![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limitssson | Structured version Visualization version GIF version |
Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
limitssson | ⊢ Limits ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limits 35841 | . 2 ⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) | |
2 | difss 4145 | . . 3 ⊢ ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ (On ∩ Fix Bigcup ) | |
3 | inss1 4244 | . . 3 ⊢ (On ∩ Fix Bigcup ) ⊆ On | |
4 | 2, 3 | sstri 4004 | . 2 ⊢ ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ On |
5 | 1, 4 | eqsstri 4029 | 1 ⊢ Limits ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3959 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 {csn 4630 Oncon0 6385 Bigcup cbigcup 35815 Fix cfix 35816 Limits climits 35817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-dif 3965 df-in 3969 df-ss 3979 df-limits 35841 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |