| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islmodfg | Structured version Visualization version GIF version | ||
| Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| islmodfg.b | ⊢ 𝐵 = (Base‘𝑊) |
| islmodfg.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| islmodfg | ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lfig 43064 | . . . 4 ⊢ LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} | |
| 2 | 1 | eleq2i 2821 | . . 3 ⊢ (𝑊 ∈ LFinGen ↔ 𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}) |
| 3 | fveq2 6861 | . . . . 5 ⊢ (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊)) | |
| 4 | fveq2 6861 | . . . . . . 7 ⊢ (𝑎 = 𝑊 → (LSpan‘𝑎) = (LSpan‘𝑊)) | |
| 5 | islmodfg.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | 4, 5 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑎 = 𝑊 → (LSpan‘𝑎) = 𝑁) |
| 7 | 3 | pweqd 4583 | . . . . . . 7 ⊢ (𝑎 = 𝑊 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑊)) |
| 8 | 7 | ineq1d 4185 | . . . . . 6 ⊢ (𝑎 = 𝑊 → (𝒫 (Base‘𝑎) ∩ Fin) = (𝒫 (Base‘𝑊) ∩ Fin)) |
| 9 | 6, 8 | imaeq12d 6035 | . . . . 5 ⊢ (𝑎 = 𝑊 → ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) = (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))) |
| 10 | 3, 9 | eleq12d 2823 | . . . 4 ⊢ (𝑎 = 𝑊 → ((Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) |
| 11 | 10 | elrab3 3663 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) |
| 12 | 2, 11 | bitrid 283 | . 2 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) |
| 13 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 14 | eqid 2730 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 15 | 13, 14, 5 | lspf 20887 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑁:𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊)) |
| 16 | 15 | ffnd 6692 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑁 Fn 𝒫 (Base‘𝑊)) |
| 17 | inss1 4203 | . . . 4 ⊢ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊) | |
| 18 | fvelimab 6936 | . . . 4 ⊢ ((𝑁 Fn 𝒫 (Base‘𝑊) ∧ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)) → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊))) | |
| 19 | 16, 17, 18 | sylancl 586 | . . 3 ⊢ (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊))) |
| 20 | elin 3933 | . . . . . . 7 ⊢ (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin)) | |
| 21 | islmodfg.b | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝑊) | |
| 22 | 21 | eqcomi 2739 | . . . . . . . . . 10 ⊢ (Base‘𝑊) = 𝐵 |
| 23 | 22 | pweqi 4582 | . . . . . . . . 9 ⊢ 𝒫 (Base‘𝑊) = 𝒫 𝐵 |
| 24 | 23 | eleq2i 2821 | . . . . . . . 8 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑊) ↔ 𝑏 ∈ 𝒫 𝐵) |
| 25 | 24 | anbi1i 624 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) |
| 26 | 20, 25 | bitri 275 | . . . . . 6 ⊢ (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) |
| 27 | 22 | eqeq2i 2743 | . . . . . 6 ⊢ ((𝑁‘𝑏) = (Base‘𝑊) ↔ (𝑁‘𝑏) = 𝐵) |
| 28 | 26, 27 | anbi12i 628 | . . . . 5 ⊢ ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁‘𝑏) = (Base‘𝑊)) ↔ ((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝐵)) |
| 29 | anass 468 | . . . . 5 ⊢ (((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝐵) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) | |
| 30 | 28, 29 | bitri 275 | . . . 4 ⊢ ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁‘𝑏) = (Base‘𝑊)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
| 31 | 30 | rexbii2 3073 | . . 3 ⊢ (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵)) |
| 32 | 19, 31 | bitrdi 287 | . 2 ⊢ (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
| 33 | 12, 32 | bitrd 279 | 1 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 “ cima 5644 Fn wfn 6509 ‘cfv 6514 Fincfn 8921 Basecbs 17186 LModclmod 20773 LSubSpclss 20844 LSpanclspn 20884 LFinGenclfig 43063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lfig 43064 |
| This theorem is referenced by: islssfg 43066 lnrfg 43115 |
| Copyright terms: Public domain | W3C validator |