Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islmodfg | Structured version Visualization version GIF version |
Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
islmodfg.b | ⊢ 𝐵 = (Base‘𝑊) |
islmodfg.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
islmodfg | ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lfig 40809 | . . . 4 ⊢ LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} | |
2 | 1 | eleq2i 2830 | . . 3 ⊢ (𝑊 ∈ LFinGen ↔ 𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}) |
3 | fveq2 6756 | . . . . 5 ⊢ (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊)) | |
4 | fveq2 6756 | . . . . . . 7 ⊢ (𝑎 = 𝑊 → (LSpan‘𝑎) = (LSpan‘𝑊)) | |
5 | islmodfg.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
6 | 4, 5 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑎 = 𝑊 → (LSpan‘𝑎) = 𝑁) |
7 | 3 | pweqd 4549 | . . . . . . 7 ⊢ (𝑎 = 𝑊 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑊)) |
8 | 7 | ineq1d 4142 | . . . . . 6 ⊢ (𝑎 = 𝑊 → (𝒫 (Base‘𝑎) ∩ Fin) = (𝒫 (Base‘𝑊) ∩ Fin)) |
9 | 6, 8 | imaeq12d 5959 | . . . . 5 ⊢ (𝑎 = 𝑊 → ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) = (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))) |
10 | 3, 9 | eleq12d 2833 | . . . 4 ⊢ (𝑎 = 𝑊 → ((Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) |
11 | 10 | elrab3 3618 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) |
12 | 2, 11 | syl5bb 282 | . 2 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) |
13 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
14 | eqid 2738 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
15 | 13, 14, 5 | lspf 20151 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑁:𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊)) |
16 | 15 | ffnd 6585 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑁 Fn 𝒫 (Base‘𝑊)) |
17 | inss1 4159 | . . . 4 ⊢ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊) | |
18 | fvelimab 6823 | . . . 4 ⊢ ((𝑁 Fn 𝒫 (Base‘𝑊) ∧ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)) → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊))) | |
19 | 16, 17, 18 | sylancl 585 | . . 3 ⊢ (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊))) |
20 | elin 3899 | . . . . . . 7 ⊢ (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin)) | |
21 | islmodfg.b | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝑊) | |
22 | 21 | eqcomi 2747 | . . . . . . . . . 10 ⊢ (Base‘𝑊) = 𝐵 |
23 | 22 | pweqi 4548 | . . . . . . . . 9 ⊢ 𝒫 (Base‘𝑊) = 𝒫 𝐵 |
24 | 23 | eleq2i 2830 | . . . . . . . 8 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑊) ↔ 𝑏 ∈ 𝒫 𝐵) |
25 | 24 | anbi1i 623 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) |
26 | 20, 25 | bitri 274 | . . . . . 6 ⊢ (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) |
27 | 22 | eqeq2i 2751 | . . . . . 6 ⊢ ((𝑁‘𝑏) = (Base‘𝑊) ↔ (𝑁‘𝑏) = 𝐵) |
28 | 26, 27 | anbi12i 626 | . . . . 5 ⊢ ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁‘𝑏) = (Base‘𝑊)) ↔ ((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝐵)) |
29 | anass 468 | . . . . 5 ⊢ (((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝐵) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) | |
30 | 28, 29 | bitri 274 | . . . 4 ⊢ ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁‘𝑏) = (Base‘𝑊)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
31 | 30 | rexbii2 3175 | . . 3 ⊢ (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵)) |
32 | 19, 31 | bitrdi 286 | . 2 ⊢ (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
33 | 12, 32 | bitrd 278 | 1 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {crab 3067 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 “ cima 5583 Fn wfn 6413 ‘cfv 6418 Fincfn 8691 Basecbs 16840 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 LFinGenclfig 40808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lfig 40809 |
This theorem is referenced by: islssfg 40811 lnrfg 40860 |
Copyright terms: Public domain | W3C validator |