Step | Hyp | Ref
| Expression |
1 | | elex 3492 |
. 2
β’ (πΎ β πΆ β πΎ β V) |
2 | | fveq2 6891 |
. . . . 5
β’ (π = πΎ β (LHypβπ) = (LHypβπΎ)) |
3 | | ldilset.h |
. . . . 5
β’ π» = (LHypβπΎ) |
4 | 2, 3 | eqtr4di 2790 |
. . . 4
β’ (π = πΎ β (LHypβπ) = π») |
5 | | fveq2 6891 |
. . . . . 6
β’ (π = πΎ β (LAutβπ) = (LAutβπΎ)) |
6 | | ldilset.i |
. . . . . 6
β’ πΌ = (LAutβπΎ) |
7 | 5, 6 | eqtr4di 2790 |
. . . . 5
β’ (π = πΎ β (LAutβπ) = πΌ) |
8 | | fveq2 6891 |
. . . . . . 7
β’ (π = πΎ β (Baseβπ) = (BaseβπΎ)) |
9 | | ldilset.b |
. . . . . . 7
β’ π΅ = (BaseβπΎ) |
10 | 8, 9 | eqtr4di 2790 |
. . . . . 6
β’ (π = πΎ β (Baseβπ) = π΅) |
11 | | fveq2 6891 |
. . . . . . . . 9
β’ (π = πΎ β (leβπ) = (leβπΎ)) |
12 | | ldilset.l |
. . . . . . . . 9
β’ β€ =
(leβπΎ) |
13 | 11, 12 | eqtr4di 2790 |
. . . . . . . 8
β’ (π = πΎ β (leβπ) = β€ ) |
14 | 13 | breqd 5159 |
. . . . . . 7
β’ (π = πΎ β (π₯(leβπ)π€ β π₯ β€ π€)) |
15 | 14 | imbi1d 341 |
. . . . . 6
β’ (π = πΎ β ((π₯(leβπ)π€ β (πβπ₯) = π₯) β (π₯ β€ π€ β (πβπ₯) = π₯))) |
16 | 10, 15 | raleqbidv 3342 |
. . . . 5
β’ (π = πΎ β (βπ₯ β (Baseβπ)(π₯(leβπ)π€ β (πβπ₯) = π₯) β βπ₯ β π΅ (π₯ β€ π€ β (πβπ₯) = π₯))) |
17 | 7, 16 | rabeqbidv 3449 |
. . . 4
β’ (π = πΎ β {π β (LAutβπ) β£ βπ₯ β (Baseβπ)(π₯(leβπ)π€ β (πβπ₯) = π₯)} = {π β πΌ β£ βπ₯ β π΅ (π₯ β€ π€ β (πβπ₯) = π₯)}) |
18 | 4, 17 | mpteq12dv 5239 |
. . 3
β’ (π = πΎ β (π€ β (LHypβπ) β¦ {π β (LAutβπ) β£ βπ₯ β (Baseβπ)(π₯(leβπ)π€ β (πβπ₯) = π₯)}) = (π€ β π» β¦ {π β πΌ β£ βπ₯ β π΅ (π₯ β€ π€ β (πβπ₯) = π₯)})) |
19 | | df-ldil 38970 |
. . 3
β’ LDil =
(π β V β¦ (π€ β (LHypβπ) β¦ {π β (LAutβπ) β£ βπ₯ β (Baseβπ)(π₯(leβπ)π€ β (πβπ₯) = π₯)})) |
20 | 18, 19, 3 | mptfvmpt 7229 |
. 2
β’ (πΎ β V β
(LDilβπΎ) = (π€ β π» β¦ {π β πΌ β£ βπ₯ β π΅ (π₯ β€ π€ β (πβπ₯) = π₯)})) |
21 | 1, 20 | syl 17 |
1
β’ (πΎ β πΆ β (LDilβπΎ) = (π€ β π» β¦ {π β πΌ β£ βπ₯ β π΅ (π₯ β€ π€ β (πβπ₯) = π₯)})) |