| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fglmod | Structured version Visualization version GIF version | ||
| Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| fglmod | ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lfig 43064 | . . 3 ⊢ LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} | |
| 2 | 1 | ssrab3 4048 | . 2 ⊢ LFinGen ⊆ LMod |
| 3 | 2 | sseli 3945 | 1 ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3916 𝒫 cpw 4566 “ cima 5644 ‘cfv 6514 Fincfn 8921 Basecbs 17186 LModclmod 20773 LSpanclspn 20884 LFinGenclfig 43063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-ss 3934 df-lfig 43064 |
| This theorem is referenced by: lnrfg 43115 |
| Copyright terms: Public domain | W3C validator |