Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limitssson Structured version   Visualization version   GIF version

Theorem limitssson 35344
Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
limitssson Limits ⊆ On

Proof of Theorem limitssson
StepHypRef Expression
1 df-limits 35293 . 2 Limits = ((On ∩ Fix Bigcup ) ∖ {∅})
2 difss 4123 . . 3 ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ (On ∩ Fix Bigcup )
3 inss1 4220 . . 3 (On ∩ Fix Bigcup ) ⊆ On
42, 3sstri 3983 . 2 ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ On
51, 4eqsstri 4008 1 Limits ⊆ On
Colors of variables: wff setvar class
Syntax hints:  cdif 3937  cin 3939  wss 3940  c0 4314  {csn 4620  Oncon0 6354   Bigcup cbigcup 35267   Fix cfix 35268   Limits climits 35269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-dif 3943  df-in 3947  df-ss 3957  df-limits 35293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator