![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fglmod | Structured version Visualization version GIF version |
Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
fglmod | β’ (π β LFinGen β π β LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lfig 42362 | . . 3 β’ LFinGen = {π β LMod β£ (Baseβπ) β ((LSpanβπ) β (π« (Baseβπ) β© Fin))} | |
2 | 1 | ssrab3 4073 | . 2 β’ LFinGen β LMod |
3 | 2 | sseli 3971 | 1 β’ (π β LFinGen β π β LMod) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 β© cin 3940 π« cpw 4595 β cima 5670 βcfv 6534 Fincfn 8936 Basecbs 17149 LModclmod 20702 LSpanclspn 20814 LFinGenclfig 42361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-in 3948 df-ss 3958 df-lfig 42362 |
This theorem is referenced by: lnrfg 42413 |
Copyright terms: Public domain | W3C validator |