Detailed syntax breakdown of Definition df-lfig
| Step | Hyp | Ref
| Expression |
| 1 | | clfig 43079 |
. 2
class
LFinGen |
| 2 | | vw |
. . . . . 6
setvar 𝑤 |
| 3 | 2 | cv 1539 |
. . . . 5
class 𝑤 |
| 4 | | cbs 17247 |
. . . . 5
class
Base |
| 5 | 3, 4 | cfv 6561 |
. . . 4
class
(Base‘𝑤) |
| 6 | | clspn 20969 |
. . . . . 6
class
LSpan |
| 7 | 3, 6 | cfv 6561 |
. . . . 5
class
(LSpan‘𝑤) |
| 8 | 5 | cpw 4600 |
. . . . . 6
class 𝒫
(Base‘𝑤) |
| 9 | | cfn 8985 |
. . . . . 6
class
Fin |
| 10 | 8, 9 | cin 3950 |
. . . . 5
class
(𝒫 (Base‘𝑤) ∩ Fin) |
| 11 | 7, 10 | cima 5688 |
. . . 4
class
((LSpan‘𝑤)
“ (𝒫 (Base‘𝑤) ∩ Fin)) |
| 12 | 5, 11 | wcel 2108 |
. . 3
wff
(Base‘𝑤)
∈ ((LSpan‘𝑤)
“ (𝒫 (Base‘𝑤) ∩ Fin)) |
| 13 | | clmod 20858 |
. . 3
class
LMod |
| 14 | 12, 2, 13 | crab 3436 |
. 2
class {𝑤 ∈ LMod ∣
(Base‘𝑤) ∈
((LSpan‘𝑤) “
(𝒫 (Base‘𝑤)
∩ Fin))} |
| 15 | 1, 14 | wceq 1540 |
1
wff LFinGen =
{𝑤 ∈ LMod ∣
(Base‘𝑤) ∈
((LSpan‘𝑤) “
(𝒫 (Base‘𝑤)
∩ Fin))} |