| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islmodfg | Structured version Visualization version GIF version | ||
| Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| islmodfg.b | ⊢ 𝐵 = (Base‘𝑊) |
| islmodfg.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| islmodfg | ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lfig 43059 | . . . 4 ⊢ LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} | |
| 2 | 1 | eleq2i 2827 | . . 3 ⊢ (𝑊 ∈ LFinGen ↔ 𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}) |
| 3 | fveq2 6881 | . . . . 5 ⊢ (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊)) | |
| 4 | fveq2 6881 | . . . . . . 7 ⊢ (𝑎 = 𝑊 → (LSpan‘𝑎) = (LSpan‘𝑊)) | |
| 5 | islmodfg.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | 4, 5 | eqtr4di 2789 | . . . . . 6 ⊢ (𝑎 = 𝑊 → (LSpan‘𝑎) = 𝑁) |
| 7 | 3 | pweqd 4597 | . . . . . . 7 ⊢ (𝑎 = 𝑊 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑊)) |
| 8 | 7 | ineq1d 4199 | . . . . . 6 ⊢ (𝑎 = 𝑊 → (𝒫 (Base‘𝑎) ∩ Fin) = (𝒫 (Base‘𝑊) ∩ Fin)) |
| 9 | 6, 8 | imaeq12d 6053 | . . . . 5 ⊢ (𝑎 = 𝑊 → ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) = (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))) |
| 10 | 3, 9 | eleq12d 2829 | . . . 4 ⊢ (𝑎 = 𝑊 → ((Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) |
| 11 | 10 | elrab3 3677 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) |
| 12 | 2, 11 | bitrid 283 | . 2 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) |
| 13 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 14 | eqid 2736 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 15 | 13, 14, 5 | lspf 20936 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑁:𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊)) |
| 16 | 15 | ffnd 6712 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑁 Fn 𝒫 (Base‘𝑊)) |
| 17 | inss1 4217 | . . . 4 ⊢ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊) | |
| 18 | fvelimab 6956 | . . . 4 ⊢ ((𝑁 Fn 𝒫 (Base‘𝑊) ∧ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)) → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊))) | |
| 19 | 16, 17, 18 | sylancl 586 | . . 3 ⊢ (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊))) |
| 20 | elin 3947 | . . . . . . 7 ⊢ (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin)) | |
| 21 | islmodfg.b | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝑊) | |
| 22 | 21 | eqcomi 2745 | . . . . . . . . . 10 ⊢ (Base‘𝑊) = 𝐵 |
| 23 | 22 | pweqi 4596 | . . . . . . . . 9 ⊢ 𝒫 (Base‘𝑊) = 𝒫 𝐵 |
| 24 | 23 | eleq2i 2827 | . . . . . . . 8 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑊) ↔ 𝑏 ∈ 𝒫 𝐵) |
| 25 | 24 | anbi1i 624 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) |
| 26 | 20, 25 | bitri 275 | . . . . . 6 ⊢ (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) |
| 27 | 22 | eqeq2i 2749 | . . . . . 6 ⊢ ((𝑁‘𝑏) = (Base‘𝑊) ↔ (𝑁‘𝑏) = 𝐵) |
| 28 | 26, 27 | anbi12i 628 | . . . . 5 ⊢ ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁‘𝑏) = (Base‘𝑊)) ↔ ((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝐵)) |
| 29 | anass 468 | . . . . 5 ⊢ (((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝐵) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) | |
| 30 | 28, 29 | bitri 275 | . . . 4 ⊢ ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁‘𝑏) = (Base‘𝑊)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
| 31 | 30 | rexbii2 3080 | . . 3 ⊢ (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵)) |
| 32 | 19, 31 | bitrdi 287 | . 2 ⊢ (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
| 33 | 12, 32 | bitrd 279 | 1 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 {crab 3420 ∩ cin 3930 ⊆ wss 3931 𝒫 cpw 4580 “ cima 5662 Fn wfn 6531 ‘cfv 6536 Fincfn 8964 Basecbs 17233 LModclmod 20822 LSubSpclss 20893 LSpanclspn 20933 LFinGenclfig 43058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mgp 20106 df-ur 20147 df-ring 20200 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lfig 43059 |
| This theorem is referenced by: islssfg 43061 lnrfg 43110 |
| Copyright terms: Public domain | W3C validator |