![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limsupcl | Structured version Visualization version GIF version |
Description: Closure of the superior limit. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2020.) |
Ref | Expression |
---|---|
limsupcl | β’ (πΉ β π β (lim supβπΉ) β β*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 β’ (πΉ β π β πΉ β V) | |
2 | df-limsup 15419 | . . . 4 β’ lim sup = (π β V β¦ inf(ran (π β β β¦ sup(((π β (π[,)+β)) β© β*), β*, < )), β*, < )) | |
3 | eqid 2732 | . . . . . . 7 β’ (π β β β¦ sup(((π β (π[,)+β)) β© β*), β*, < )) = (π β β β¦ sup(((π β (π[,)+β)) β© β*), β*, < )) | |
4 | inss2 4229 | . . . . . . . 8 β’ ((π β (π[,)+β)) β© β*) β β* | |
5 | supxrcl 13298 | . . . . . . . 8 β’ (((π β (π[,)+β)) β© β*) β β* β sup(((π β (π[,)+β)) β© β*), β*, < ) β β*) | |
6 | 4, 5 | mp1i 13 | . . . . . . 7 β’ (π β β β sup(((π β (π[,)+β)) β© β*), β*, < ) β β*) |
7 | 3, 6 | fmpti 7113 | . . . . . 6 β’ (π β β β¦ sup(((π β (π[,)+β)) β© β*), β*, < )):ββΆβ* |
8 | frn 6724 | . . . . . 6 β’ ((π β β β¦ sup(((π β (π[,)+β)) β© β*), β*, < )):ββΆβ* β ran (π β β β¦ sup(((π β (π[,)+β)) β© β*), β*, < )) β β*) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 β’ ran (π β β β¦ sup(((π β (π[,)+β)) β© β*), β*, < )) β β* |
10 | infxrcl 13316 | . . . . 5 β’ (ran (π β β β¦ sup(((π β (π[,)+β)) β© β*), β*, < )) β β* β inf(ran (π β β β¦ sup(((π β (π[,)+β)) β© β*), β*, < )), β*, < ) β β*) | |
11 | 9, 10 | mp1i 13 | . . . 4 β’ (π β V β inf(ran (π β β β¦ sup(((π β (π[,)+β)) β© β*), β*, < )), β*, < ) β β*) |
12 | 2, 11 | fmpti 7113 | . . 3 β’ lim sup:VβΆβ* |
13 | 12 | ffvelcdmi 7085 | . 2 β’ (πΉ β V β (lim supβπΉ) β β*) |
14 | 1, 13 | syl 17 | 1 β’ (πΉ β π β (lim supβπΉ) β β*) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2106 Vcvv 3474 β© cin 3947 β wss 3948 β¦ cmpt 5231 ran crn 5677 β cima 5679 βΆwf 6539 βcfv 6543 (class class class)co 7411 supcsup 9437 infcinf 9438 βcr 11111 +βcpnf 11249 β*cxr 11251 < clt 11252 [,)cico 13330 lim supclsp 15418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-limsup 15419 |
This theorem is referenced by: limsuplt 15427 limsupbnd1 15430 caucvgrlem 15623 limsupre 44656 limsupcld 44705 limsupcli 44772 limsupval4 44809 liminfreuzlem 44817 |
Copyright terms: Public domain | W3C validator |