Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fglmod Structured version   Visualization version   GIF version

Theorem fglmod 43046
Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
fglmod (𝑀 ∈ LFinGen → 𝑀 ∈ LMod)

Proof of Theorem fglmod
StepHypRef Expression
1 df-lfig 43041 . . 3 LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}
21ssrab3 4035 . 2 LFinGen ⊆ LMod
32sseli 3933 1 (𝑀 ∈ LFinGen → 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cin 3904  𝒫 cpw 4553  cima 5626  cfv 6486  Fincfn 8879  Basecbs 17138  LModclmod 20781  LSpanclspn 20892  LFinGenclfig 43040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-ss 3922  df-lfig 43041
This theorem is referenced by:  lnrfg  43092
  Copyright terms: Public domain W3C validator