MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupcl Structured version   Visualization version   GIF version

Theorem limsupcl 14818
Description: Closure of the superior limit. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2020.)
Assertion
Ref Expression
limsupcl (𝐹𝑉 → (lim sup‘𝐹) ∈ ℝ*)

Proof of Theorem limsupcl
Dummy variables 𝑘 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3510 . 2 (𝐹𝑉𝐹 ∈ V)
2 df-limsup 14816 . . . 4 lim sup = (𝑓 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
3 eqid 2818 . . . . . . 7 (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
4 inss2 4203 . . . . . . . 8 ((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
5 supxrcl 12696 . . . . . . . 8 (((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
64, 5mp1i 13 . . . . . . 7 (𝑘 ∈ ℝ → sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
73, 6fmpti 6868 . . . . . 6 (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ*
8 frn 6513 . . . . . 6 ((𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ* → ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
97, 8ax-mp 5 . . . . 5 ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*
10 infxrcl 12714 . . . . 5 (ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
119, 10mp1i 13 . . . 4 (𝑓 ∈ V → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
122, 11fmpti 6868 . . 3 lim sup:V⟶ℝ*
1312ffvelrni 6842 . 2 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
141, 13syl 17 1 (𝐹𝑉 → (lim sup‘𝐹) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  Vcvv 3492  cin 3932  wss 3933  cmpt 5137  ran crn 5549  cima 5551  wf 6344  cfv 6348  (class class class)co 7145  supcsup 8892  infcinf 8893  cr 10524  +∞cpnf 10660  *cxr 10662   < clt 10663  [,)cico 12728  lim supclsp 14815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-limsup 14816
This theorem is referenced by:  limsuplt  14824  limsupbnd1  14827  caucvgrlem  15017  limsupre  41798  limsupcld  41847  limsupcli  41914  limsupval4  41951  liminfreuzlem  41959
  Copyright terms: Public domain W3C validator