![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellimits | Structured version Visualization version GIF version |
Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
ellimits.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ellimits | ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limits 34901 | . . 3 ⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) | |
2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ Limits ↔ 𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅})) |
3 | eldif 3958 | . 2 ⊢ (𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}) ↔ (𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅})) | |
4 | 3anan32 1097 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐴 ≠ ∅)) | |
5 | df-lim 6369 | . . 3 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
6 | elin 3964 | . . . . 5 ⊢ (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup )) | |
7 | ellimits.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
8 | 7 | elon 6373 | . . . . . 6 ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
9 | 7 | elfix 34944 | . . . . . . 7 ⊢ (𝐴 ∈ Fix Bigcup ↔ 𝐴 Bigcup 𝐴) |
10 | 7 | brbigcup 34939 | . . . . . . 7 ⊢ (𝐴 Bigcup 𝐴 ↔ ∪ 𝐴 = 𝐴) |
11 | eqcom 2739 | . . . . . . 7 ⊢ (∪ 𝐴 = 𝐴 ↔ 𝐴 = ∪ 𝐴) | |
12 | 9, 10, 11 | 3bitri 296 | . . . . . 6 ⊢ (𝐴 ∈ Fix Bigcup ↔ 𝐴 = ∪ 𝐴) |
13 | 8, 12 | anbi12i 627 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup ) ↔ (Ord 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
14 | 6, 13 | bitri 274 | . . . 4 ⊢ (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (Ord 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
15 | 7 | elsn 4643 | . . . . 5 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
16 | 15 | necon3bbii 2988 | . . . 4 ⊢ (¬ 𝐴 ∈ {∅} ↔ 𝐴 ≠ ∅) |
17 | 14, 16 | anbi12i 627 | . . 3 ⊢ ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐴 ≠ ∅)) |
18 | 4, 5, 17 | 3bitr4ri 303 | . 2 ⊢ ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ Lim 𝐴) |
19 | 2, 3, 18 | 3bitri 296 | 1 ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∖ cdif 3945 ∩ cin 3947 ∅c0 4322 {csn 4628 ∪ cuni 4908 class class class wbr 5148 Ord word 6363 Oncon0 6364 Lim wlim 6365 Bigcup cbigcup 34875 Fix cfix 34876 Limits climits 34877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-symdif 4242 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ord 6367 df-on 6368 df-lim 6369 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7977 df-2nd 7978 df-txp 34895 df-bigcup 34899 df-fix 34900 df-limits 34901 |
This theorem is referenced by: dfom5b 34953 dfrdg4 34992 |
Copyright terms: Public domain | W3C validator |