Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islmodfg Structured version   Visualization version   GIF version

Theorem islmodfg 43058
Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
islmodfg.b 𝐵 = (Base‘𝑊)
islmodfg.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islmodfg (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
Distinct variable groups:   𝑊,𝑏   𝐵,𝑏   𝑁,𝑏

Proof of Theorem islmodfg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 df-lfig 43057 . . . 4 LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}
21eleq2i 2831 . . 3 (𝑊 ∈ LFinGen ↔ 𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))})
3 fveq2 6907 . . . . 5 (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊))
4 fveq2 6907 . . . . . . 7 (𝑎 = 𝑊 → (LSpan‘𝑎) = (LSpan‘𝑊))
5 islmodfg.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
64, 5eqtr4di 2793 . . . . . 6 (𝑎 = 𝑊 → (LSpan‘𝑎) = 𝑁)
73pweqd 4622 . . . . . . 7 (𝑎 = 𝑊 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑊))
87ineq1d 4227 . . . . . 6 (𝑎 = 𝑊 → (𝒫 (Base‘𝑎) ∩ Fin) = (𝒫 (Base‘𝑊) ∩ Fin))
96, 8imaeq12d 6081 . . . . 5 (𝑎 = 𝑊 → ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) = (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))
103, 9eleq12d 2833 . . . 4 (𝑎 = 𝑊 → ((Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
1110elrab3 3696 . . 3 (𝑊 ∈ LMod → (𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
122, 11bitrid 283 . 2 (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
13 eqid 2735 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
14 eqid 2735 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1513, 14, 5lspf 20990 . . . . 5 (𝑊 ∈ LMod → 𝑁:𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊))
1615ffnd 6738 . . . 4 (𝑊 ∈ LMod → 𝑁 Fn 𝒫 (Base‘𝑊))
17 inss1 4245 . . . 4 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)
18 fvelimab 6981 . . . 4 ((𝑁 Fn 𝒫 (Base‘𝑊) ∧ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)) → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊)))
1916, 17, 18sylancl 586 . . 3 (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊)))
20 elin 3979 . . . . . . 7 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin))
21 islmodfg.b . . . . . . . . . . 11 𝐵 = (Base‘𝑊)
2221eqcomi 2744 . . . . . . . . . 10 (Base‘𝑊) = 𝐵
2322pweqi 4621 . . . . . . . . 9 𝒫 (Base‘𝑊) = 𝒫 𝐵
2423eleq2i 2831 . . . . . . . 8 (𝑏 ∈ 𝒫 (Base‘𝑊) ↔ 𝑏 ∈ 𝒫 𝐵)
2524anbi1i 624 . . . . . . 7 ((𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2620, 25bitri 275 . . . . . 6 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2722eqeq2i 2748 . . . . . 6 ((𝑁𝑏) = (Base‘𝑊) ↔ (𝑁𝑏) = 𝐵)
2826, 27anbi12i 628 . . . . 5 ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁𝑏) = (Base‘𝑊)) ↔ ((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝐵))
29 anass 468 . . . . 5 (((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝐵) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3028, 29bitri 275 . . . 4 ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁𝑏) = (Base‘𝑊)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3130rexbii2 3088 . . 3 (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵))
3219, 31bitrdi 287 . 2 (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3312, 32bitrd 279 1 (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068  {crab 3433  cin 3962  wss 3963  𝒫 cpw 4605  cima 5692   Fn wfn 6558  cfv 6563  Fincfn 8984  Basecbs 17245  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  LFinGenclfig 43056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mgp 20153  df-ur 20200  df-ring 20253  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lfig 43057
This theorem is referenced by:  islssfg  43059  lnrfg  43108
  Copyright terms: Public domain W3C validator