Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilfset Structured version   Visualization version   GIF version

Theorem ldilfset 37238
Description: The mapping from fiducial co-atom 𝑤 to its set of lattice dilations. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b 𝐵 = (Base‘𝐾)
ldilset.l = (le‘𝐾)
ldilset.h 𝐻 = (LHyp‘𝐾)
ldilset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
ldilfset (𝐾𝐶 → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
Distinct variable groups:   𝑥,𝐵   𝑤,𝐻   𝑓,𝐼   𝑤,𝑓,𝑥,𝐾
Allowed substitution hints:   𝐵(𝑤,𝑓)   𝐶(𝑥,𝑤,𝑓)   𝐻(𝑥,𝑓)   𝐼(𝑥,𝑤)   (𝑥,𝑤,𝑓)

Proof of Theorem ldilfset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3512 . 2 (𝐾𝐶𝐾 ∈ V)
2 fveq2 6664 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 ldilset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3syl6eqr 2874 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6664 . . . . . 6 (𝑘 = 𝐾 → (LAut‘𝑘) = (LAut‘𝐾))
6 ldilset.i . . . . . 6 𝐼 = (LAut‘𝐾)
75, 6syl6eqr 2874 . . . . 5 (𝑘 = 𝐾 → (LAut‘𝑘) = 𝐼)
8 fveq2 6664 . . . . . . 7 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
9 ldilset.b . . . . . . 7 𝐵 = (Base‘𝐾)
108, 9syl6eqr 2874 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
11 fveq2 6664 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
12 ldilset.l . . . . . . . . 9 = (le‘𝐾)
1311, 12syl6eqr 2874 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1413breqd 5069 . . . . . . 7 (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑤𝑥 𝑤))
1514imbi1d 344 . . . . . 6 (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥) ↔ (𝑥 𝑤 → (𝑓𝑥) = 𝑥)))
1610, 15raleqbidv 3401 . . . . 5 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)))
177, 16rabeqbidv 3485 . . . 4 (𝑘 = 𝐾 → {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)} = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)})
184, 17mpteq12dv 5143 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)}) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
19 df-ldil 37234 . . 3 LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)}))
2018, 19, 3mptfvmpt 6984 . 2 (𝐾 ∈ V → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
211, 20syl 17 1 (𝐾𝐶 → (LDil‘𝐾) = (𝑤𝐻 ↦ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑤 → (𝑓𝑥) = 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wral 3138  {crab 3142  Vcvv 3494   class class class wbr 5058  cmpt 5138  cfv 6349  Basecbs 16477  lecple 16566  LHypclh 37114  LAutclaut 37115  LDilcldil 37230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ldil 37234
This theorem is referenced by:  ldilset  37239
  Copyright terms: Public domain W3C validator