![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limitssson | Structured version Visualization version GIF version |
Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
limitssson | ⊢ Limits ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limits 32480 | . 2 ⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) | |
2 | difss 3935 | . . 3 ⊢ ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ (On ∩ Fix Bigcup ) | |
3 | inss1 4028 | . . 3 ⊢ (On ∩ Fix Bigcup ) ⊆ On | |
4 | 2, 3 | sstri 3807 | . 2 ⊢ ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ On |
5 | 1, 4 | eqsstri 3831 | 1 ⊢ Limits ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3766 ∩ cin 3768 ⊆ wss 3769 ∅c0 4115 {csn 4368 Oncon0 5941 Bigcup cbigcup 32454 Fix cfix 32455 Limits climits 32456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-dif 3772 df-in 3776 df-ss 3783 df-limits 32480 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |