Detailed syntax breakdown of Definition df-limsup
| Step | Hyp | Ref
| Expression |
| 1 | | clsp 15506 |
. 2
class lim
sup |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vk |
. . . . . 6
setvar 𝑘 |
| 5 | | cr 11154 |
. . . . . 6
class
ℝ |
| 6 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 7 | 4 | cv 1539 |
. . . . . . . . . 10
class 𝑘 |
| 8 | | cpnf 11292 |
. . . . . . . . . 10
class
+∞ |
| 9 | | cico 13389 |
. . . . . . . . . 10
class
[,) |
| 10 | 7, 8, 9 | co 7431 |
. . . . . . . . 9
class (𝑘[,)+∞) |
| 11 | 6, 10 | cima 5688 |
. . . . . . . 8
class (𝑥 “ (𝑘[,)+∞)) |
| 12 | | cxr 11294 |
. . . . . . . 8
class
ℝ* |
| 13 | 11, 12 | cin 3950 |
. . . . . . 7
class ((𝑥 “ (𝑘[,)+∞)) ∩
ℝ*) |
| 14 | | clt 11295 |
. . . . . . 7
class
< |
| 15 | 13, 12, 14 | csup 9480 |
. . . . . 6
class
sup(((𝑥 “
(𝑘[,)+∞)) ∩
ℝ*), ℝ*, < ) |
| 16 | 4, 5, 15 | cmpt 5225 |
. . . . 5
class (𝑘 ∈ ℝ ↦
sup(((𝑥 “ (𝑘[,)+∞)) ∩
ℝ*), ℝ*, < )) |
| 17 | 16 | crn 5686 |
. . . 4
class ran
(𝑘 ∈ ℝ ↦
sup(((𝑥 “ (𝑘[,)+∞)) ∩
ℝ*), ℝ*, < )) |
| 18 | 17, 12, 14 | cinf 9481 |
. . 3
class inf(ran
(𝑘 ∈ ℝ ↦
sup(((𝑥 “ (𝑘[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, <
) |
| 19 | 2, 3, 18 | cmpt 5225 |
. 2
class (𝑥 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦
sup(((𝑥 “ (𝑘[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, <
)) |
| 20 | 1, 19 | wceq 1540 |
1
wff lim sup =
(𝑥 ∈ V ↦ inf(ran
(𝑘 ∈ ℝ ↦
sup(((𝑥 “ (𝑘[,)+∞)) ∩
ℝ*), ℝ*, < )), ℝ*, <
)) |