![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldilfset | Structured version Visualization version GIF version |
Description: The mapping from fiducial co-atom 𝑤 to its set of lattice dilations. (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
ldilset.b | ⊢ 𝐵 = (Base‘𝐾) |
ldilset.l | ⊢ ≤ = (le‘𝐾) |
ldilset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ldilset.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
ldilfset | ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐾 ∈ 𝐶 → 𝐾 ∈ V) | |
2 | fveq2 6920 | . . . . 5 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) | |
3 | ldilset.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 2, 3 | eqtr4di 2798 | . . . 4 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
5 | fveq2 6920 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (LAut‘𝑘) = (LAut‘𝐾)) | |
6 | ldilset.i | . . . . . 6 ⊢ 𝐼 = (LAut‘𝐾) | |
7 | 5, 6 | eqtr4di 2798 | . . . . 5 ⊢ (𝑘 = 𝐾 → (LAut‘𝑘) = 𝐼) |
8 | fveq2 6920 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
9 | ldilset.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
10 | 8, 9 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
11 | fveq2 6920 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) | |
12 | ldilset.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
13 | 11, 12 | eqtr4di 2798 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
14 | 13 | breqd 5177 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑤 ↔ 𝑥 ≤ 𝑤)) |
15 | 14 | imbi1d 341 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥))) |
16 | 10, 15 | raleqbidv 3354 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥))) |
17 | 7, 16 | rabeqbidv 3462 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) |
18 | 4, 17 | mpteq12dv 5257 | . . 3 ⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)}) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
19 | df-ldil 40061 | . . 3 ⊢ LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)})) | |
20 | 18, 19, 3 | mptfvmpt 7265 | . 2 ⊢ (𝐾 ∈ V → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
21 | 1, 20 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 Basecbs 17258 lecple 17318 LHypclh 39941 LAutclaut 39942 LDilcldil 40057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ldil 40061 |
This theorem is referenced by: ldilset 40066 |
Copyright terms: Public domain | W3C validator |