![]() |
Metamath
Proof Explorer Theorem List (p. 155 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rexuzre 15401* | Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝑗 ≤ 𝑘 → 𝜑))) | ||
Theorem | rexico 15402* | Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) | ||
Theorem | cau3lem 15403* | Lemma for cau3 15404. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝑍 ⊆ ℤ & ⊢ (𝜏 → 𝜓) & ⊢ ((𝐹‘𝑘) = (𝐹‘𝑗) → (𝜓 ↔ 𝜒)) & ⊢ ((𝐹‘𝑘) = (𝐹‘𝑚) → (𝜓 ↔ 𝜃)) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑘))) = (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗)))) & ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜒) → (𝐺‘((𝐹‘𝑚)𝐷(𝐹‘𝑗))) = (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚)))) & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃) ∧ (𝜒 ∧ 𝑥 ∈ ℝ)) → (((𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < (𝑥 / 2) ∧ (𝐺‘((𝐹‘𝑗)𝐷(𝐹‘𝑚))) < (𝑥 / 2)) → (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ (𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜏 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(𝐺‘((𝐹‘𝑘)𝐷(𝐹‘𝑚))) < 𝑥))) | ||
Theorem | cau3 15404* | Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 15394 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) | ||
Theorem | cau4 15405* | Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) ⇒ ⊢ (𝑁 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑊 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | ||
Theorem | caubnd2 15406* | A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) | ||
Theorem | caubnd 15407* | A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 14-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) < 𝑦) | ||
Theorem | sqreulem 15408 | Lemma for sqreu 15409: write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ 𝐵 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐵↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝐵) ∧ (i · 𝐵) ∉ ℝ+)) | ||
Theorem | sqreu 15409* | Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | ||
Theorem | sqrtcl 15410 | Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ) | ||
Theorem | sqrtthlem 15411 | Lemma for sqrtth 15413. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(√‘𝐴)) ∧ (i · (√‘𝐴)) ∉ ℝ+)) | ||
Theorem | sqrtf 15412 | Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015.) |
⊢ √:ℂ⟶ℂ | ||
Theorem | sqrtth 15413 | Square root theorem over the complex numbers. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴) | ||
Theorem | sqrtrege0 15414 | The square root function must make a choice between the two roots, which differ by a sign change. In the general complex case, the choice of "positive" and "negative" is not so clear. The convention we use is to take the root with positive real part, unless 𝐴 is a nonpositive real (in which case both roots have 0 real part); in this case we take the one in the positive imaginary direction. Another way to look at this is that we choose the root that is largest with respect to lexicographic order on the complex numbers (sorting by real part first, then by imaginary part as tie-breaker). (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘(√‘𝐴))) | ||
Theorem | eqsqrtor 15415 | Solve an equation containing a square. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = 𝐵 ↔ (𝐴 = (√‘𝐵) ∨ 𝐴 = -(√‘𝐵)))) | ||
Theorem | eqsqrtd 15416 | A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 𝐵) & ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) & ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐴 = (√‘𝐵)) | ||
Theorem | eqsqrt2d 15417 | A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 𝐵) & ⊢ (𝜑 → 0 < (ℜ‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 = (√‘𝐵)) | ||
Theorem | amgm2 15418 | Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by Mario Carneiro, 2-Jul-2014.) (Proof shortened by AV, 9-Jul-2022.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2)) | ||
Theorem | sqrtthi 15419 | Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴) · (√‘𝐴)) = 𝐴) | ||
Theorem | sqrtcli 15420 | The square root of a nonnegative real is a real. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘𝐴) ∈ ℝ) | ||
Theorem | sqrtgt0i 15421 | The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 < 𝐴 → 0 < (√‘𝐴)) | ||
Theorem | sqrtmsqi 15422 | Square root of square. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴 · 𝐴)) = 𝐴) | ||
Theorem | sqrtsqi 15423 | Square root of square. (Contributed by NM, 11-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴↑2)) = 𝐴) | ||
Theorem | sqsqrti 15424 | Square of square root. (Contributed by NM, 11-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴)↑2) = 𝐴) | ||
Theorem | sqrtge0i 15425 | The square root of a nonnegative real is nonnegative. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → 0 ≤ (√‘𝐴)) | ||
Theorem | absidi 15426 | A nonnegative number is its own absolute value. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴) | ||
Theorem | absnidi 15427 | A negative number is the negative of its own absolute value. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴 ≤ 0 → (abs‘𝐴) = -𝐴) | ||
Theorem | leabsi 15428 | A real number is less than or equal to its absolute value. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ≤ (abs‘𝐴) | ||
Theorem | absori 15429 | The absolute value of a real number is either that number or its negative. (Contributed by NM, 30-Sep-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) | ||
Theorem | absrei 15430 | Absolute value of a real number. (Contributed by NM, 3-Aug-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (abs‘𝐴) = (√‘(𝐴↑2)) | ||
Theorem | sqrtpclii 15431 | The square root of a positive real is a real. (Contributed by Mario Carneiro, 6-Sep-2013.) |
⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ (√‘𝐴) ∈ ℝ | ||
Theorem | sqrtgt0ii 15432 | The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 0 < (√‘𝐴) | ||
Theorem | sqrt11i 15433 | The square root function is one-to-one. (Contributed by NM, 27-Jul-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | sqrtmuli 15434 | Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) | ||
Theorem | sqrtmulii 15435 | Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 ≤ 𝐴 & ⊢ 0 ≤ 𝐵 ⇒ ⊢ (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)) | ||
Theorem | sqrtmsq2i 15436 | Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐵))) | ||
Theorem | sqrtlei 15437 | Square root is monotonic. (Contributed by NM, 3-Aug-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) | ||
Theorem | sqrtlti 15438 | Square root is strictly monotonic. (Contributed by Roy F. Longton, 8-Aug-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) | ||
Theorem | abslti 15439 | Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵)) | ||
Theorem | abslei 15440 | Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) | ||
Theorem | cnsqrt00 15441 | A square root of a complex number is zero iff its argument is 0. Version of sqrt00 15312 for complex numbers. (Contributed by AV, 26-Jan-2023.) |
⊢ (𝐴 ∈ ℂ → ((√‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
Theorem | absvalsqi 15442 | Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)) | ||
Theorem | absvalsq2i 15443 | Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) | ||
Theorem | abscli 15444 | Real closure of absolute value. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (abs‘𝐴) ∈ ℝ | ||
Theorem | absge0i 15445 | Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ 0 ≤ (abs‘𝐴) | ||
Theorem | absval2i 15446 | Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
Theorem | abs00i 15447 | The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) = 0 ↔ 𝐴 = 0) | ||
Theorem | absgt0i 15448 | The absolute value of a nonzero number is positive. Remark in [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 ↔ 0 < (abs‘𝐴)) | ||
Theorem | absnegi 15449 | Absolute value of negative. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (abs‘-𝐴) = (abs‘𝐴) | ||
Theorem | abscji 15450 | The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (abs‘(∗‘𝐴)) = (abs‘𝐴) | ||
Theorem | releabsi 15451 | The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (ℜ‘𝐴) ≤ (abs‘𝐴) | ||
Theorem | abssubi 15452 | Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴)) | ||
Theorem | absmuli 15453 | Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 1-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)) | ||
Theorem | sqabsaddi 15454 | Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) | ||
Theorem | sqabssubi 15455 | Square of absolute value of difference. (Contributed by Steve Rodriguez, 20-Jan-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) | ||
Theorem | absdivzi 15456 | Absolute value distributes over division. (Contributed by NM, 26-Mar-2005.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) | ||
Theorem | abstrii 15457 | Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. This is Metamath 100 proof #91. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)) | ||
Theorem | abs3difi 15458 | Absolute value of differences around common element. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) | ||
Theorem | abs3lemi 15459 | Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℝ ⇒ ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷) | ||
Theorem | rpsqrtcld 15460 | The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈ ℝ+) | ||
Theorem | sqrtgt0d 15461 | The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → 0 < (√‘𝐴)) | ||
Theorem | absnidd 15462 | A negative number is the negative of its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) = -𝐴) | ||
Theorem | leabsd 15463 | A real number is less than or equal to its absolute value. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ (abs‘𝐴)) | ||
Theorem | absord 15464 | The absolute value of a real number is either that number or its negative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) | ||
Theorem | absred 15465 | Absolute value of a real number. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(𝐴↑2))) | ||
Theorem | resqrtcld 15466 | The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) | ||
Theorem | sqrtmsqd 15467 | Square root of square. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐴)) = 𝐴) | ||
Theorem | sqrtsqd 15468 | Square root of square. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴↑2)) = 𝐴) | ||
Theorem | sqrtge0d 15469 | The square root of a nonnegative real is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (√‘𝐴)) | ||
Theorem | sqrtnegd 15470 | The square root of a negative number. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘-𝐴) = (i · (√‘𝐴))) | ||
Theorem | absidd 15471 | A nonnegative number is its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (abs‘𝐴) = 𝐴) | ||
Theorem | sqrtdivd 15472 | Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) | ||
Theorem | sqrtmuld 15473 | Square root distributes over multiplication. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) | ||
Theorem | sqrtsq2d 15474 | Relationship between square root and squares. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵↑2))) | ||
Theorem | sqrtled 15475 | Square root is monotonic. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) | ||
Theorem | sqrtltd 15476 | Square root is strictly monotonic. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) | ||
Theorem | sqr11d 15477 | The square root function is one-to-one. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → (√‘𝐴) = (√‘𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | absltd 15478 | Absolute value and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) | ||
Theorem | absled 15479 | Absolute value and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | ||
Theorem | abssubge0d 15480 | Absolute value of a nonnegative difference. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) | ||
Theorem | abssuble0d 15481 | Absolute value of a nonpositive difference. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | absdifltd 15482 | The absolute value of a difference and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) | ||
Theorem | absdifled 15483 | The absolute value of a difference and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) | ||
Theorem | icodiamlt 15484 | Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶 − 𝐷)) < (𝐵 − 𝐴)) | ||
Theorem | abscld 15485 | Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) | ||
Theorem | sqrtcld 15486 | Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈ ℂ) | ||
Theorem | sqrtrege0d 15487 | The real part of the square root function is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → 0 ≤ (ℜ‘(√‘𝐴))) | ||
Theorem | sqsqrtd 15488 | Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ((√‘𝐴)↑2) = 𝐴) | ||
Theorem | msqsqrtd 15489 | Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ((√‘𝐴) · (√‘𝐴)) = 𝐴) | ||
Theorem | sqr00d 15490 | A square root is zero iff its argument is 0. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (√‘𝐴) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
Theorem | absvalsqd 15491 | Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) | ||
Theorem | absvalsq2d 15492 | Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
Theorem | absge0d 15493 | Absolute value is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → 0 ≤ (abs‘𝐴)) | ||
Theorem | absval2d 15494 | Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))) | ||
Theorem | abs00d 15495 | The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
Theorem | absne0d 15496 | The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≠ 0) | ||
Theorem | absrpcld 15497 | The absolute value of a nonzero number is a positive real. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ+) | ||
Theorem | absnegd 15498 | Absolute value of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (abs‘-𝐴) = (abs‘𝐴)) | ||
Theorem | abscjd 15499 | The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴)) | ||
Theorem | releabsd 15500 | The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |