Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellimits Structured version   Visualization version   GIF version

Theorem ellimits 34212
Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
ellimits.1 𝐴 ∈ V
Assertion
Ref Expression
ellimits (𝐴 Limits ↔ Lim 𝐴)

Proof of Theorem ellimits
StepHypRef Expression
1 df-limits 34162 . . 3 Limits = ((On ∩ Fix Bigcup ) ∖ {∅})
21eleq2i 2830 . 2 (𝐴 Limits 𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}))
3 eldif 3897 . 2 (𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}) ↔ (𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}))
4 3anan32 1096 . . 3 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ ((Ord 𝐴𝐴 = 𝐴) ∧ 𝐴 ≠ ∅))
5 df-lim 6271 . . 3 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
6 elin 3903 . . . . 5 (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (𝐴 ∈ On ∧ 𝐴 Fix Bigcup ))
7 ellimits.1 . . . . . . 7 𝐴 ∈ V
87elon 6275 . . . . . 6 (𝐴 ∈ On ↔ Ord 𝐴)
97elfix 34205 . . . . . . 7 (𝐴 Fix Bigcup 𝐴 Bigcup 𝐴)
107brbigcup 34200 . . . . . . 7 (𝐴 Bigcup 𝐴 𝐴 = 𝐴)
11 eqcom 2745 . . . . . . 7 ( 𝐴 = 𝐴𝐴 = 𝐴)
129, 10, 113bitri 297 . . . . . 6 (𝐴 Fix Bigcup 𝐴 = 𝐴)
138, 12anbi12i 627 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 Fix Bigcup ) ↔ (Ord 𝐴𝐴 = 𝐴))
146, 13bitri 274 . . . 4 (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (Ord 𝐴𝐴 = 𝐴))
157elsn 4576 . . . . 5 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
1615necon3bbii 2991 . . . 4 𝐴 ∈ {∅} ↔ 𝐴 ≠ ∅)
1714, 16anbi12i 627 . . 3 ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ ((Ord 𝐴𝐴 = 𝐴) ∧ 𝐴 ≠ ∅))
184, 5, 173bitr4ri 304 . 2 ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ Lim 𝐴)
192, 3, 183bitri 297 1 (𝐴 Limits ↔ Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  cin 3886  c0 4256  {csn 4561   cuni 4839   class class class wbr 5074  Ord word 6265  Oncon0 6266  Lim wlim 6267   Bigcup cbigcup 34136   Fix cfix 34137   Limits climits 34138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ord 6269  df-on 6270  df-lim 6271  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831  df-2nd 7832  df-txp 34156  df-bigcup 34160  df-fix 34161  df-limits 34162
This theorem is referenced by:  dfom5b  34214  dfrdg4  34253
  Copyright terms: Public domain W3C validator