Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islmodfg Structured version   Visualization version   GIF version

Theorem islmodfg 43102
Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
islmodfg.b 𝐵 = (Base‘𝑊)
islmodfg.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islmodfg (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
Distinct variable groups:   𝑊,𝑏   𝐵,𝑏   𝑁,𝑏

Proof of Theorem islmodfg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 df-lfig 43101 . . . 4 LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}
21eleq2i 2823 . . 3 (𝑊 ∈ LFinGen ↔ 𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))})
3 fveq2 6817 . . . . 5 (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊))
4 fveq2 6817 . . . . . . 7 (𝑎 = 𝑊 → (LSpan‘𝑎) = (LSpan‘𝑊))
5 islmodfg.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
64, 5eqtr4di 2784 . . . . . 6 (𝑎 = 𝑊 → (LSpan‘𝑎) = 𝑁)
73pweqd 4562 . . . . . . 7 (𝑎 = 𝑊 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑊))
87ineq1d 4164 . . . . . 6 (𝑎 = 𝑊 → (𝒫 (Base‘𝑎) ∩ Fin) = (𝒫 (Base‘𝑊) ∩ Fin))
96, 8imaeq12d 6005 . . . . 5 (𝑎 = 𝑊 → ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) = (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))
103, 9eleq12d 2825 . . . 4 (𝑎 = 𝑊 → ((Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
1110elrab3 3643 . . 3 (𝑊 ∈ LMod → (𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
122, 11bitrid 283 . 2 (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
13 eqid 2731 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
14 eqid 2731 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1513, 14, 5lspf 20902 . . . . 5 (𝑊 ∈ LMod → 𝑁:𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊))
1615ffnd 6647 . . . 4 (𝑊 ∈ LMod → 𝑁 Fn 𝒫 (Base‘𝑊))
17 inss1 4182 . . . 4 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)
18 fvelimab 6889 . . . 4 ((𝑁 Fn 𝒫 (Base‘𝑊) ∧ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)) → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊)))
1916, 17, 18sylancl 586 . . 3 (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊)))
20 elin 3913 . . . . . . 7 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin))
21 islmodfg.b . . . . . . . . . . 11 𝐵 = (Base‘𝑊)
2221eqcomi 2740 . . . . . . . . . 10 (Base‘𝑊) = 𝐵
2322pweqi 4561 . . . . . . . . 9 𝒫 (Base‘𝑊) = 𝒫 𝐵
2423eleq2i 2823 . . . . . . . 8 (𝑏 ∈ 𝒫 (Base‘𝑊) ↔ 𝑏 ∈ 𝒫 𝐵)
2524anbi1i 624 . . . . . . 7 ((𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2620, 25bitri 275 . . . . . 6 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2722eqeq2i 2744 . . . . . 6 ((𝑁𝑏) = (Base‘𝑊) ↔ (𝑁𝑏) = 𝐵)
2826, 27anbi12i 628 . . . . 5 ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁𝑏) = (Base‘𝑊)) ↔ ((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝐵))
29 anass 468 . . . . 5 (((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝐵) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3028, 29bitri 275 . . . 4 ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁𝑏) = (Base‘𝑊)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3130rexbii2 3075 . . 3 (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵))
3219, 31bitrdi 287 . 2 (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3312, 32bitrd 279 1 (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  cin 3896  wss 3897  𝒫 cpw 4545  cima 5614   Fn wfn 6471  cfv 6476  Fincfn 8864  Basecbs 17115  LModclmod 20788  LSubSpclss 20859  LSpanclspn 20899  LFinGenclfig 43100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mgp 20054  df-ur 20095  df-ring 20148  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lfig 43101
This theorem is referenced by:  islssfg  43103  lnrfg  43152
  Copyright terms: Public domain W3C validator