Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islmodfg Structured version   Visualization version   GIF version

Theorem islmodfg 43081
Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
islmodfg.b 𝐵 = (Base‘𝑊)
islmodfg.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islmodfg (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
Distinct variable groups:   𝑊,𝑏   𝐵,𝑏   𝑁,𝑏

Proof of Theorem islmodfg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 df-lfig 43080 . . . 4 LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}
21eleq2i 2833 . . 3 (𝑊 ∈ LFinGen ↔ 𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))})
3 fveq2 6906 . . . . 5 (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊))
4 fveq2 6906 . . . . . . 7 (𝑎 = 𝑊 → (LSpan‘𝑎) = (LSpan‘𝑊))
5 islmodfg.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
64, 5eqtr4di 2795 . . . . . 6 (𝑎 = 𝑊 → (LSpan‘𝑎) = 𝑁)
73pweqd 4617 . . . . . . 7 (𝑎 = 𝑊 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑊))
87ineq1d 4219 . . . . . 6 (𝑎 = 𝑊 → (𝒫 (Base‘𝑎) ∩ Fin) = (𝒫 (Base‘𝑊) ∩ Fin))
96, 8imaeq12d 6079 . . . . 5 (𝑎 = 𝑊 → ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) = (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))
103, 9eleq12d 2835 . . . 4 (𝑎 = 𝑊 → ((Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
1110elrab3 3693 . . 3 (𝑊 ∈ LMod → (𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
122, 11bitrid 283 . 2 (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
13 eqid 2737 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
14 eqid 2737 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1513, 14, 5lspf 20972 . . . . 5 (𝑊 ∈ LMod → 𝑁:𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊))
1615ffnd 6737 . . . 4 (𝑊 ∈ LMod → 𝑁 Fn 𝒫 (Base‘𝑊))
17 inss1 4237 . . . 4 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)
18 fvelimab 6981 . . . 4 ((𝑁 Fn 𝒫 (Base‘𝑊) ∧ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)) → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊)))
1916, 17, 18sylancl 586 . . 3 (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊)))
20 elin 3967 . . . . . . 7 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin))
21 islmodfg.b . . . . . . . . . . 11 𝐵 = (Base‘𝑊)
2221eqcomi 2746 . . . . . . . . . 10 (Base‘𝑊) = 𝐵
2322pweqi 4616 . . . . . . . . 9 𝒫 (Base‘𝑊) = 𝒫 𝐵
2423eleq2i 2833 . . . . . . . 8 (𝑏 ∈ 𝒫 (Base‘𝑊) ↔ 𝑏 ∈ 𝒫 𝐵)
2524anbi1i 624 . . . . . . 7 ((𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2620, 25bitri 275 . . . . . 6 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2722eqeq2i 2750 . . . . . 6 ((𝑁𝑏) = (Base‘𝑊) ↔ (𝑁𝑏) = 𝐵)
2826, 27anbi12i 628 . . . . 5 ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁𝑏) = (Base‘𝑊)) ↔ ((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝐵))
29 anass 468 . . . . 5 (((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝐵) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3028, 29bitri 275 . . . 4 ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁𝑏) = (Base‘𝑊)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3130rexbii2 3090 . . 3 (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵))
3219, 31bitrdi 287 . 2 (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3312, 32bitrd 279 1 (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  cin 3950  wss 3951  𝒫 cpw 4600  cima 5688   Fn wfn 6556  cfv 6561  Fincfn 8985  Basecbs 17247  LModclmod 20858  LSubSpclss 20929  LSpanclspn 20969  LFinGenclfig 43079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lfig 43080
This theorem is referenced by:  islssfg  43082  lnrfg  43131
  Copyright terms: Public domain W3C validator