![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islmodfg | Structured version Visualization version GIF version |
Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
islmodfg.b | ⊢ 𝐵 = (Base‘𝑊) |
islmodfg.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
islmodfg | ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lfig 43057 | . . . 4 ⊢ LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} | |
2 | 1 | eleq2i 2831 | . . 3 ⊢ (𝑊 ∈ LFinGen ↔ 𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}) |
3 | fveq2 6907 | . . . . 5 ⊢ (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊)) | |
4 | fveq2 6907 | . . . . . . 7 ⊢ (𝑎 = 𝑊 → (LSpan‘𝑎) = (LSpan‘𝑊)) | |
5 | islmodfg.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
6 | 4, 5 | eqtr4di 2793 | . . . . . 6 ⊢ (𝑎 = 𝑊 → (LSpan‘𝑎) = 𝑁) |
7 | 3 | pweqd 4622 | . . . . . . 7 ⊢ (𝑎 = 𝑊 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑊)) |
8 | 7 | ineq1d 4227 | . . . . . 6 ⊢ (𝑎 = 𝑊 → (𝒫 (Base‘𝑎) ∩ Fin) = (𝒫 (Base‘𝑊) ∩ Fin)) |
9 | 6, 8 | imaeq12d 6081 | . . . . 5 ⊢ (𝑎 = 𝑊 → ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) = (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))) |
10 | 3, 9 | eleq12d 2833 | . . . 4 ⊢ (𝑎 = 𝑊 → ((Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) |
11 | 10 | elrab3 3696 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) |
12 | 2, 11 | bitrid 283 | . 2 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))) |
13 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
14 | eqid 2735 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
15 | 13, 14, 5 | lspf 20990 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑁:𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊)) |
16 | 15 | ffnd 6738 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑁 Fn 𝒫 (Base‘𝑊)) |
17 | inss1 4245 | . . . 4 ⊢ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊) | |
18 | fvelimab 6981 | . . . 4 ⊢ ((𝑁 Fn 𝒫 (Base‘𝑊) ∧ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)) → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊))) | |
19 | 16, 17, 18 | sylancl 586 | . . 3 ⊢ (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊))) |
20 | elin 3979 | . . . . . . 7 ⊢ (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin)) | |
21 | islmodfg.b | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝑊) | |
22 | 21 | eqcomi 2744 | . . . . . . . . . 10 ⊢ (Base‘𝑊) = 𝐵 |
23 | 22 | pweqi 4621 | . . . . . . . . 9 ⊢ 𝒫 (Base‘𝑊) = 𝒫 𝐵 |
24 | 23 | eleq2i 2831 | . . . . . . . 8 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑊) ↔ 𝑏 ∈ 𝒫 𝐵) |
25 | 24 | anbi1i 624 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) |
26 | 20, 25 | bitri 275 | . . . . . 6 ⊢ (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin)) |
27 | 22 | eqeq2i 2748 | . . . . . 6 ⊢ ((𝑁‘𝑏) = (Base‘𝑊) ↔ (𝑁‘𝑏) = 𝐵) |
28 | 26, 27 | anbi12i 628 | . . . . 5 ⊢ ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁‘𝑏) = (Base‘𝑊)) ↔ ((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝐵)) |
29 | anass 468 | . . . . 5 ⊢ (((𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin) ∧ (𝑁‘𝑏) = 𝐵) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) | |
30 | 28, 29 | bitri 275 | . . . 4 ⊢ ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁‘𝑏) = (Base‘𝑊)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
31 | 30 | rexbii2 3088 | . . 3 ⊢ (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁‘𝑏) = (Base‘𝑊) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵)) |
32 | 19, 31 | bitrdi 287 | . 2 ⊢ (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
33 | 12, 32 | bitrd 279 | 1 ⊢ (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁‘𝑏) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {crab 3433 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 “ cima 5692 Fn wfn 6558 ‘cfv 6563 Fincfn 8984 Basecbs 17245 LModclmod 20875 LSubSpclss 20947 LSpanclspn 20987 LFinGenclfig 43056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mgp 20153 df-ur 20200 df-ring 20253 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lfig 43057 |
This theorem is referenced by: islssfg 43059 lnrfg 43108 |
Copyright terms: Public domain | W3C validator |