| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-limits | Structured version Visualization version GIF version | ||
| Description: Define the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| df-limits | ⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climits 35869 | . 2 class Limits | |
| 2 | con0 6306 | . . . 4 class On | |
| 3 | cbigcup 35867 | . . . . 5 class Bigcup | |
| 4 | 3 | cfix 35868 | . . . 4 class Fix Bigcup |
| 5 | 2, 4 | cin 3901 | . . 3 class (On ∩ Fix Bigcup ) |
| 6 | c0 4283 | . . . 4 class ∅ | |
| 7 | 6 | csn 4576 | . . 3 class {∅} |
| 8 | 5, 7 | cdif 3899 | . 2 class ((On ∩ Fix Bigcup ) ∖ {∅}) |
| 9 | 1, 8 | wceq 1541 | 1 wff Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ellimits 35943 limitssson 35944 |
| Copyright terms: Public domain | W3C validator |