| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellimits | Structured version Visualization version GIF version | ||
| Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| ellimits.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ellimits | ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-limits 35900 | . . 3 ⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ Limits ↔ 𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅})) |
| 3 | eldif 3912 | . 2 ⊢ (𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}) ↔ (𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅})) | |
| 4 | 3anan32 1096 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐴 ≠ ∅)) | |
| 5 | df-lim 6311 | . . 3 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 6 | elin 3918 | . . . . 5 ⊢ (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup )) | |
| 7 | ellimits.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 8 | 7 | elon 6315 | . . . . . 6 ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
| 9 | 7 | elfix 35943 | . . . . . . 7 ⊢ (𝐴 ∈ Fix Bigcup ↔ 𝐴 Bigcup 𝐴) |
| 10 | 7 | brbigcup 35938 | . . . . . . 7 ⊢ (𝐴 Bigcup 𝐴 ↔ ∪ 𝐴 = 𝐴) |
| 11 | eqcom 2738 | . . . . . . 7 ⊢ (∪ 𝐴 = 𝐴 ↔ 𝐴 = ∪ 𝐴) | |
| 12 | 9, 10, 11 | 3bitri 297 | . . . . . 6 ⊢ (𝐴 ∈ Fix Bigcup ↔ 𝐴 = ∪ 𝐴) |
| 13 | 8, 12 | anbi12i 628 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup ) ↔ (Ord 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
| 14 | 6, 13 | bitri 275 | . . . 4 ⊢ (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (Ord 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
| 15 | 7 | elsn 4591 | . . . . 5 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
| 16 | 15 | necon3bbii 2975 | . . . 4 ⊢ (¬ 𝐴 ∈ {∅} ↔ 𝐴 ≠ ∅) |
| 17 | 14, 16 | anbi12i 628 | . . 3 ⊢ ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐴 ≠ ∅)) |
| 18 | 4, 5, 17 | 3bitr4ri 304 | . 2 ⊢ ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ Lim 𝐴) |
| 19 | 2, 3, 18 | 3bitri 297 | 1 ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3899 ∩ cin 3901 ∅c0 4283 {csn 4576 ∪ cuni 4859 class class class wbr 5091 Ord word 6305 Oncon0 6306 Lim wlim 6307 Bigcup cbigcup 35874 Fix cfix 35875 Limits climits 35876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-symdif 4203 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ord 6309 df-on 6310 df-lim 6311 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35894 df-bigcup 35898 df-fix 35899 df-limits 35900 |
| This theorem is referenced by: dfom5b 35952 dfrdg4 35991 |
| Copyright terms: Public domain | W3C validator |