝐴𝑁) = (𝐵𝑁))       (𝜑𝐴 = 𝐵)
 
Theoremltexp1d 39239 ltmul1d 12473 for exponentiation of positive reals. (Contributed by Steven Nguyen, 22-Aug-2023.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐴𝑁) < (𝐵𝑁)))
 
Theoremltexp1dd 39240 Raising both sides of 'less than' to the same positive integer preserves ordering. (Contributed by Steven Nguyen, 24-Aug-2023.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (𝐴𝑁) < (𝐵𝑁))
 
Theoremzrtelqelz 39241 zsqrtelqelz 16098 generalized to positive integer roots. (Contributed by Steven Nguyen, 6-Apr-2023.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑐(1 / 𝑁)) ∈ ℚ) → (𝐴𝑐(1 / 𝑁)) ∈ ℤ)
 
Theoremzrtdvds 39242 A positive integer root divides its integer. (Contributed by Steven Nguyen, 6-Apr-2023.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑐(1 / 𝑁)) ∈ ℕ) → (𝐴𝑐(1 / 𝑁)) ∥ 𝐴)
 
Theoremrtprmirr 39243 The root of a prime number is irrational. (Contributed by Steven Nguyen, 6-Apr-2023.)
((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ))
 
20.26.4  Real subtraction
 
Syntaxcresub 39244 Real number subtraction.
class
 
Definitiondf-resub 39245* Define subtraction between real numbers. This operator saves a few axioms over df-sub 10872 in certain situations. Theorem resubval 39246 shows its value, resubadd 39258 relates it to addition, and rersubcl 39257 proves its closure. Based on df-sub 10872. (Contributed by Steven Nguyen, 7-Jan-2022.)
= (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥))
 
Theoremresubval 39246* Value of real subtraction, which is the (unique) real 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by Steven Nguyen, 7-Jan-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
 
Theoremrenegeulemv 39247* Lemma for renegeu 39249 and similar. Derive existential uniqueness from existence. (Contributed by Steven Nguyen, 28-Jan-2023.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴)       (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
 
Theoremrenegeulem 39248* Lemma for renegeu 39249 and similar. Remove a change in bound variables from renegeulemv 39247. (Contributed by Steven Nguyen, 28-Jan-2023.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴)       (𝜑 → ∃!𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴)
 
Theoremrenegeu 39249* Existential uniqueness of real negatives. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
 
Theoremrernegcl 39250 Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
 
Theoremrenegadd 39251 Relationship between real negation and addition. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − 𝐴) = 𝐵 ↔ (𝐴 + 𝐵) = 0))
 
Theoremrenegid 39252 Addition of a real number and its negative. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ → (𝐴 + (0 − 𝐴)) = 0)
 
Theoremreneg0addid2 39253 Negative zero is a left additive identity. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ → ((0 − 0) + 𝐴) = 𝐴)
 
Theoremresubeulem1 39254 Lemma for resubeu 39256. A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ → (0 + (0 − (0 + 0))) = (0 − 0))
 
Theoremresubeulem2 39255 Lemma for resubeu 39256. A value which when added to 𝐴, results in 𝐵. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵)
 
Theoremresubeu 39256* Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
 
Theoremrersubcl 39257 Closure for real subtraction. Based on subcl 10885. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) ∈ ℝ)
 
Theoremresubadd 39258 Relation between real subtraction and addition. Based on subadd 10889. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
 
Theoremresubaddd 39259 Relationship between subtraction and addition. Based on subaddd 11015. (Contributed by Steven Nguyen, 8-Jan-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
 
Theoremresubf 39260 Real subtraction is an operation on the real numbers. Based on subf 10888. (Contributed by Steven Nguyen, 7-Jan-2023.)
:(ℝ × ℝ)⟶ℝ
 
Theoremrepncan2 39261 Addition and subtraction of equals. Compare pncan2 10893. (Contributed by Steven Nguyen, 8-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵)
 
Theoremrepncan3 39262 Addition and subtraction of equals. Based on pncan3 10894. (Contributed by Steven Nguyen, 8-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 𝐴)) = 𝐵)
 
Theoremreaddsub 39263 Law for addition and subtraction. (Contributed by Steven Nguyen, 28-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 𝐶) + 𝐵))
 
Theoremreladdrsub 39264 Move LHS of a sum into RHS of a (real) difference. Version of mvlladdd 11051 with real subtraction. (Contributed by Steven Nguyen, 8-Jan-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (𝐴 + 𝐵) = 𝐶)       (𝜑𝐵 = (𝐶 𝐴))
 
Theoremreltsub1 39265 Subtraction from both sides of 'less than'. Compare ltsub1 11136. (Contributed by SN, 13-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 𝐶) < (𝐵 𝐶)))
 
Theoremreltsubadd2 39266 'Less than' relationship between addition and subtraction. Compare ltsubadd2 11111. (Contributed by SN, 13-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) < 𝐶𝐴 < (𝐵 + 𝐶)))
 
Theoremresubcan2 39267 Cancellation law for real subtraction. Compare subcan2 10911. (Contributed by Steven Nguyen, 8-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremresubsub4 39268 Law for double subtraction. Compare subsub4 10919. (Contributed by Steven Nguyen, 14-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) − 𝐶) = (𝐴 (𝐵 + 𝐶)))
 
Theoremrennncan2 39269 Cancellation law for real subtraction. Compare nnncan2 10923. (Contributed by Steven Nguyen, 14-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐶) − (𝐵 𝐶)) = (𝐴 𝐵))
 
Theoremrenpncan3 39270 Cancellation law for real subtraction. Compare npncan3 10924. (Contributed by Steven Nguyen, 28-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐵) + (𝐶 𝐴)) = (𝐶 𝐵))
 
Theoremrepnpcan 39271 Cancellation law for addition and real subtraction. Compare pnpcan 10925. (Contributed by Steven Nguyen, 19-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵 𝐶))
 
Theoremreppncan 39272 Cancellation law for mixed addition and real subtraction. Compare ppncan 10928. (Contributed by SN, 3-Sep-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + (𝐵 𝐶)) = (𝐴 + 𝐵))
 
Theoremresubidaddid1lem 39273 Lemma for resubidaddid1 39274. A special case of npncan 10907. (Contributed by Steven Nguyen, 8-Jan-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → (𝐴 𝐵) = (𝐵 𝐶))       (𝜑 → ((𝐴 𝐵) + (𝐵 𝐶)) = (𝐴 𝐶))
 
Theoremresubidaddid1 39274 Any real number subtracted from itself forms a left additive identity. (Contributed by Steven Nguyen, 8-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 𝐴) + 𝐵) = 𝐵)
 
Theoremresubdi 39275 Distribution of multiplication over real subtraction. (Contributed by Steven Nguyen, 3-Jun-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · (𝐵 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)))
 
Theoremre1m1e0m0 39276 Equality of two left-additive identities. See resubidaddid1 39274. Uses ax-i2m1 10605. (Contributed by SN, 25-Dec-2023.)
(1 − 1) = (0 − 0)
 
Theoremsn-00idlem1 39277 Lemma for sn-00id 39280. (Contributed by SN, 25-Dec-2023.)
(𝐴 ∈ ℝ → (𝐴 · (0 − 0)) = (𝐴 𝐴))
 
Theoremsn-00idlem2 39278 Lemma for sn-00id 39280. (Contributed by SN, 25-Dec-2023.)
((0 − 0) ≠ 0 → (0 − 0) = 1)
 
Theoremsn-00idlem3 39279 Lemma for sn-00id 39280. (Contributed by SN, 25-Dec-2023.)
((0 − 0) = 1 → (0 + 0) = 0)
 
Theoremsn-00id 39280 00id 10815 proven without ax-mulcom 10601 but using ax-1ne0 10606. (Though note that the current version of 00id 10815 can be changed to avoid ax-icn 10596, ax-addcl 10597, ax-mulcl 10599, ax-i2m1 10605, ax-cnre 10610. Most of this is by using 0cnALT3 39202 instead of 0cn 10633). (Contributed by SN, 25-Dec-2023.) (Proof modification is discouraged.)
(0 + 0) = 0
 
Theoremre0m0e0 39281 Real number version of 0m0e0 11758 proven without ax-mulcom 10601. (Contributed by SN, 23-Jan-2024.)
(0 − 0) = 0
 
Theoremreaddid2 39282 Real number version of addid2 10823. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴)
 
Theoremsn-addid2 39283 addid2 10823 without ax-mulcom 10601. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
 
Theoremremul02 39284 Real number version of mul02 10818 proven without ax-mulcom 10601. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (0 · 𝐴) = 0)
 
Theoremsn-0ne2 39285 0ne2 11845 without ax-mulcom 10601. (Contributed by SN, 23-Jan-2024.)
0 ≠ 2
 
Theoremremul01 39286 Real number version of mul01 10819 proven without ax-mulcom 10601. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (𝐴 · 0) = 0)
 
Theoremresubid 39287 Subtraction of a real number from itself (compare subid 10905). (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (𝐴 𝐴) = 0)
 
Theoremreaddid1 39288 Real number version of addid1 10820, without ax-mulcom 10601. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
 
Theoremresubid1 39289 Real number version of subid1 10906, without ax-mulcom 10601. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ → (𝐴 0) = 𝐴)
 
Theoremrenegneg 39290 A real number is equal to the negative of its negative. Compare negneg 10936. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → (0 − (0 − 𝐴)) = 𝐴)
 
Theoremreaddcan2 39291 Commuted version of readdcan 10814 without ax-mulcom 10601. (Contributed by SN, 21-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremsn-ltaddpos 39292 ltaddpos 11130 without ax-mulcom 10601. (Contributed by SN, 13-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))
 
Theoremrelt0neg1 39293 Comparison of a real and its negative to zero. Compare lt0neg1 11146. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < (0 − 𝐴)))
 
Theoremrelt0neg2 39294 Comparison of a real and its negative to zero. Compare lt0neg2 11147. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 − 𝐴) < 0))
 
Theoremsn-0lt1 39295 0lt1 11162 without ax-mulcom 10601. (Contributed by SN, 13-Feb-2024.)
0 < 1
 
Theoremsn-ltp1 39296 ltp1 11480 without ax-mulcom 10601. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
 
Theoremremulinvcom 39297 A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 10601. (Contributed by SN, 5-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (𝐴 · 𝐵) = 1)       (𝜑 → (𝐵 · 𝐴) = 1)
 
Theoremremulid2 39298 Commuted version of ax-1rid 10607 and real number version of mulid2 10640 without ax-mulcom 10601. (Contributed by SN, 5-Feb-2024.)
(𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴)
 
Theoremremulcand 39299 Commuted version of remulcan2d 39205 without ax-mulcom 10601. (Contributed by SN, 21-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
 
20.26.5  Projective spaces

Looking at a corner in 3D space, one can see three right angles. It is impossible to draw three lines in 2D space such that any two of these lines are perpendicular, but a good enough representation is made by casting lines from the 2D surface. Points along the same cast line are collapsed into one point on the 2D surface.

In many cases, the 2D surface is smaller than whatever needs to be represented. If the lines cast were perpendicular to the 2D surface, then only areas as small as the 2D surface could be represented. To fix this, the lines need to get further apart as they go farther from the 2D surface. On the other side of the 2D surface the lines will get closer together and intersect at a point. (Because it's defined that way).

From this perspective, two parallel lines in 3D space will be represented by two lines that seem to intersect at a point "at infinity". Considering all maximal classes of parallel lines on a 2D plane in 3D space, these classes will all appear to intersect at different points at infinity, forming a line at infinity. Therefore the real projective plane can be thought of as the real affine plane together with the line at infinity.

The projective plane takes care of some exceptions that may be found in the affine plane. For example, consider the curve that is the zeroes of 𝑦 = 𝑥↑2. Any line connecting the point (0, 1) to the x-axis intersects with the curve twice, except for the vertical line between (0, 1) and (0, 0). In the projective plane, the curve becomes an ellipse and there is no exception.

While it may not seem like it, points at infinity and points corresponding to the affine plane are the same type of point. Consider a line going through the origin in 3D (affine) space. Either it intersects the plane 𝑧 = 1 once, or it is entirely within the plane 𝑧 = 0. If it is entirely within the plane 𝑧 = 0, then it corresponds to the point at infinity intersecting all lines on the plane 𝑧 = 1 with the same slope. Else it corresponds to the point in the 2D plane 𝑧 = 1 that it intersects. So there is a bijection between 3D lines through the origin and points on the real projective plane.

The concept of projective spaces generalizes the projective plane to any dimension.

 
Syntaxcprjsp 39300 Extend class notation with the projective space function.
class ℙ𝕣𝕠𝕛
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-44955
  Copyright terms: Public domain < Previous  Next >