Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilfset Structured version   Visualization version   GIF version

Theorem ldilfset 40105
Description: The mapping from fiducial co-atom 𝑤 to its set of lattice dilations. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b 𝐵 = (Base‘𝐾)
ldilset.l = (le‘𝐾)
ldilset.h 𝐻 = (LHyp‘𝐾)
ldilset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
ldilfset (𝐾𝐶 → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
Distinct variable groups:   𝑥,𝐵   𝑤,𝐻   𝑓,𝐼   𝑤,𝑓,𝑥,𝐾
Allowed substitution hints:   𝐵(𝑤,𝑓)   𝐶(𝑥,𝑤,𝑓)   𝐻(𝑥,𝑓)   𝐼(𝑥,𝑤)   (𝑥,𝑤,𝑓)

Proof of Theorem ldilfset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3502 . 2 (𝐾𝐶𝐾 ∈ V)
2 fveq2 6914 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 ldilset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2795 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6914 . . . . . 6 (𝑘 = 𝐾 → (LAut‘𝑘) = (LAut‘𝐾))
6 ldilset.i . . . . . 6 𝐼 = (LAut‘𝐾)
75, 6eqtr4di 2795 . . . . 5 (𝑘 = 𝐾 → (LAut‘𝑘) = 𝐼)
8 fveq2 6914 . . . . . . 7 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
9 ldilset.b . . . . . . 7 𝐵 = (Base‘𝐾)
108, 9eqtr4di 2795 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
11 fveq2 6914 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
12 ldilset.l . . . . . . . . 9 = (le‘𝐾)
1311, 12eqtr4di 2795 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1413breqd 5162 . . . . . . 7 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑤𝑥 𝑤))
1514imbi1d 341 . . . . . 6 (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥) ↔ (𝑥 𝑤 → (𝑓𝑥) = 𝑥)))
1610, 15raleqbidv 3346 . . . . 5 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)))
177, 16rabeqbidv 3455 . . . 4 (𝑘 = 𝐾 → {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)} = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})
184, 17mpteq12dv 5242 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)}) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
19 df-ldil 40101 . . 3 LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)}))
2018, 19, 3mptfvmpt 7255 . 2 (𝐾 ∈ V → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
211, 20syl 17 1 (𝐾𝐶 → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3061  {crab 3436  Vcvv 3481   class class class wbr 5151  cmpt 5234  cfv 6569  Basecbs 17254  lecple 17314  LHypclh 39981  LAutclaut 39982  LDilcldil 40097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ldil 40101
This theorem is referenced by:  ldilset  40106
  Copyright terms: Public domain W3C validator