| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldilfset | Structured version Visualization version GIF version | ||
| Description: The mapping from fiducial co-atom 𝑤 to its set of lattice dilations. (Contributed by NM, 11-May-2012.) |
| Ref | Expression |
|---|---|
| ldilset.b | ⊢ 𝐵 = (Base‘𝐾) |
| ldilset.l | ⊢ ≤ = (le‘𝐾) |
| ldilset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ldilset.i | ⊢ 𝐼 = (LAut‘𝐾) |
| Ref | Expression |
|---|---|
| ldilfset | ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3458 | . 2 ⊢ (𝐾 ∈ 𝐶 → 𝐾 ∈ V) | |
| 2 | fveq2 6828 | . . . . 5 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) | |
| 3 | ldilset.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | 2, 3 | eqtr4di 2786 | . . . 4 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
| 5 | fveq2 6828 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (LAut‘𝑘) = (LAut‘𝐾)) | |
| 6 | ldilset.i | . . . . . 6 ⊢ 𝐼 = (LAut‘𝐾) | |
| 7 | 5, 6 | eqtr4di 2786 | . . . . 5 ⊢ (𝑘 = 𝐾 → (LAut‘𝑘) = 𝐼) |
| 8 | fveq2 6828 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
| 9 | ldilset.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 10 | 8, 9 | eqtr4di 2786 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
| 11 | fveq2 6828 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) | |
| 12 | ldilset.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
| 13 | 11, 12 | eqtr4di 2786 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
| 14 | 13 | breqd 5104 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝑥(le‘𝑘)𝑤 ↔ 𝑥 ≤ 𝑤)) |
| 15 | 14 | imbi1d 341 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ((𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥) ↔ (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥))) |
| 16 | 10, 15 | raleqbidv 3313 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥))) |
| 17 | 7, 16 | rabeqbidv 3414 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)} = {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)}) |
| 18 | 4, 17 | mpteq12dv 5180 | . . 3 ⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)}) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
| 19 | df-ldil 40223 | . . 3 ⊢ LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)})) | |
| 20 | 18, 19, 3 | mptfvmpt 7168 | . 2 ⊢ (𝐾 ∈ V → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
| 21 | 1, 20 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐶 → (LDil‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑤 → (𝑓‘𝑥) = 𝑥)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 Vcvv 3437 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 Basecbs 17122 lecple 17170 LHypclh 40103 LAutclaut 40104 LDilcldil 40219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ldil 40223 |
| This theorem is referenced by: ldilset 40228 |
| Copyright terms: Public domain | W3C validator |