Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellimits Structured version   Visualization version   GIF version

Theorem ellimits 35905
Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
ellimits.1 𝐴 ∈ V
Assertion
Ref Expression
ellimits (𝐴 Limits ↔ Lim 𝐴)

Proof of Theorem ellimits
StepHypRef Expression
1 df-limits 35855 . . 3 Limits = ((On ∩ Fix Bigcup ) ∖ {∅})
21eleq2i 2821 . 2 (𝐴 Limits 𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}))
3 eldif 3927 . 2 (𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}) ↔ (𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}))
4 3anan32 1096 . . 3 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ ((Ord 𝐴𝐴 = 𝐴) ∧ 𝐴 ≠ ∅))
5 df-lim 6340 . . 3 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
6 elin 3933 . . . . 5 (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (𝐴 ∈ On ∧ 𝐴 Fix Bigcup ))
7 ellimits.1 . . . . . . 7 𝐴 ∈ V
87elon 6344 . . . . . 6 (𝐴 ∈ On ↔ Ord 𝐴)
97elfix 35898 . . . . . . 7 (𝐴 Fix Bigcup 𝐴 Bigcup 𝐴)
107brbigcup 35893 . . . . . . 7 (𝐴 Bigcup 𝐴 𝐴 = 𝐴)
11 eqcom 2737 . . . . . . 7 ( 𝐴 = 𝐴𝐴 = 𝐴)
129, 10, 113bitri 297 . . . . . 6 (𝐴 Fix Bigcup 𝐴 = 𝐴)
138, 12anbi12i 628 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 Fix Bigcup ) ↔ (Ord 𝐴𝐴 = 𝐴))
146, 13bitri 275 . . . 4 (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (Ord 𝐴𝐴 = 𝐴))
157elsn 4607 . . . . 5 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
1615necon3bbii 2973 . . . 4 𝐴 ∈ {∅} ↔ 𝐴 ≠ ∅)
1714, 16anbi12i 628 . . 3 ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ ((Ord 𝐴𝐴 = 𝐴) ∧ 𝐴 ≠ ∅))
184, 5, 173bitr4ri 304 . 2 ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ Lim 𝐴)
192, 3, 183bitri 297 1 (𝐴 Limits ↔ Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cdif 3914  cin 3916  c0 4299  {csn 4592   cuni 4874   class class class wbr 5110  Ord word 6334  Oncon0 6335  Lim wlim 6336   Bigcup cbigcup 35829   Fix cfix 35830   Limits climits 35831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ord 6338  df-on 6339  df-lim 6340  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1st 7971  df-2nd 7972  df-txp 35849  df-bigcup 35853  df-fix 35854  df-limits 35855
This theorem is referenced by:  dfom5b  35907  dfrdg4  35946
  Copyright terms: Public domain W3C validator