Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fglmod | Structured version Visualization version GIF version |
Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
fglmod | ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lfig 40809 | . . 3 ⊢ LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} | |
2 | 1 | ssrab3 4011 | . 2 ⊢ LFinGen ⊆ LMod |
3 | 2 | sseli 3913 | 1 ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3882 𝒫 cpw 4530 “ cima 5583 ‘cfv 6418 Fincfn 8691 Basecbs 16840 LModclmod 20038 LSpanclspn 20148 LFinGenclfig 40808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-lfig 40809 |
This theorem is referenced by: lnrfg 40860 |
Copyright terms: Public domain | W3C validator |