| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limsupcl | Structured version Visualization version GIF version | ||
| Description: Closure of the superior limit. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2020.) |
| Ref | Expression |
|---|---|
| limsupcl | ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3465 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 2 | df-limsup 15413 | . . . 4 ⊢ lim sup = (𝑓 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 4 | inss2 4197 | . . . . . . . 8 ⊢ ((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* | |
| 5 | supxrcl 13251 | . . . . . . . 8 ⊢ (((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) | |
| 6 | 4, 5 | mp1i 13 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) |
| 7 | 3, 6 | fmpti 7066 | . . . . . 6 ⊢ (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ* |
| 8 | frn 6677 | . . . . . 6 ⊢ ((𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ* → ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* |
| 10 | infxrcl 13270 | . . . . 5 ⊢ (ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*) | |
| 11 | 9, 10 | mp1i 13 | . . . 4 ⊢ (𝑓 ∈ V → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*) |
| 12 | 2, 11 | fmpti 7066 | . . 3 ⊢ lim sup:V⟶ℝ* |
| 13 | 12 | ffvelcdmi 7037 | . 2 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*) |
| 14 | 1, 13 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 ↦ cmpt 5183 ran crn 5632 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 supcsup 9367 infcinf 9368 ℝcr 11043 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 [,)cico 13284 lim supclsp 15412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-limsup 15413 |
| This theorem is referenced by: limsuplt 15421 limsupbnd1 15424 caucvgrlem 15615 limsupre 45612 limsupcld 45661 limsupcli 45728 limsupval4 45765 liminfreuzlem 45773 |
| Copyright terms: Public domain | W3C validator |