Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limitssson Structured version   Visualization version   GIF version

Theorem limitssson 35892
Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
limitssson Limits ⊆ On

Proof of Theorem limitssson
StepHypRef Expression
1 df-limits 35841 . 2 Limits = ((On ∩ Fix Bigcup ) ∖ {∅})
2 difss 4145 . . 3 ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ (On ∩ Fix Bigcup )
3 inss1 4244 . . 3 (On ∩ Fix Bigcup ) ⊆ On
42, 3sstri 4004 . 2 ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ On
51, 4eqsstri 4029 1 Limits ⊆ On
Colors of variables: wff setvar class
Syntax hints:  cdif 3959  cin 3961  wss 3962  c0 4338  {csn 4630  Oncon0 6385   Bigcup cbigcup 35815   Fix cfix 35816   Limits climits 35817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3479  df-dif 3965  df-in 3969  df-ss 3979  df-limits 35841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator