Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-fix | Structured version Visualization version GIF version |
Description: Define the class of all fixpoints of a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
df-fix | ⊢ Fix 𝐴 = dom (𝐴 ∩ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | cfix 34064 | . 2 class Fix 𝐴 |
3 | cid 5479 | . . . 4 class I | |
4 | 1, 3 | cin 3882 | . . 3 class (𝐴 ∩ I ) |
5 | 4 | cdm 5580 | . 2 class dom (𝐴 ∩ I ) |
6 | 2, 5 | wceq 1539 | 1 wff Fix 𝐴 = dom (𝐴 ∩ I ) |
Colors of variables: wff setvar class |
This definition is referenced by: elfix 34132 fixssdm 34135 fixun 34138 |
Copyright terms: Public domain | W3C validator |