| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fglmod | Structured version Visualization version GIF version | ||
| Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| fglmod | ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lfig 43185 | . . 3 ⊢ LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} | |
| 2 | 1 | ssrab3 4031 | . 2 ⊢ LFinGen ⊆ LMod |
| 3 | 2 | sseli 3926 | 1 ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∩ cin 3897 𝒫 cpw 4549 “ cima 5622 ‘cfv 6486 Fincfn 8875 Basecbs 17122 LModclmod 20795 LSpanclspn 20906 LFinGenclfig 43184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-ss 3915 df-lfig 43185 |
| This theorem is referenced by: lnrfg 43236 |
| Copyright terms: Public domain | W3C validator |