| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellimits | Structured version Visualization version GIF version | ||
| Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| ellimits.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ellimits | ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-limits 35836 | . . 3 ⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ Limits ↔ 𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅})) |
| 3 | eldif 3915 | . 2 ⊢ (𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}) ↔ (𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅})) | |
| 4 | 3anan32 1096 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐴 ≠ ∅)) | |
| 5 | df-lim 6316 | . . 3 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 6 | elin 3921 | . . . . 5 ⊢ (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup )) | |
| 7 | ellimits.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 8 | 7 | elon 6320 | . . . . . 6 ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
| 9 | 7 | elfix 35879 | . . . . . . 7 ⊢ (𝐴 ∈ Fix Bigcup ↔ 𝐴 Bigcup 𝐴) |
| 10 | 7 | brbigcup 35874 | . . . . . . 7 ⊢ (𝐴 Bigcup 𝐴 ↔ ∪ 𝐴 = 𝐴) |
| 11 | eqcom 2736 | . . . . . . 7 ⊢ (∪ 𝐴 = 𝐴 ↔ 𝐴 = ∪ 𝐴) | |
| 12 | 9, 10, 11 | 3bitri 297 | . . . . . 6 ⊢ (𝐴 ∈ Fix Bigcup ↔ 𝐴 = ∪ 𝐴) |
| 13 | 8, 12 | anbi12i 628 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup ) ↔ (Ord 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
| 14 | 6, 13 | bitri 275 | . . . 4 ⊢ (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (Ord 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
| 15 | 7 | elsn 4594 | . . . . 5 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
| 16 | 15 | necon3bbii 2972 | . . . 4 ⊢ (¬ 𝐴 ∈ {∅} ↔ 𝐴 ≠ ∅) |
| 17 | 14, 16 | anbi12i 628 | . . 3 ⊢ ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐴 ≠ ∅)) |
| 18 | 4, 5, 17 | 3bitr4ri 304 | . 2 ⊢ ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ Lim 𝐴) |
| 19 | 2, 3, 18 | 3bitri 297 | 1 ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∖ cdif 3902 ∩ cin 3904 ∅c0 4286 {csn 4579 ∪ cuni 4861 class class class wbr 5095 Ord word 6310 Oncon0 6311 Lim wlim 6312 Bigcup cbigcup 35810 Fix cfix 35811 Limits climits 35812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-symdif 4206 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ord 6314 df-on 6315 df-lim 6316 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-1st 7931 df-2nd 7932 df-txp 35830 df-bigcup 35834 df-fix 35835 df-limits 35836 |
| This theorem is referenced by: dfom5b 35888 dfrdg4 35927 |
| Copyright terms: Public domain | W3C validator |