| Metamath
Proof Explorer Theorem List (p. 155 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | limsupgval 15401* | Value of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.) |
| ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⇒ ⊢ (𝑀 ∈ ℝ → (𝐺‘𝑀) = sup(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < )) | ||
| Theorem | limsupgle 15402* | The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.) |
| ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⇒ ⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺‘𝐶) ≤ 𝐴 ↔ ∀𝑗 ∈ 𝐵 (𝐶 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) | ||
| Theorem | limsuple 15403* | The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
| ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⇒ ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) | ||
| Theorem | limsuplt 15404* | The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
| ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⇒ ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑗 ∈ ℝ (𝐺‘𝑗) < 𝐴)) | ||
| Theorem | limsupval2 15405* | The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
| ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = inf((𝐺 “ 𝐴), ℝ*, < )) | ||
| Theorem | limsupgre 15406* | If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
| ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℝ ∧ (lim sup‘𝐹) < +∞) → 𝐺:ℝ⟶ℝ) | ||
| Theorem | limsupbnd1 15407* | If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (The converse is only true if the less or equal is replaced by strictly less than; consider the sequence 1 / 𝑛 which is never less or equal to zero even though the limsup is.) (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
| ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) | ||
| Theorem | limsupbnd2 15408* | If a sequence is eventually greater than 𝐴, then the limsup is also greater than 𝐴. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
| ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → sup(𝐵, ℝ*, < ) = +∞) & ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → 𝐴 ≤ (𝐹‘𝑗))) ⇒ ⊢ (𝜑 → 𝐴 ≤ (lim sup‘𝐹)) | ||
| Syntax | cli 15409 | Extend class notation with convergence relation for limits. |
| class ⇝ | ||
| Syntax | crli 15410 | Extend class notation with real convergence relation for limits. |
| class ⇝𝑟 | ||
| Syntax | co1 15411 | Extend class notation with the set of all eventually bounded functions. |
| class 𝑂(1) | ||
| Syntax | clo1 15412 | Extend class notation with the set of all eventually upper bounded functions. |
| class ≤𝑂(1) | ||
| Definition | df-clim 15413* | Define the limit relation for complex number sequences. See clim 15419 for its relational expression. (Contributed by NM, 28-Aug-2005.) |
| ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | ||
| Definition | df-rlim 15414* | Define the limit relation for partial functions on the reals. See rlim 15420 for its relational expression. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} | ||
| Definition | df-o1 15415* | Define the set of eventually bounded functions. We don't bother to build the full conception of big-O notation, because we can represent any big-O in terms of 𝑂(1) and division, and any little-O in terms of a limit and division. We could also use limsup for this, but it only works on integer sequences, while this will work for real sequences or integer sequences. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓‘𝑦)) ≤ 𝑚} | ||
| Definition | df-lo1 15416* | Define the set of eventually upper bounded real functions. This fills a gap in 𝑂(1) coverage, to express statements like 𝑓(𝑥) ≤ 𝑔(𝑥) + 𝑂(𝑥) via (𝑥 ∈ ℝ+ ↦ (𝑓(𝑥) − 𝑔(𝑥)) / 𝑥) ∈ ≤𝑂(1). (Contributed by Mario Carneiro, 25-May-2016.) |
| ⊢ ≤𝑂(1) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ 𝑚} | ||
| Theorem | climrel 15417 | The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ Rel ⇝ | ||
| Theorem | rlimrel 15418 | The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.) |
| ⊢ Rel ⇝𝑟 | ||
| Theorem | clim 15419* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑗 such that the absolute difference of any later complex number in the sequence and the limit is less than 𝑥. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
| Theorem | rlim 15420* | Express the predicate: The limit of complex number function 𝐹 is 𝐶, or 𝐹 converges to 𝐶, in the real sense. This means that for any real 𝑥, no matter how small, there always exists a number 𝑦 such that the absolute difference of any number in the function beyond 𝑦 and the limit is less than 𝑥. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥)))) | ||
| Theorem | rlim2 15421* | Rewrite rlim 15420 for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.) |
| ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) | ||
| Theorem | rlim2lt 15422* | Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) | ||
| Theorem | rlim3 15423* | Restrict the range of the domain bound to reals greater than some 𝐷 ∈ ℝ. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) | ||
| Theorem | climcl 15424 | Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | ||
| Theorem | rlimpm 15425 | Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ (ℂ ↑pm ℝ)) | ||
| Theorem | rlimf 15426 | Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹:dom 𝐹⟶ℂ) | ||
| Theorem | rlimss 15427 | Domain closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ (𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ) | ||
| Theorem | rlimcl 15428 | Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ) | ||
| Theorem | clim2 15429* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 15419. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
| Theorem | clim2c 15430* | Express the predicate 𝐹 converges to 𝐴. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥)) | ||
| Theorem | clim0 15431* | Express the predicate 𝐹 converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘𝐵) < 𝑥))) | ||
| Theorem | clim0c 15432* | Express the predicate 𝐹 converges to 0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) | ||
| Theorem | rlim0 15433* | Express the predicate 𝐵(𝑧) converges to 0. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.) |
| ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) | ||
| Theorem | rlim0lt 15434* | Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.) |
| ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥))) | ||
| Theorem | climi 15435* | Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶)) | ||
| Theorem | climi2 15436* | Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) | ||
| Theorem | climi0 15437* | Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝐹 ⇝ 0) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝐶) | ||
| Theorem | rlimi 15438* | Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.) |
| ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) | ||
| Theorem | rlimi2 15439* | Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016.) |
| ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) & ⊢ (𝜑 → 𝐷 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) | ||
| Theorem | ello1 15440* | Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ 𝑚)) | ||
| Theorem | ello12 15441* | Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ 𝑚))) | ||
| Theorem | ello12r 15442* | Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ 𝑀)) → 𝐹 ∈ ≤𝑂(1)) | ||
| Theorem | lo1f 15443 | An eventually upper bounded function is a function. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ) | ||
| Theorem | lo1dm 15444 | An eventually upper bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ) | ||
| Theorem | lo1bdd 15445* | The defining property of an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:𝐴⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ 𝑚)) | ||
| Theorem | ello1mpt 15446* | Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) | ||
| Theorem | ello1mpt2 15447* | Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚))) | ||
| Theorem | ello1d 15448* | Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ≤ 𝑀) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) | ||
| Theorem | lo1bdd2 15449* | If an eventually bounded function is bounded on every interval 𝐴 ∩ (-∞, 𝑦) by a function 𝑀(𝑦), then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) & ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) | ||
| Theorem | lo1bddrp 15450* | Refine o1bdd2 15466 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) & ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) | ||
| Theorem | elo1 15451* | Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) | ||
| Theorem | elo12 15452* | Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) | ||
| Theorem | elo12r 15453* | Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1)) | ||
| Theorem | o1f 15454 | An eventually bounded function is a function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ) | ||
| Theorem | o1dm 15455 | An eventually bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) | ||
| Theorem | o1bdd 15456* | The defining property of an eventually bounded function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚)) | ||
| Theorem | lo1o1 15457 | A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ 𝑂(1) ↔ (abs ∘ 𝐹) ∈ ≤𝑂(1))) | ||
| Theorem | lo1o12 15458* | A function is eventually bounded iff its absolute value is eventually upper bounded. (This function is useful for converting theorems about ≤𝑂(1) to 𝑂(1).) (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1))) | ||
| Theorem | elo1mpt 15459* | Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 21-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → (abs‘𝐵) ≤ 𝑚))) | ||
| Theorem | elo1mpt2 15460* | Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 12-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → (abs‘𝐵) ≤ 𝑚))) | ||
| Theorem | elo1d 15461* | Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 21-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → (abs‘𝐵) ≤ 𝑀) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) | ||
| Theorem | o1lo1 15462* | A real function is eventually bounded iff it is eventually lower bounded and eventually upper bounded. (Contributed by Mario Carneiro, 25-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))) | ||
| Theorem | o1lo12 15463* | A lower bounded real function is eventually bounded iff it is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1))) | ||
| Theorem | o1lo1d 15464* | A real eventually bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) | ||
| Theorem | icco1 15465* | Derive eventual boundedness from separate upper and lower eventual bounds. (Contributed by Mario Carneiro, 15-Apr-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥)) → 𝐵 ∈ (𝑀[,]𝑁)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) | ||
| Theorem | o1bdd2 15466* | If an eventually bounded function is bounded on every interval 𝐴 ∩ (-∞, 𝑦) by a function 𝑀(𝑦), then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) & ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘𝐵) ≤ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑚) | ||
| Theorem | o1bddrp 15467* | Refine o1bdd2 15466 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) & ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘𝐵) ≤ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℝ+ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑚) | ||
| Theorem | climconst 15468* | An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | ||
| Theorem | rlimconst 15469* | A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵) | ||
| Theorem | rlimclim1 15470 | Forward direction of rlimclim 15471. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ dom 𝐹) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | ||
| Theorem | rlimclim 15471 | A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝𝑟 𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
| Theorem | climrlim2 15472* | Produce a real limit from an integer limit, where the real function is only dependent on the integer part of 𝑥. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝑛 = (⌊‘𝑥) → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ≤ 𝑥) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) | ||
| Theorem | climconst2 15473 | A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ (ℤ≥‘𝑀) ⊆ 𝑍 & ⊢ 𝑍 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝐴}) ⇝ 𝐴) | ||
| Theorem | climz 15474 | The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ (ℤ × {0}) ⇝ 0 | ||
| Theorem | rlimuni 15475 | A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐵) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐶) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
| Theorem | rlimdm 15476 | Two ways to express that a function has a limit. (The expression ( ⇝𝑟 ‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 8-May-2016.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) | ||
| Theorem | climuni 15477 | An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.) |
| ⊢ ((𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵) → 𝐴 = 𝐵) | ||
| Theorem | fclim 15478 | The limit relation is function-like, and with codomain the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| ⊢ ⇝ :dom ⇝ ⟶ℂ | ||
| Theorem | climdm 15479 | Two ways to express that a function has a limit. (The expression ( ⇝ ‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | ||
| Theorem | climeu 15480* | An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.) |
| ⊢ (𝐹 ⇝ 𝐴 → ∃!𝑥 𝐹 ⇝ 𝑥) | ||
| Theorem | climreu 15481* | An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.) |
| ⊢ (𝐹 ⇝ 𝐴 → ∃!𝑥 ∈ ℂ 𝐹 ⇝ 𝑥) | ||
| Theorem | climmo 15482* | An infinite sequence of complex numbers converges to at most one limit. (Contributed by Mario Carneiro, 13-Jul-2013.) |
| ⊢ ∃*𝑥 𝐹 ⇝ 𝑥 | ||
| Theorem | rlimres 15483 | The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ (𝐹 ⇝𝑟 𝐴 → (𝐹 ↾ 𝐵) ⇝𝑟 𝐴) | ||
| Theorem | lo1res 15484 | The restriction of an eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ 𝐴) ∈ ≤𝑂(1)) | ||
| Theorem | o1res 15485 | The restriction of an eventually bounded function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝐹 ∈ 𝑂(1) → (𝐹 ↾ 𝐴) ∈ 𝑂(1)) | ||
| Theorem | rlimres2 15486* | The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝𝑟 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) | ||
| Theorem | lo1res2 15487* | The restriction of a function is eventually bounded if the original is. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ ≤𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) | ||
| Theorem | o1res2 15488* | The restriction of a function is eventually bounded if the original is. (Contributed by Mario Carneiro, 21-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) | ||
| Theorem | lo1resb 15489 | The restriction of a function to an unbounded-above interval is eventually upper bounded iff the original is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1))) | ||
| Theorem | rlimresb 15490 | The restriction of a function to an unbounded-above interval converges iff the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐹 ⇝𝑟 𝐶 ↔ (𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶)) | ||
| Theorem | o1resb 15491 | The restriction of a function to an unbounded-above interval is eventually bounded iff the original is eventually bounded. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈ 𝑂(1))) | ||
| Theorem | climeq 15492* | Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | ||
| Theorem | lo1eq 15493* | Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥)) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1))) | ||
| Theorem | rlimeq 15494* | Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥)) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐸 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸)) | ||
| Theorem | o1eq 15495* | Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥)) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) | ||
| Theorem | climmpt 15496* | Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | ||
| Theorem | 2clim 15497* | If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < 𝑥) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | ||
| Theorem | climmpt2 15498* | Relate an integer limit on a not-quite-function to a real limit. (Contributed by Mario Carneiro, 17-Sep-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐴)) | ||
| Theorem | climshftlem 15499 | A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝑀 ∈ ℤ → (𝐹 ⇝ 𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴)) | ||
| Theorem | climres 15500 | A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 ↾ (ℤ≥‘𝑀)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |