Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limitssson | Structured version Visualization version GIF version |
Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
limitssson | ⊢ Limits ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limits 34089 | . 2 ⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) | |
2 | difss 4062 | . . 3 ⊢ ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ (On ∩ Fix Bigcup ) | |
3 | inss1 4159 | . . 3 ⊢ (On ∩ Fix Bigcup ) ⊆ On | |
4 | 2, 3 | sstri 3926 | . 2 ⊢ ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ On |
5 | 1, 4 | eqsstri 3951 | 1 ⊢ Limits ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 Oncon0 6251 Bigcup cbigcup 34063 Fix cfix 34064 Limits climits 34065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-limits 34089 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |