Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldilfset | Structured version Visualization version GIF version |
Description: The mapping from fiducial co-atom 𝑤 to its set of lattice dilations. (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
ldilset.b | ⊢ 𝐵 = (Base‘𝐾) |
ldilset.l | ⊢ ≤ = (le‘𝐾) |
ldilset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ldilset.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
ldilfset | ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3428 | . 2 ⊢ (𝐾 ∈ 𝐶 → 𝐾 ∈ V) | |
2 | fveq2 6662 | . . . . 5 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) | |
3 | ldilset.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 2, 3 | eqtr4di 2811 | . . . 4 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
5 | fveq2 6662 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (LAut‘𝑘) = (LAut‘𝐾)) | |
6 | ldilset.i | . . . . . 6 ⊢ 𝐼 = (LAut‘𝐾) | |
7 | 5, 6 | eqtr4di 2811 | . . . . 5 ⊢ (𝑘 = 𝐾 → (LAut‘𝑘) = 𝐼) |
8 | fveq2 6662 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
9 | ldilset.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
10 | 8, 9 | eqtr4di 2811 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
11 | fveq2 6662 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) | |
12 | ldilset.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
13 | 11, 12 | eqtr4di 2811 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
14 | 13 | breqd 5046 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑤 ↔ 𝑥 ≤ 𝑤)) |
15 | 14 | imbi1d 345 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥))) |
16 | 10, 15 | raleqbidv 3319 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥))) |
17 | 7, 16 | rabeqbidv 3398 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) |
18 | 4, 17 | mpteq12dv 5120 | . . 3 ⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)}) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
19 | df-ldil 37706 | . . 3 ⊢ LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)})) | |
20 | 18, 19, 3 | mptfvmpt 6987 | . 2 ⊢ (𝐾 ∈ V → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
21 | 1, 20 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∀wral 3070 {crab 3074 Vcvv 3409 class class class wbr 5035 ↦ cmpt 5115 ‘cfv 6339 Basecbs 16546 lecple 16635 LHypclh 37586 LAutclaut 37587 LDilcldil 37702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ldil 37706 |
This theorem is referenced by: ldilset 37711 |
Copyright terms: Public domain | W3C validator |