Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilfset Structured version   Visualization version   GIF version

Theorem ldilfset 38974
Description: The mapping from fiducial co-atom 𝑀 to its set of lattice dilations. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b 𝐡 = (Baseβ€˜πΎ)
ldilset.l ≀ = (leβ€˜πΎ)
ldilset.h 𝐻 = (LHypβ€˜πΎ)
ldilset.i 𝐼 = (LAutβ€˜πΎ)
Assertion
Ref Expression
ldilfset (𝐾 ∈ 𝐢 β†’ (LDilβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)}))
Distinct variable groups:   π‘₯,𝐡   𝑀,𝐻   𝑓,𝐼   𝑀,𝑓,π‘₯,𝐾
Allowed substitution hints:   𝐡(𝑀,𝑓)   𝐢(π‘₯,𝑀,𝑓)   𝐻(π‘₯,𝑓)   𝐼(π‘₯,𝑀)   ≀ (π‘₯,𝑀,𝑓)

Proof of Theorem ldilfset
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾 ∈ 𝐢 β†’ 𝐾 ∈ V)
2 fveq2 6891 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 ldilset.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2790 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6891 . . . . . 6 (π‘˜ = 𝐾 β†’ (LAutβ€˜π‘˜) = (LAutβ€˜πΎ))
6 ldilset.i . . . . . 6 𝐼 = (LAutβ€˜πΎ)
75, 6eqtr4di 2790 . . . . 5 (π‘˜ = 𝐾 β†’ (LAutβ€˜π‘˜) = 𝐼)
8 fveq2 6891 . . . . . . 7 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = (Baseβ€˜πΎ))
9 ldilset.b . . . . . . 7 𝐡 = (Baseβ€˜πΎ)
108, 9eqtr4di 2790 . . . . . 6 (π‘˜ = 𝐾 β†’ (Baseβ€˜π‘˜) = 𝐡)
11 fveq2 6891 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = (leβ€˜πΎ))
12 ldilset.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
1311, 12eqtr4di 2790 . . . . . . . 8 (π‘˜ = 𝐾 β†’ (leβ€˜π‘˜) = ≀ )
1413breqd 5159 . . . . . . 7 (π‘˜ = 𝐾 β†’ (π‘₯(leβ€˜π‘˜)𝑀 ↔ π‘₯ ≀ 𝑀))
1514imbi1d 341 . . . . . 6 (π‘˜ = 𝐾 β†’ ((π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯) ↔ (π‘₯ ≀ 𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)))
1610, 15raleqbidv 3342 . . . . 5 (π‘˜ = 𝐾 β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯) ↔ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)))
177, 16rabeqbidv 3449 . . . 4 (π‘˜ = 𝐾 β†’ {𝑓 ∈ (LAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)} = {𝑓 ∈ 𝐼 ∣ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)})
184, 17mpteq12dv 5239 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {𝑓 ∈ (LAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)}) = (𝑀 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)}))
19 df-ldil 38970 . . 3 LDil = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {𝑓 ∈ (LAutβ€˜π‘˜) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘˜)(π‘₯(leβ€˜π‘˜)𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)}))
2018, 19, 3mptfvmpt 7229 . 2 (𝐾 ∈ V β†’ (LDilβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)}))
211, 20syl 17 1 (𝐾 ∈ 𝐢 β†’ (LDilβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {𝑓 ∈ 𝐼 ∣ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑀 β†’ (π‘“β€˜π‘₯) = π‘₯)}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  Vcvv 3474   class class class wbr 5148   ↦ cmpt 5231  β€˜cfv 6543  Basecbs 17143  lecple 17203  LHypclh 38850  LAutclaut 38851  LDilcldil 38966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ldil 38970
This theorem is referenced by:  ldilset  38975
  Copyright terms: Public domain W3C validator