MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupcl Structured version   Visualization version   GIF version

Theorem limsupcl 15489
Description: Closure of the superior limit. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2020.)
Assertion
Ref Expression
limsupcl (𝐹𝑉 → (lim sup‘𝐹) ∈ ℝ*)

Proof of Theorem limsupcl
Dummy variables 𝑘 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3480 . 2 (𝐹𝑉𝐹 ∈ V)
2 df-limsup 15487 . . . 4 lim sup = (𝑓 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
3 eqid 2735 . . . . . . 7 (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
4 inss2 4213 . . . . . . . 8 ((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
5 supxrcl 13331 . . . . . . . 8 (((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
64, 5mp1i 13 . . . . . . 7 (𝑘 ∈ ℝ → sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
73, 6fmpti 7102 . . . . . 6 (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ*
8 frn 6713 . . . . . 6 ((𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )):ℝ⟶ℝ* → ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*)
97, 8ax-mp 5 . . . . 5 ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ*
10 infxrcl 13350 . . . . 5 (ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⊆ ℝ* → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
119, 10mp1i 13 . . . 4 (𝑓 ∈ V → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑓 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) ∈ ℝ*)
122, 11fmpti 7102 . . 3 lim sup:V⟶ℝ*
1312ffvelcdmi 7073 . 2 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
141, 13syl 17 1 (𝐹𝑉 → (lim sup‘𝐹) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3459  cin 3925  wss 3926  cmpt 5201  ran crn 5655  cima 5657  wf 6527  cfv 6531  (class class class)co 7405  supcsup 9452  infcinf 9453  cr 11128  +∞cpnf 11266  *cxr 11268   < clt 11269  [,)cico 13364  lim supclsp 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-limsup 15487
This theorem is referenced by:  limsuplt  15495  limsupbnd1  15498  caucvgrlem  15689  limsupre  45670  limsupcld  45719  limsupcli  45786  limsupval4  45823  liminfreuzlem  45831
  Copyright terms: Public domain W3C validator