Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellimits | Structured version Visualization version GIF version |
Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
ellimits.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ellimits | ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limits 34089 | . . 3 ⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ Limits ↔ 𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅})) |
3 | eldif 3893 | . 2 ⊢ (𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}) ↔ (𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅})) | |
4 | 3anan32 1095 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐴 ≠ ∅)) | |
5 | df-lim 6256 | . . 3 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
6 | elin 3899 | . . . . 5 ⊢ (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup )) | |
7 | ellimits.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
8 | 7 | elon 6260 | . . . . . 6 ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
9 | 7 | elfix 34132 | . . . . . . 7 ⊢ (𝐴 ∈ Fix Bigcup ↔ 𝐴 Bigcup 𝐴) |
10 | 7 | brbigcup 34127 | . . . . . . 7 ⊢ (𝐴 Bigcup 𝐴 ↔ ∪ 𝐴 = 𝐴) |
11 | eqcom 2745 | . . . . . . 7 ⊢ (∪ 𝐴 = 𝐴 ↔ 𝐴 = ∪ 𝐴) | |
12 | 9, 10, 11 | 3bitri 296 | . . . . . 6 ⊢ (𝐴 ∈ Fix Bigcup ↔ 𝐴 = ∪ 𝐴) |
13 | 8, 12 | anbi12i 626 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup ) ↔ (Ord 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
14 | 6, 13 | bitri 274 | . . . 4 ⊢ (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (Ord 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
15 | 7 | elsn 4573 | . . . . 5 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
16 | 15 | necon3bbii 2990 | . . . 4 ⊢ (¬ 𝐴 ∈ {∅} ↔ 𝐴 ≠ ∅) |
17 | 14, 16 | anbi12i 626 | . . 3 ⊢ ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐴 ≠ ∅)) |
18 | 4, 5, 17 | 3bitr4ri 303 | . 2 ⊢ ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ Lim 𝐴) |
19 | 2, 3, 18 | 3bitri 296 | 1 ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∖ cdif 3880 ∩ cin 3882 ∅c0 4253 {csn 4558 ∪ cuni 4836 class class class wbr 5070 Ord word 6250 Oncon0 6251 Lim wlim 6252 Bigcup cbigcup 34063 Fix cfix 34064 Limits climits 34065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-symdif 4173 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ord 6254 df-on 6255 df-lim 6256 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-txp 34083 df-bigcup 34087 df-fix 34088 df-limits 34089 |
This theorem is referenced by: dfom5b 34141 dfrdg4 34180 |
Copyright terms: Public domain | W3C validator |