Detailed syntax breakdown of Definition df-ltrn
| Step | Hyp | Ref
| Expression |
| 1 | | cltrn 40103 |
. 2
class
LTrn |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vw |
. . . 4
setvar 𝑤 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑘 |
| 6 | | clh 39986 |
. . . . 5
class
LHyp |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(LHyp‘𝑘) |
| 8 | | vp |
. . . . . . . . . . . 12
setvar 𝑝 |
| 9 | 8 | cv 1539 |
. . . . . . . . . . 11
class 𝑝 |
| 10 | 4 | cv 1539 |
. . . . . . . . . . 11
class 𝑤 |
| 11 | | cple 17304 |
. . . . . . . . . . . 12
class
le |
| 12 | 5, 11 | cfv 6561 |
. . . . . . . . . . 11
class
(le‘𝑘) |
| 13 | 9, 10, 12 | wbr 5143 |
. . . . . . . . . 10
wff 𝑝(le‘𝑘)𝑤 |
| 14 | 13 | wn 3 |
. . . . . . . . 9
wff ¬
𝑝(le‘𝑘)𝑤 |
| 15 | | vq |
. . . . . . . . . . . 12
setvar 𝑞 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . 11
class 𝑞 |
| 17 | 16, 10, 12 | wbr 5143 |
. . . . . . . . . 10
wff 𝑞(le‘𝑘)𝑤 |
| 18 | 17 | wn 3 |
. . . . . . . . 9
wff ¬
𝑞(le‘𝑘)𝑤 |
| 19 | 14, 18 | wa 395 |
. . . . . . . 8
wff (¬
𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) |
| 20 | | vf |
. . . . . . . . . . . . 13
setvar 𝑓 |
| 21 | 20 | cv 1539 |
. . . . . . . . . . . 12
class 𝑓 |
| 22 | 9, 21 | cfv 6561 |
. . . . . . . . . . 11
class (𝑓‘𝑝) |
| 23 | | cjn 18357 |
. . . . . . . . . . . 12
class
join |
| 24 | 5, 23 | cfv 6561 |
. . . . . . . . . . 11
class
(join‘𝑘) |
| 25 | 9, 22, 24 | co 7431 |
. . . . . . . . . 10
class (𝑝(join‘𝑘)(𝑓‘𝑝)) |
| 26 | | cmee 18358 |
. . . . . . . . . . 11
class
meet |
| 27 | 5, 26 | cfv 6561 |
. . . . . . . . . 10
class
(meet‘𝑘) |
| 28 | 25, 10, 27 | co 7431 |
. . . . . . . . 9
class ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) |
| 29 | 16, 21 | cfv 6561 |
. . . . . . . . . . 11
class (𝑓‘𝑞) |
| 30 | 16, 29, 24 | co 7431 |
. . . . . . . . . 10
class (𝑞(join‘𝑘)(𝑓‘𝑞)) |
| 31 | 30, 10, 27 | co 7431 |
. . . . . . . . 9
class ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤) |
| 32 | 28, 31 | wceq 1540 |
. . . . . . . 8
wff ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤) |
| 33 | 19, 32 | wi 4 |
. . . . . . 7
wff ((¬
𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤)) |
| 34 | | catm 39264 |
. . . . . . . 8
class
Atoms |
| 35 | 5, 34 | cfv 6561 |
. . . . . . 7
class
(Atoms‘𝑘) |
| 36 | 33, 15, 35 | wral 3061 |
. . . . . 6
wff
∀𝑞 ∈
(Atoms‘𝑘)((¬
𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤)) |
| 37 | 36, 8, 35 | wral 3061 |
. . . . 5
wff
∀𝑝 ∈
(Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤)) |
| 38 | | cldil 40102 |
. . . . . . 7
class
LDil |
| 39 | 5, 38 | cfv 6561 |
. . . . . 6
class
(LDil‘𝑘) |
| 40 | 10, 39 | cfv 6561 |
. . . . 5
class
((LDil‘𝑘)‘𝑤) |
| 41 | 37, 20, 40 | crab 3436 |
. . . 4
class {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤))} |
| 42 | 4, 7, 41 | cmpt 5225 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤))}) |
| 43 | 2, 3, 42 | cmpt 5225 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤))})) |
| 44 | 1, 43 | wceq 1540 |
1
wff LTrn =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤))})) |