Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellimits Structured version   Visualization version   GIF version

Theorem ellimits 32393
Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
ellimits.1 𝐴 ∈ V
Assertion
Ref Expression
ellimits (𝐴 Limits ↔ Lim 𝐴)

Proof of Theorem ellimits
StepHypRef Expression
1 df-limits 32343 . . 3 Limits = ((On ∩ Fix Bigcup ) ∖ {∅})
21eleq2i 2836 . 2 (𝐴 Limits 𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}))
3 eldif 3742 . 2 (𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}) ↔ (𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}))
4 3anan32 1118 . . 3 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ ((Ord 𝐴𝐴 = 𝐴) ∧ 𝐴 ≠ ∅))
5 df-lim 5913 . . 3 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
6 elin 3958 . . . . 5 (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (𝐴 ∈ On ∧ 𝐴 Fix Bigcup ))
7 ellimits.1 . . . . . . 7 𝐴 ∈ V
87elon 5917 . . . . . 6 (𝐴 ∈ On ↔ Ord 𝐴)
97elfix 32386 . . . . . . 7 (𝐴 Fix Bigcup 𝐴 Bigcup 𝐴)
107brbigcup 32381 . . . . . . 7 (𝐴 Bigcup 𝐴 𝐴 = 𝐴)
11 eqcom 2772 . . . . . . 7 ( 𝐴 = 𝐴𝐴 = 𝐴)
129, 10, 113bitri 288 . . . . . 6 (𝐴 Fix Bigcup 𝐴 = 𝐴)
138, 12anbi12i 620 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 Fix Bigcup ) ↔ (Ord 𝐴𝐴 = 𝐴))
146, 13bitri 266 . . . 4 (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (Ord 𝐴𝐴 = 𝐴))
157elsn 4349 . . . . 5 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
1615necon3bbii 2984 . . . 4 𝐴 ∈ {∅} ↔ 𝐴 ≠ ∅)
1714, 16anbi12i 620 . . 3 ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ ((Ord 𝐴𝐴 = 𝐴) ∧ 𝐴 ≠ ∅))
184, 5, 173bitr4ri 295 . 2 ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ Lim 𝐴)
192, 3, 183bitri 288 1 (𝐴 Limits ↔ Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  Vcvv 3350  cdif 3729  cin 3731  c0 4079  {csn 4334   cuni 4594   class class class wbr 4809  Ord word 5907  Oncon0 5908  Lim wlim 5909   Bigcup cbigcup 32317   Fix cfix 32318   Limits climits 32319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-symdif 4005  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ord 5911  df-on 5912  df-lim 5913  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-fo 6074  df-fv 6076  df-1st 7366  df-2nd 7367  df-txp 32337  df-bigcup 32341  df-fix 32342  df-limits 32343
This theorem is referenced by:  dfom5b  32395  dfrdg4  32434
  Copyright terms: Public domain W3C validator