![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fglmod | Structured version Visualization version GIF version |
Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
fglmod | ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lfig 43056 | . . 3 ⊢ LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} | |
2 | 1 | ssrab3 4091 | . 2 ⊢ LFinGen ⊆ LMod |
3 | 2 | sseli 3990 | 1 ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∩ cin 3961 𝒫 cpw 4604 “ cima 5691 ‘cfv 6562 Fincfn 8983 Basecbs 17244 LModclmod 20874 LSpanclspn 20986 LFinGenclfig 43055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-ss 3979 df-lfig 43056 |
This theorem is referenced by: lnrfg 43107 |
Copyright terms: Public domain | W3C validator |