Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limitssson Structured version   Visualization version   GIF version

Theorem limitssson 35953
Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
limitssson Limits ⊆ On

Proof of Theorem limitssson
StepHypRef Expression
1 df-limits 35902 . 2 Limits = ((On ∩ Fix Bigcup ) ∖ {∅})
2 difss 4083 . . 3 ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ (On ∩ Fix Bigcup )
3 inss1 4184 . . 3 (On ∩ Fix Bigcup ) ⊆ On
42, 3sstri 3939 . 2 ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ On
51, 4eqsstri 3976 1 Limits ⊆ On
Colors of variables: wff setvar class
Syntax hints:  cdif 3894  cin 3896  wss 3897  c0 4280  {csn 4573  Oncon0 6306   Bigcup cbigcup 35876   Fix cfix 35877   Limits climits 35878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914  df-limits 35902
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator