Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fglmod Structured version   Visualization version   GIF version

Theorem fglmod 42367
Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
fglmod (𝑀 ∈ LFinGen β†’ 𝑀 ∈ LMod)

Proof of Theorem fglmod
StepHypRef Expression
1 df-lfig 42362 . . 3 LFinGen = {π‘Ž ∈ LMod ∣ (Baseβ€˜π‘Ž) ∈ ((LSpanβ€˜π‘Ž) β€œ (𝒫 (Baseβ€˜π‘Ž) ∩ Fin))}
21ssrab3 4073 . 2 LFinGen βŠ† LMod
32sseli 3971 1 (𝑀 ∈ LFinGen β†’ 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098   ∩ cin 3940  π’« cpw 4595   β€œ cima 5670  β€˜cfv 6534  Fincfn 8936  Basecbs 17149  LModclmod 20702  LSpanclspn 20814  LFinGenclfig 42361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-in 3948  df-ss 3958  df-lfig 42362
This theorem is referenced by:  lnrfg  42413
  Copyright terms: Public domain W3C validator