Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fglmod Structured version   Visualization version   GIF version

Theorem fglmod 43061
Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
fglmod (𝑀 ∈ LFinGen → 𝑀 ∈ LMod)

Proof of Theorem fglmod
StepHypRef Expression
1 df-lfig 43056 . . 3 LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}
21ssrab3 4091 . 2 LFinGen ⊆ LMod
32sseli 3990 1 (𝑀 ∈ LFinGen → 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cin 3961  𝒫 cpw 4604  cima 5691  cfv 6562  Fincfn 8983  Basecbs 17244  LModclmod 20874  LSpanclspn 20986  LFinGenclfig 43055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-ss 3979  df-lfig 43056
This theorem is referenced by:  lnrfg  43107
  Copyright terms: Public domain W3C validator