Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilfset Structured version   Visualization version   GIF version

Theorem ldilfset 40227
Description: The mapping from fiducial co-atom 𝑤 to its set of lattice dilations. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b 𝐵 = (Base‘𝐾)
ldilset.l = (le‘𝐾)
ldilset.h 𝐻 = (LHyp‘𝐾)
ldilset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
ldilfset (𝐾𝐶 → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
Distinct variable groups:   𝑥,𝐵   𝑤,𝐻   𝑓,𝐼   𝑤,𝑓,𝑥,𝐾
Allowed substitution hints:   𝐵(𝑤,𝑓)   𝐶(𝑥,𝑤,𝑓)   𝐻(𝑥,𝑓)   𝐼(𝑥,𝑤)   (𝑥,𝑤,𝑓)

Proof of Theorem ldilfset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝐾𝐶𝐾 ∈ V)
2 fveq2 6828 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 ldilset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2786 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6828 . . . . . 6 (𝑘 = 𝐾 → (LAut‘𝑘) = (LAut‘𝐾))
6 ldilset.i . . . . . 6 𝐼 = (LAut‘𝐾)
75, 6eqtr4di 2786 . . . . 5 (𝑘 = 𝐾 → (LAut‘𝑘) = 𝐼)
8 fveq2 6828 . . . . . . 7 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
9 ldilset.b . . . . . . 7 𝐵 = (Base‘𝐾)
108, 9eqtr4di 2786 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
11 fveq2 6828 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
12 ldilset.l . . . . . . . . 9 = (le‘𝐾)
1311, 12eqtr4di 2786 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1413breqd 5104 . . . . . . 7 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑤𝑥 𝑤))
1514imbi1d 341 . . . . . 6 (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥) ↔ (𝑥 𝑤 → (𝑓𝑥) = 𝑥)))
1610, 15raleqbidv 3313 . . . . 5 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)))
177, 16rabeqbidv 3414 . . . 4 (𝑘 = 𝐾 → {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)} = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})
184, 17mpteq12dv 5180 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)}) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
19 df-ldil 40223 . . 3 LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)}))
2018, 19, 3mptfvmpt 7168 . 2 (𝐾 ∈ V → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
211, 20syl 17 1 (𝐾𝐶 → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437   class class class wbr 5093  cmpt 5174  cfv 6486  Basecbs 17122  lecple 17170  LHypclh 40103  LAutclaut 40104  LDilcldil 40219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ldil 40223
This theorem is referenced by:  ldilset  40228
  Copyright terms: Public domain W3C validator