![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limitssson | Structured version Visualization version GIF version |
Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
limitssson | ⊢ Limits ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limits 35824 | . 2 ⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) | |
2 | difss 4159 | . . 3 ⊢ ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ (On ∩ Fix Bigcup ) | |
3 | inss1 4258 | . . 3 ⊢ (On ∩ Fix Bigcup ) ⊆ On | |
4 | 2, 3 | sstri 4018 | . 2 ⊢ ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ On |
5 | 1, 4 | eqsstri 4043 | 1 ⊢ Limits ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {csn 4648 Oncon0 6395 Bigcup cbigcup 35798 Fix cfix 35799 Limits climits 35800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-limits 35824 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |