|   | Mathbox for Stefan O'Rear | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islmodfg | Structured version Visualization version GIF version | ||
| Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| islmodfg.b | ⊢ 𝐵 = (Base‘𝑊) | 
| islmodfg.n | ⊢ 𝑁 = (LSpan‘𝑊) | 
| Ref | Expression | 
|---|---|
| islmodfg | ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-lfig 43080 | . . . 4 ⊢ LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} | |
| 2 | 1 | eleq2i 2833 | . . 3 ⊢ (𝑊 ∈ LFinGen ↔ 𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}) | 
| 3 | fveq2 6906 | . . . . 5 ⊢ (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊)) | |
| 4 | fveq2 6906 | . . . . . . 7 ⊢ (𝑎 = 𝑊 → (LSpan‘𝑎) = (LSpan‘𝑊)) | |
| 5 | islmodfg.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | 4, 5 | eqtr4di 2795 | . . . . . 6 ⊢ (𝑎 = 𝑊 → (LSpan‘𝑎) = 𝑁) | 
| 7 | 3 | pweqd 4617 | . . . . . . 7 ⊢ (𝑎 = 𝑊 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑊)) | 
| 8 | 7 | ineq1d 4219 | . . . . . 6 ⊢ (𝑎 = 𝑊 → (𝒫 (Base‘𝑎) ∩ Fin) = (𝒫 (Base‘𝑊) ∩ Fin)) | 
| 9 | 6, 8 | imaeq12d 6079 | . . . . 5 ⊢ (𝑎 = 𝑊 → ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) = (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))) | 
| 10 | 3, 9 | eleq12d 2835 | . . . 4 ⊢ (𝑎 = 𝑊 → ((Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) | 
| 11 | 10 | elrab3 3693 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) | 
| 12 | 2, 11 | bitrid 283 | . 2 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) | 
| 13 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 14 | eqid 2737 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 15 | 13, 14, 5 | lspf 20972 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑁:𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊)) | 
| 16 | 15 | ffnd 6737 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑁 Fn 𝒫 (Base‘𝑊)) | 
| 17 | inss1 4237 | . . . 4 ⊢ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊) | |
| 18 | fvelimab 6981 | . . . 4 ⊢ ((𝑁 Fn 𝒫 (Base‘𝑊) ∧ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)) → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊))) | |
| 19 | 16, 17, 18 | sylancl 586 | . . 3 ⊢ (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊))) | 
| 20 | elin 3967 | . . . . . . 7 ⊢ (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin)) | |
| 21 | islmodfg.b | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝑊) | |
| 22 | 21 | eqcomi 2746 | . . . . . . . . . 10 ⊢ (Base‘𝑊) = 𝐵 | 
| 23 | 22 | pweqi 4616 | . . . . . . . . 9 ⊢ 𝒫 (Base‘𝑊) = 𝒫 𝐵 | 
| 24 | 23 | eleq2i 2833 | . . . . . . . 8 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑊) ↔ 𝑏 ∈ 𝒫 𝐵) | 
| 25 | 24 | anbi1i 624 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) | 
| 26 | 20, 25 | bitri 275 | . . . . . 6 ⊢ (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) | 
| 27 | 22 | eqeq2i 2750 | . . . . . 6 ⊢ ((𝑁‘𝑏) = (Base‘𝑊) ↔ (𝑁‘𝑏) = 𝐵) | 
| 28 | 26, 27 | anbi12i 628 | . . . . 5 ⊢ ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁‘𝑏) = (Base‘𝑊)) ↔ ((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝐵)) | 
| 29 | anass 468 | . . . . 5 ⊢ (((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝐵) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) | |
| 30 | 28, 29 | bitri 275 | . . . 4 ⊢ ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁‘𝑏) = (Base‘𝑊)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) | 
| 31 | 30 | rexbii2 3090 | . . 3 ⊢ (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵)) | 
| 32 | 19, 31 | bitrdi 287 | . 2 ⊢ (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) | 
| 33 | 12, 32 | bitrd 279 | 1 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 {crab 3436 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 “ cima 5688 Fn wfn 6556 ‘cfv 6561 Fincfn 8985 Basecbs 17247 LModclmod 20858 LSubSpclss 20929 LSpanclspn 20969 LFinGenclfig 43079 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mgp 20138 df-ur 20179 df-ring 20232 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lfig 43080 | 
| This theorem is referenced by: islssfg 43082 lnrfg 43131 | 
| Copyright terms: Public domain | W3C validator |