Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fglmod | Structured version Visualization version GIF version |
Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
fglmod | ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lfig 40893 | . . 3 ⊢ LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} | |
2 | 1 | ssrab3 4015 | . 2 ⊢ LFinGen ⊆ LMod |
3 | 2 | sseli 3917 | 1 ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∩ cin 3886 𝒫 cpw 4533 “ cima 5592 ‘cfv 6433 Fincfn 8733 Basecbs 16912 LModclmod 20123 LSpanclspn 20233 LFinGenclfig 40892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-lfig 40893 |
This theorem is referenced by: lnrfg 40944 |
Copyright terms: Public domain | W3C validator |