Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limitssson Structured version   Visualization version   GIF version

Theorem limitssson 35906
Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
limitssson Limits ⊆ On

Proof of Theorem limitssson
StepHypRef Expression
1 df-limits 35855 . 2 Limits = ((On ∩ Fix Bigcup ) ∖ {∅})
2 difss 4102 . . 3 ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ (On ∩ Fix Bigcup )
3 inss1 4203 . . 3 (On ∩ Fix Bigcup ) ⊆ On
42, 3sstri 3959 . 2 ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ On
51, 4eqsstri 3996 1 Limits ⊆ On
Colors of variables: wff setvar class
Syntax hints:  cdif 3914  cin 3916  wss 3917  c0 4299  {csn 4592  Oncon0 6335   Bigcup cbigcup 35829   Fix cfix 35830   Limits climits 35831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-in 3924  df-ss 3934  df-limits 35855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator