![]() |
Metamath
Proof Explorer Theorem List (p. 155 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30209) |
![]() (30210-31732) |
![]() (31733-47936) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | absexpd 15401 | Absolute value of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.) |
β’ (π β π΄ β β) & β’ (π β π β β0) β β’ (π β (absβ(π΄βπ)) = ((absβπ΄)βπ)) | ||
Theorem | abssubd 15402 | Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) β β’ (π β (absβ(π΄ β π΅)) = (absβ(π΅ β π΄))) | ||
Theorem | absmuld 15403 | Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) β β’ (π β (absβ(π΄ Β· π΅)) = ((absβπ΄) Β· (absβπ΅))) | ||
Theorem | absdivd 15404 | Absolute value distributes over division. (Contributed by Mario Carneiro, 29-May-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΅ β 0) β β’ (π β (absβ(π΄ / π΅)) = ((absβπ΄) / (absβπ΅))) | ||
Theorem | abstrid 15405 | Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) β β’ (π β (absβ(π΄ + π΅)) β€ ((absβπ΄) + (absβπ΅))) | ||
Theorem | abs2difd 15406 | Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) β β’ (π β ((absβπ΄) β (absβπ΅)) β€ (absβ(π΄ β π΅))) | ||
Theorem | abs2dif2d 15407 | Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) β β’ (π β (absβ(π΄ β π΅)) β€ ((absβπ΄) + (absβπ΅))) | ||
Theorem | abs2difabsd 15408 | Absolute value of difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) β β’ (π β (absβ((absβπ΄) β (absβπ΅))) β€ (absβ(π΄ β π΅))) | ||
Theorem | abs3difd 15409 | Absolute value of differences around common element. (Contributed by Mario Carneiro, 29-May-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) β β’ (π β (absβ(π΄ β π΅)) β€ ((absβ(π΄ β πΆ)) + (absβ(πΆ β π΅)))) | ||
Theorem | abs3lemd 15410 | Lemma involving absolute value of differences. (Contributed by Mario Carneiro, 29-May-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β (absβ(π΄ β πΆ)) < (π· / 2)) & β’ (π β (absβ(πΆ β π΅)) < (π· / 2)) β β’ (π β (absβ(π΄ β π΅)) < π·) | ||
Theorem | reusq0 15411* | A complex number is the square of exactly one complex number iff the given complex number is zero. (Contributed by AV, 21-Jun-2023.) |
β’ (π β β β (β!π₯ β β (π₯β2) = π β π = 0)) | ||
Theorem | bhmafibid1cn 15412 | The Brahmagupta-Fibonacci identity for complex numbers. Express the product of two sums of two squares as a sum of two squares. First result. (Contributed by Thierry Arnoux, 1-Feb-2020.) Generalization for complex numbers proposed by GL. (Revised by AV, 8-Jun-2023.) |
β’ (((π΄ β β β§ π΅ β β) β§ (πΆ β β β§ π· β β)) β (((π΄β2) + (π΅β2)) Β· ((πΆβ2) + (π·β2))) = ((((π΄ Β· πΆ) β (π΅ Β· π·))β2) + (((π΄ Β· π·) + (π΅ Β· πΆ))β2))) | ||
Theorem | bhmafibid2cn 15413 | The Brahmagupta-Fibonacci identity for complex numbers. Express the product of two sums of two squares as a sum of two squares. Second result. (Contributed by Thierry Arnoux, 1-Feb-2020.) Generalization for complex numbers proposed by GL. (Revised by AV, 8-Jun-2023.) |
β’ (((π΄ β β β§ π΅ β β) β§ (πΆ β β β§ π· β β)) β (((π΄β2) + (π΅β2)) Β· ((πΆβ2) + (π·β2))) = ((((π΄ Β· πΆ) + (π΅ Β· π·))β2) + (((π΄ Β· π·) β (π΅ Β· πΆ))β2))) | ||
Theorem | bhmafibid1 15414 | The Brahmagupta-Fibonacci identity. Express the product of two sums of two squares as a sum of two squares. First result. Remark: The proof uses a different approach than the proof of bhmafibid1cn 15412, and is a little bit shorter. (Contributed by Thierry Arnoux, 1-Feb-2020.) (Proof modification is discouraged.) |
β’ (((π΄ β β β§ π΅ β β) β§ (πΆ β β β§ π· β β)) β (((π΄β2) + (π΅β2)) Β· ((πΆβ2) + (π·β2))) = ((((π΄ Β· πΆ) β (π΅ Β· π·))β2) + (((π΄ Β· π·) + (π΅ Β· πΆ))β2))) | ||
Theorem | bhmafibid2 15415 | The Brahmagupta-Fibonacci identity. Express the product of two sums of two squares as a sum of two squares. Second result. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
β’ (((π΄ β β β§ π΅ β β) β§ (πΆ β β β§ π· β β)) β (((π΄β2) + (π΅β2)) Β· ((πΆβ2) + (π·β2))) = ((((π΄ Β· πΆ) + (π΅ Β· π·))β2) + (((π΄ Β· π·) β (π΅ Β· πΆ))β2))) | ||
Syntax | clsp 15416 | Extend class notation to include the limsup function. |
class lim sup | ||
Definition | df-limsup 15417* | Define the superior limit of an infinite sequence of extended real numbers. Definition 12-4.1 of [Gleason] p. 175. See limsupval 15420 for its value. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 11-Sep-2020.) |
β’ lim sup = (π₯ β V β¦ inf(ran (π β β β¦ sup(((π₯ β (π[,)+β)) β© β*), β*, < )), β*, < )) | ||
Theorem | limsupgord 15418 | Ordering property of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.) |
β’ ((π΄ β β β§ π΅ β β β§ π΄ β€ π΅) β sup(((πΉ β (π΅[,)+β)) β© β*), β*, < ) β€ sup(((πΉ β (π΄[,)+β)) β© β*), β*, < )) | ||
Theorem | limsupcl 15419 | Closure of the superior limit. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2020.) |
β’ (πΉ β π β (lim supβπΉ) β β*) | ||
Theorem | limsupval 15420* | The superior limit of an infinite sequence πΉ of extended real numbers, which is the infimum of the set of suprema of all upper infinite subsequences of πΉ. Definition 12-4.1 of [Gleason] p. 175. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2014.) |
β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) β β’ (πΉ β π β (lim supβπΉ) = inf(ran πΊ, β*, < )) | ||
Theorem | limsupgf 15421* | Closure of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.) |
β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) β β’ πΊ:ββΆβ* | ||
Theorem | limsupgval 15422* | Value of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.) |
β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) β β’ (π β β β (πΊβπ) = sup(((πΉ β (π[,)+β)) β© β*), β*, < )) | ||
Theorem | limsupgle 15423* | The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.) |
β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) β β’ (((π΅ β β β§ πΉ:π΅βΆβ*) β§ πΆ β β β§ π΄ β β*) β ((πΊβπΆ) β€ π΄ β βπ β π΅ (πΆ β€ π β (πΉβπ) β€ π΄))) | ||
Theorem | limsuple 15424* | The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) β β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (π΄ β€ (lim supβπΉ) β βπ β β π΄ β€ (πΊβπ))) | ||
Theorem | limsuplt 15425* | The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) β β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β βπ β β (πΊβπ) < π΄)) | ||
Theorem | limsupval2 15426* | The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) & β’ (π β πΉ β π) & β’ (π β π΄ β β) & β’ (π β sup(π΄, β*, < ) = +β) β β’ (π β (lim supβπΉ) = inf((πΊ β π΄), β*, < )) | ||
Theorem | limsupgre 15427* | If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) & β’ π = (β€β₯βπ) β β’ ((π β β€ β§ πΉ:πβΆβ β§ (lim supβπΉ) < +β) β πΊ:ββΆβ) | ||
Theorem | limsupbnd1 15428* | If a sequence is eventually at most π΄, then the limsup is also at most π΄. (The converse is only true if the less or equal is replaced by strictly less than; consider the sequence 1 / π which is never less or equal to zero even though the limsup is.) (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
β’ (π β π΅ β β) & β’ (π β πΉ:π΅βΆβ*) & β’ (π β π΄ β β*) & β’ (π β βπ β β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄)) β β’ (π β (lim supβπΉ) β€ π΄) | ||
Theorem | limsupbnd2 15429* | If a sequence is eventually greater than π΄, then the limsup is also greater than π΄. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
β’ (π β π΅ β β) & β’ (π β πΉ:π΅βΆβ*) & β’ (π β π΄ β β*) & β’ (π β sup(π΅, β*, < ) = +β) & β’ (π β βπ β β βπ β π΅ (π β€ π β π΄ β€ (πΉβπ))) β β’ (π β π΄ β€ (lim supβπΉ)) | ||
Syntax | cli 15430 | Extend class notation with convergence relation for limits. |
class β | ||
Syntax | crli 15431 | Extend class notation with real convergence relation for limits. |
class βπ | ||
Syntax | co1 15432 | Extend class notation with the set of all eventually bounded functions. |
class π(1) | ||
Syntax | clo1 15433 | Extend class notation with the set of all eventually upper bounded functions. |
class β€π(1) | ||
Definition | df-clim 15434* | Define the limit relation for complex number sequences. See clim 15440 for its relational expression. (Contributed by NM, 28-Aug-2005.) |
β’ β = {β¨π, π¦β© β£ (π¦ β β β§ βπ₯ β β+ βπ β β€ βπ β (β€β₯βπ)((πβπ) β β β§ (absβ((πβπ) β π¦)) < π₯))} | ||
Definition | df-rlim 15435* | Define the limit relation for partial functions on the reals. See rlim 15441 for its relational expression. (Contributed by Mario Carneiro, 16-Sep-2014.) |
β’ βπ = {β¨π, π₯β© β£ ((π β (β βpm β) β§ π₯ β β) β§ βπ¦ β β+ βπ§ β β βπ€ β dom π(π§ β€ π€ β (absβ((πβπ€) β π₯)) < π¦))} | ||
Definition | df-o1 15436* | Define the set of eventually bounded functions. We don't bother to build the full conception of big-O notation, because we can represent any big-O in terms of π(1) and division, and any little-O in terms of a limit and division. We could also use limsup for this, but it only works on integer sequences, while this will work for real sequences or integer sequences. (Contributed by Mario Carneiro, 15-Sep-2014.) |
β’ π(1) = {π β (β βpm β) β£ βπ₯ β β βπ β β βπ¦ β (dom π β© (π₯[,)+β))(absβ(πβπ¦)) β€ π} | ||
Definition | df-lo1 15437* | Define the set of eventually upper bounded real functions. This fills a gap in π(1) coverage, to express statements like π(π₯) β€ π(π₯) + π(π₯) via (π₯ β β+ β¦ (π(π₯) β π(π₯)) / π₯) β β€π(1). (Contributed by Mario Carneiro, 25-May-2016.) |
β’ β€π(1) = {π β (β βpm β) β£ βπ₯ β β βπ β β βπ¦ β (dom π β© (π₯[,)+β))(πβπ¦) β€ π} | ||
Theorem | climrel 15438 | The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
β’ Rel β | ||
Theorem | rlimrel 15439 | The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.) |
β’ Rel βπ | ||
Theorem | clim 15440* | Express the predicate: The limit of complex number sequence πΉ is π΄, or πΉ converges to π΄. This means that for any real π₯, no matter how small, there always exists an integer π such that the absolute difference of any later complex number in the sequence and the limit is less than π₯. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
β’ (π β πΉ β π) & β’ ((π β§ π β β€) β (πΉβπ) = π΅) β β’ (π β (πΉ β π΄ β (π΄ β β β§ βπ₯ β β+ βπ β β€ βπ β (β€β₯βπ)(π΅ β β β§ (absβ(π΅ β π΄)) < π₯)))) | ||
Theorem | rlim 15441* | Express the predicate: The limit of complex number function πΉ is πΆ, or πΉ converges to πΆ, in the real sense. This means that for any real π₯, no matter how small, there always exists a number π¦ such that the absolute difference of any number in the function beyond π¦ and the limit is less than π₯. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β β) & β’ ((π β§ π§ β π΄) β (πΉβπ§) = π΅) β β’ (π β (πΉ βπ πΆ β (πΆ β β β§ βπ₯ β β+ βπ¦ β β βπ§ β π΄ (π¦ β€ π§ β (absβ(π΅ β πΆ)) < π₯)))) | ||
Theorem | rlim2 15442* | Rewrite rlim 15441 for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.) |
β’ (π β βπ§ β π΄ π΅ β β) & β’ (π β π΄ β β) & β’ (π β πΆ β β) β β’ (π β ((π§ β π΄ β¦ π΅) βπ πΆ β βπ₯ β β+ βπ¦ β β βπ§ β π΄ (π¦ β€ π§ β (absβ(π΅ β πΆ)) < π₯))) | ||
Theorem | rlim2lt 15443* | Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.) |
β’ (π β βπ§ β π΄ π΅ β β) & β’ (π β π΄ β β) & β’ (π β πΆ β β) β β’ (π β ((π§ β π΄ β¦ π΅) βπ πΆ β βπ₯ β β+ βπ¦ β β βπ§ β π΄ (π¦ < π§ β (absβ(π΅ β πΆ)) < π₯))) | ||
Theorem | rlim3 15444* | Restrict the range of the domain bound to reals greater than some π· β β. (Contributed by Mario Carneiro, 16-Sep-2014.) |
β’ (π β βπ§ β π΄ π΅ β β) & β’ (π β π΄ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) β β’ (π β ((π§ β π΄ β¦ π΅) βπ πΆ β βπ₯ β β+ βπ¦ β (π·[,)+β)βπ§ β π΄ (π¦ β€ π§ β (absβ(π΅ β πΆ)) < π₯))) | ||
Theorem | climcl 15445 | Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
β’ (πΉ β π΄ β π΄ β β) | ||
Theorem | rlimpm 15446 | Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
β’ (πΉ βπ π΄ β πΉ β (β βpm β)) | ||
Theorem | rlimf 15447 | Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
β’ (πΉ βπ π΄ β πΉ:dom πΉβΆβ) | ||
Theorem | rlimss 15448 | Domain closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
β’ (πΉ βπ π΄ β dom πΉ β β) | ||
Theorem | rlimcl 15449 | Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.) |
β’ (πΉ βπ π΄ β π΄ β β) | ||
Theorem | clim2 15450* | Express the predicate: The limit of complex number sequence πΉ is π΄, or πΉ converges to π΄, with more general quantifier restrictions than clim 15440. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ β π) & β’ ((π β§ π β π) β (πΉβπ) = π΅) β β’ (π β (πΉ β π΄ β (π΄ β β β§ βπ₯ β β+ βπ β π βπ β (β€β₯βπ)(π΅ β β β§ (absβ(π΅ β π΄)) < π₯)))) | ||
Theorem | clim2c 15451* | Express the predicate πΉ converges to π΄. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ β π) & β’ ((π β§ π β π) β (πΉβπ) = π΅) & β’ (π β π΄ β β) & β’ ((π β§ π β π) β π΅ β β) β β’ (π β (πΉ β π΄ β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)(absβ(π΅ β π΄)) < π₯)) | ||
Theorem | clim0 15452* | Express the predicate πΉ converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ β π) & β’ ((π β§ π β π) β (πΉβπ) = π΅) β β’ (π β (πΉ β 0 β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)(π΅ β β β§ (absβπ΅) < π₯))) | ||
Theorem | clim0c 15453* | Express the predicate πΉ converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ β π) & β’ ((π β§ π β π) β (πΉβπ) = π΅) & β’ ((π β§ π β π) β π΅ β β) β β’ (π β (πΉ β 0 β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)(absβπ΅) < π₯)) | ||
Theorem | rlim0 15454* | Express the predicate π΅(π§) converges to 0. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.) |
β’ (π β βπ§ β π΄ π΅ β β) & β’ (π β π΄ β β) β β’ (π β ((π§ β π΄ β¦ π΅) βπ 0 β βπ₯ β β+ βπ¦ β β βπ§ β π΄ (π¦ β€ π§ β (absβπ΅) < π₯))) | ||
Theorem | rlim0lt 15455* | Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.) |
β’ (π β βπ§ β π΄ π΅ β β) & β’ (π β π΄ β β) β β’ (π β ((π§ β π΄ β¦ π΅) βπ 0 β βπ₯ β β+ βπ¦ β β βπ§ β π΄ (π¦ < π§ β (absβπ΅) < π₯))) | ||
Theorem | climi 15456* | Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΆ β β+) & β’ ((π β§ π β π) β (πΉβπ) = π΅) & β’ (π β πΉ β π΄) β β’ (π β βπ β π βπ β (β€β₯βπ)(π΅ β β β§ (absβ(π΅ β π΄)) < πΆ)) | ||
Theorem | climi2 15457* | Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΆ β β+) & β’ ((π β§ π β π) β (πΉβπ) = π΅) & β’ (π β πΉ β π΄) β β’ (π β βπ β π βπ β (β€β₯βπ)(absβ(π΅ β π΄)) < πΆ) | ||
Theorem | climi0 15458* | Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΆ β β+) & β’ ((π β§ π β π) β (πΉβπ) = π΅) & β’ (π β πΉ β 0) β β’ (π β βπ β π βπ β (β€β₯βπ)(absβπ΅) < πΆ) | ||
Theorem | rlimi 15459* | Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.) |
β’ (π β βπ§ β π΄ π΅ β π) & β’ (π β π β β+) & β’ (π β (π§ β π΄ β¦ π΅) βπ πΆ) β β’ (π β βπ¦ β β βπ§ β π΄ (π¦ β€ π§ β (absβ(π΅ β πΆ)) < π )) | ||
Theorem | rlimi2 15460* | Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016.) |
β’ (π β βπ§ β π΄ π΅ β π) & β’ (π β π β β+) & β’ (π β (π§ β π΄ β¦ π΅) βπ πΆ) & β’ (π β π· β β) β β’ (π β βπ¦ β (π·[,)+β)βπ§ β π΄ (π¦ β€ π§ β (absβ(π΅ β πΆ)) < π )) | ||
Theorem | ello1 15461* | Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
β’ (πΉ β β€π(1) β (πΉ β (β βpm β) β§ βπ₯ β β βπ β β βπ¦ β (dom πΉ β© (π₯[,)+β))(πΉβπ¦) β€ π)) | ||
Theorem | ello12 15462* | Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (πΉ β β€π(1) β βπ₯ β β βπ β β βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ¦) β€ π))) | ||
Theorem | ello12r 15463* | Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
β’ (((πΉ:π΄βΆβ β§ π΄ β β) β§ (πΆ β β β§ π β β) β§ βπ₯ β π΄ (πΆ β€ π₯ β (πΉβπ₯) β€ π)) β πΉ β β€π(1)) | ||
Theorem | lo1f 15464 | An eventually upper bounded function is a function. (Contributed by Mario Carneiro, 26-May-2016.) |
β’ (πΉ β β€π(1) β πΉ:dom πΉβΆβ) | ||
Theorem | lo1dm 15465 | An eventually upper bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 26-May-2016.) |
β’ (πΉ β β€π(1) β dom πΉ β β) | ||
Theorem | lo1bdd 15466* | The defining property of an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.) |
β’ ((πΉ β β€π(1) β§ πΉ:π΄βΆβ) β βπ₯ β β βπ β β βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ¦) β€ π)) | ||
Theorem | ello1mpt 15467* | Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
β’ (π β π΄ β β) & β’ ((π β§ π₯ β π΄) β π΅ β β) β β’ (π β ((π₯ β π΄ β¦ π΅) β β€π(1) β βπ¦ β β βπ β β βπ₯ β π΄ (π¦ β€ π₯ β π΅ β€ π))) | ||
Theorem | ello1mpt2 15468* | Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
β’ (π β π΄ β β) & β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β πΆ β β) β β’ (π β ((π₯ β π΄ β¦ π΅) β β€π(1) β βπ¦ β (πΆ[,)+β)βπ β β βπ₯ β π΄ (π¦ β€ π₯ β π΅ β€ π))) | ||
Theorem | ello1d 15469* | Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
β’ (π β π΄ β β) & β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π β β) & β’ ((π β§ (π₯ β π΄ β§ πΆ β€ π₯)) β π΅ β€ π) β β’ (π β (π₯ β π΄ β¦ π΅) β β€π(1)) | ||
Theorem | lo1bdd2 15470* | If an eventually bounded function is bounded on every interval π΄ β© (-β, π¦) by a function π(π¦), then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016.) |
β’ (π β π΄ β β) & β’ (π β πΆ β β) & β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β (π₯ β π΄ β¦ π΅) β β€π(1)) & β’ ((π β§ (π¦ β β β§ πΆ β€ π¦)) β π β β) & β’ (((π β§ π₯ β π΄) β§ ((π¦ β β β§ πΆ β€ π¦) β§ π₯ < π¦)) β π΅ β€ π) β β’ (π β βπ β β βπ₯ β π΄ π΅ β€ π) | ||
Theorem | lo1bddrp 15471* | Refine o1bdd2 15487 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.) |
β’ (π β π΄ β β) & β’ (π β πΆ β β) & β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β (π₯ β π΄ β¦ π΅) β β€π(1)) & β’ ((π β§ (π¦ β β β§ πΆ β€ π¦)) β π β β) & β’ (((π β§ π₯ β π΄) β§ ((π¦ β β β§ πΆ β€ π¦) β§ π₯ < π¦)) β π΅ β€ π) β β’ (π β βπ β β+ βπ₯ β π΄ π΅ β€ π) | ||
Theorem | elo1 15472* | Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
β’ (πΉ β π(1) β (πΉ β (β βpm β) β§ βπ₯ β β βπ β β βπ¦ β (dom πΉ β© (π₯[,)+β))(absβ(πΉβπ¦)) β€ π)) | ||
Theorem | elo12 15473* | Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
β’ ((πΉ:π΄βΆβ β§ π΄ β β) β (πΉ β π(1) β βπ₯ β β βπ β β βπ¦ β π΄ (π₯ β€ π¦ β (absβ(πΉβπ¦)) β€ π))) | ||
Theorem | elo12r 15474* | Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
β’ (((πΉ:π΄βΆβ β§ π΄ β β) β§ (πΆ β β β§ π β β) β§ βπ₯ β π΄ (πΆ β€ π₯ β (absβ(πΉβπ₯)) β€ π)) β πΉ β π(1)) | ||
Theorem | o1f 15475 | An eventually bounded function is a function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
β’ (πΉ β π(1) β πΉ:dom πΉβΆβ) | ||
Theorem | o1dm 15476 | An eventually bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 15-Sep-2014.) |
β’ (πΉ β π(1) β dom πΉ β β) | ||
Theorem | o1bdd 15477* | The defining property of an eventually bounded function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
β’ ((πΉ β π(1) β§ πΉ:π΄βΆβ) β βπ₯ β β βπ β β βπ¦ β π΄ (π₯ β€ π¦ β (absβ(πΉβπ¦)) β€ π)) | ||
Theorem | lo1o1 15478 | A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
β’ (πΉ:π΄βΆβ β (πΉ β π(1) β (abs β πΉ) β β€π(1))) | ||
Theorem | lo1o12 15479* | A function is eventually bounded iff its absolute value is eventually upper bounded. (This function is useful for converting theorems about β€π(1) to π(1).) (Contributed by Mario Carneiro, 26-May-2016.) |
β’ ((π β§ π₯ β π΄) β π΅ β β) β β’ (π β ((π₯ β π΄ β¦ π΅) β π(1) β (π₯ β π΄ β¦ (absβπ΅)) β β€π(1))) | ||
Theorem | elo1mpt 15480* | Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 21-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
β’ (π β π΄ β β) & β’ ((π β§ π₯ β π΄) β π΅ β β) β β’ (π β ((π₯ β π΄ β¦ π΅) β π(1) β βπ¦ β β βπ β β βπ₯ β π΄ (π¦ β€ π₯ β (absβπ΅) β€ π))) | ||
Theorem | elo1mpt2 15481* | Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 12-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
β’ (π β π΄ β β) & β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β πΆ β β) β β’ (π β ((π₯ β π΄ β¦ π΅) β π(1) β βπ¦ β (πΆ[,)+β)βπ β β βπ₯ β π΄ (π¦ β€ π₯ β (absβπ΅) β€ π))) | ||
Theorem | elo1d 15482* | Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 21-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
β’ (π β π΄ β β) & β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π β β) & β’ ((π β§ (π₯ β π΄ β§ πΆ β€ π₯)) β (absβπ΅) β€ π) β β’ (π β (π₯ β π΄ β¦ π΅) β π(1)) | ||
Theorem | o1lo1 15483* | A real function is eventually bounded iff it is eventually lower bounded and eventually upper bounded. (Contributed by Mario Carneiro, 25-May-2016.) |
β’ ((π β§ π₯ β π΄) β π΅ β β) β β’ (π β ((π₯ β π΄ β¦ π΅) β π(1) β ((π₯ β π΄ β¦ π΅) β β€π(1) β§ (π₯ β π΄ β¦ -π΅) β β€π(1)))) | ||
Theorem | o1lo12 15484* | A lower bounded real function is eventually bounded iff it is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β π β β) & β’ ((π β§ π₯ β π΄) β π β€ π΅) β β’ (π β ((π₯ β π΄ β¦ π΅) β π(1) β (π₯ β π΄ β¦ π΅) β β€π(1))) | ||
Theorem | o1lo1d 15485* | A real eventually bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β (π₯ β π΄ β¦ π΅) β π(1)) β β’ (π β (π₯ β π΄ β¦ π΅) β β€π(1)) | ||
Theorem | icco1 15486* | Derive eventual boundedness from separate upper and lower eventual bounds. (Contributed by Mario Carneiro, 15-Apr-2016.) |
β’ (π β π΄ β β) & β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π β β) & β’ (π β π β β) & β’ ((π β§ (π₯ β π΄ β§ πΆ β€ π₯)) β π΅ β (π[,]π)) β β’ (π β (π₯ β π΄ β¦ π΅) β π(1)) | ||
Theorem | o1bdd2 15487* | If an eventually bounded function is bounded on every interval π΄ β© (-β, π¦) by a function π(π¦), then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
β’ (π β π΄ β β) & β’ (π β πΆ β β) & β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β (π₯ β π΄ β¦ π΅) β π(1)) & β’ ((π β§ (π¦ β β β§ πΆ β€ π¦)) β π β β) & β’ (((π β§ π₯ β π΄) β§ ((π¦ β β β§ πΆ β€ π¦) β§ π₯ < π¦)) β (absβπ΅) β€ π) β β’ (π β βπ β β βπ₯ β π΄ (absβπ΅) β€ π) | ||
Theorem | o1bddrp 15488* | Refine o1bdd2 15487 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.) |
β’ (π β π΄ β β) & β’ (π β πΆ β β) & β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β (π₯ β π΄ β¦ π΅) β π(1)) & β’ ((π β§ (π¦ β β β§ πΆ β€ π¦)) β π β β) & β’ (((π β§ π₯ β π΄) β§ ((π¦ β β β§ πΆ β€ π¦) β§ π₯ < π¦)) β (absβπ΅) β€ π) β β’ (π β βπ β β+ βπ₯ β π΄ (absβπ΅) β€ π) | ||
Theorem | climconst 15489* | An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ β π) & β’ (π β π΄ β β) & β’ ((π β§ π β π) β (πΉβπ) = π΄) β β’ (π β πΉ β π΄) | ||
Theorem | rlimconst 15490* | A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014.) |
β’ ((π΄ β β β§ π΅ β β) β (π₯ β π΄ β¦ π΅) βπ π΅) | ||
Theorem | rlimclim1 15491 | Forward direction of rlimclim 15492. (Contributed by Mario Carneiro, 16-Sep-2014.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ βπ π΄) & β’ (π β π β dom πΉ) β β’ (π β πΉ β π΄) | ||
Theorem | rlimclim 15492 | A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆβ) β β’ (π β (πΉ βπ π΄ β πΉ β π΄)) | ||
Theorem | climrlim2 15493* | Produce a real limit from an integer limit, where the real function is only dependent on the integer part of π₯. (Contributed by Mario Carneiro, 2-May-2016.) |
β’ π = (β€β₯βπ) & β’ (π = (ββπ₯) β π΅ = πΆ) & β’ (π β π΄ β β) & β’ (π β π β β€) & β’ (π β (π β π β¦ π΅) β π·) & β’ ((π β§ π β π) β π΅ β β) & β’ ((π β§ π₯ β π΄) β π β€ π₯) β β’ (π β (π₯ β π΄ β¦ πΆ) βπ π·) | ||
Theorem | climconst2 15494 | A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
β’ (β€β₯βπ) β π & β’ π β V β β’ ((π΄ β β β§ π β β€) β (π Γ {π΄}) β π΄) | ||
Theorem | climz 15495 | The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999.) (Revised by Mario Carneiro, 31-Jan-2014.) |
β’ (β€ Γ {0}) β 0 | ||
Theorem | rlimuni 15496 | A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β sup(π΄, β*, < ) = +β) & β’ (π β πΉ βπ π΅) & β’ (π β πΉ βπ πΆ) β β’ (π β π΅ = πΆ) | ||
Theorem | rlimdm 15497 | Two ways to express that a function has a limit. (The expression ( βπ βπΉ) is sometimes useful as a shorthand for "the unique limit of the function πΉ"). (Contributed by Mario Carneiro, 8-May-2016.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β sup(π΄, β*, < ) = +β) β β’ (π β (πΉ β dom βπ β πΉ βπ ( βπ βπΉ))) | ||
Theorem | climuni 15498 | An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.) |
β’ ((πΉ β π΄ β§ πΉ β π΅) β π΄ = π΅) | ||
Theorem | fclim 15499 | The limit relation is function-like, and with codomain the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014.) |
β’ β :dom β βΆβ | ||
Theorem | climdm 15500 | Two ways to express that a function has a limit. (The expression ( β βπΉ) is sometimes useful as a shorthand for "the unique limit of the function πΉ"). (Contributed by Mario Carneiro, 18-Mar-2014.) |
β’ (πΉ β dom β β πΉ β ( β βπΉ)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |