Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fglmod Structured version   Visualization version   GIF version

Theorem fglmod 40898
Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
fglmod (𝑀 ∈ LFinGen → 𝑀 ∈ LMod)

Proof of Theorem fglmod
StepHypRef Expression
1 df-lfig 40893 . . 3 LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}
21ssrab3 4015 . 2 LFinGen ⊆ LMod
32sseli 3917 1 (𝑀 ∈ LFinGen → 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cin 3886  𝒫 cpw 4533  cima 5592  cfv 6433  Fincfn 8733  Basecbs 16912  LModclmod 20123  LSpanclspn 20233  LFinGenclfig 40892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-lfig 40893
This theorem is referenced by:  lnrfg  40944
  Copyright terms: Public domain W3C validator