Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islmodfg Structured version   Visualization version   GIF version

Theorem islmodfg 42667
Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
islmodfg.b 𝐵 = (Base‘𝑊)
islmodfg.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islmodfg (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
Distinct variable groups:   𝑊,𝑏   𝐵,𝑏   𝑁,𝑏

Proof of Theorem islmodfg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 df-lfig 42666 . . . 4 LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}
21eleq2i 2817 . . 3 (𝑊 ∈ LFinGen ↔ 𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))})
3 fveq2 6900 . . . . 5 (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊))
4 fveq2 6900 . . . . . . 7 (𝑎 = 𝑊 → (LSpan‘𝑎) = (LSpan‘𝑊))
5 islmodfg.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
64, 5eqtr4di 2783 . . . . . 6 (𝑎 = 𝑊 → (LSpan‘𝑎) = 𝑁)
73pweqd 4623 . . . . . . 7 (𝑎 = 𝑊 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑊))
87ineq1d 4211 . . . . . 6 (𝑎 = 𝑊 → (𝒫 (Base‘𝑎) ∩ Fin) = (𝒫 (Base‘𝑊) ∩ Fin))
96, 8imaeq12d 6069 . . . . 5 (𝑎 = 𝑊 → ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) = (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))
103, 9eleq12d 2819 . . . 4 (𝑎 = 𝑊 → ((Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
1110elrab3 3681 . . 3 (𝑊 ∈ LMod → (𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
122, 11bitrid 282 . 2 (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
13 eqid 2725 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
14 eqid 2725 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1513, 14, 5lspf 20898 . . . . 5 (𝑊 ∈ LMod → 𝑁:𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊))
1615ffnd 6728 . . . 4 (𝑊 ∈ LMod → 𝑁 Fn 𝒫 (Base‘𝑊))
17 inss1 4229 . . . 4 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)
18 fvelimab 6974 . . . 4 ((𝑁 Fn 𝒫 (Base‘𝑊) ∧ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)) → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊)))
1916, 17, 18sylancl 584 . . 3 (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊)))
20 elin 3962 . . . . . . 7 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin))
21 islmodfg.b . . . . . . . . . . 11 𝐵 = (Base‘𝑊)
2221eqcomi 2734 . . . . . . . . . 10 (Base‘𝑊) = 𝐵
2322pweqi 4622 . . . . . . . . 9 𝒫 (Base‘𝑊) = 𝒫 𝐵
2423eleq2i 2817 . . . . . . . 8 (𝑏 ∈ 𝒫 (Base‘𝑊) ↔ 𝑏 ∈ 𝒫 𝐵)
2524anbi1i 622 . . . . . . 7 ((𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2620, 25bitri 274 . . . . . 6 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2722eqeq2i 2738 . . . . . 6 ((𝑁𝑏) = (Base‘𝑊) ↔ (𝑁𝑏) = 𝐵)
2826, 27anbi12i 626 . . . . 5 ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁𝑏) = (Base‘𝑊)) ↔ ((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝐵))
29 anass 467 . . . . 5 (((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝐵) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3028, 29bitri 274 . . . 4 ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁𝑏) = (Base‘𝑊)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3130rexbii2 3079 . . 3 (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵))
3219, 31bitrdi 286 . 2 (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3312, 32bitrd 278 1 (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wrex 3059  {crab 3418  cin 3945  wss 3946  𝒫 cpw 4606  cima 5684   Fn wfn 6548  cfv 6553  Fincfn 8973  Basecbs 17208  LModclmod 20783  LSubSpclss 20855  LSpanclspn 20895  LFinGenclfig 42665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-2 12322  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-plusg 17274  df-0g 17451  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mgp 20113  df-ur 20160  df-ring 20213  df-lmod 20785  df-lss 20856  df-lsp 20896  df-lfig 42666
This theorem is referenced by:  islssfg  42668  lnrfg  42717
  Copyright terms: Public domain W3C validator