MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupcl Structured version   Visualization version   GIF version

Theorem limsupcl 15380
Description: Closure of the superior limit. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2020.)
Assertion
Ref Expression
limsupcl (𝐹𝑉 → (lim sup‘𝐹) ∈ ℝ*)

Proof of Theorem limsupcl
Dummy variables 𝑘 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝐹𝑉𝐹 ∈ V)
2 df-limsup 15378 . . . 4 lim sup = (𝑓 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
3 eqid 2731 . . . . . . 7 (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
4 inss2 4185 . . . . . . . 8 ((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
5 supxrcl 13214 . . . . . . . 8 (((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
64, 5mp1i 13 . . . . . . 7 (𝑘 ∈ ℝ → sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
73, 6fmpti 7045 . . . . . 6 (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ*
8 frn 6658 . . . . . 6 ((𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ* → ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
97, 8ax-mp 5 . . . . 5 ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*
10 infxrcl 13233 . . . . 5 (ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
119, 10mp1i 13 . . . 4 (𝑓 ∈ V → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
122, 11fmpti 7045 . . 3 lim sup:V⟶ℝ*
1312ffvelcdmi 7016 . 2 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
141, 13syl 17 1 (𝐹𝑉 → (lim sup‘𝐹) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  cin 3896  wss 3897  cmpt 5170  ran crn 5615  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  supcsup 9324  infcinf 9325  cr 11005  +∞cpnf 11143  *cxr 11145   < clt 11146  [,)cico 13247  lim supclsp 15377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-limsup 15378
This theorem is referenced by:  limsuplt  15386  limsupbnd1  15389  caucvgrlem  15580  limsupre  45687  limsupcld  45736  limsupcli  45803  limsupval4  45840  liminfreuzlem  45848
  Copyright terms: Public domain W3C validator