![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limsupval | Structured version Visualization version GIF version |
Description: The superior limit of an infinite sequence 𝐹 of extended real numbers, which is the infimum of the set of suprema of all upper infinite subsequences of 𝐹. Definition 12-4.1 of [Gleason] p. 175. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2014.) |
Ref | Expression |
---|---|
limsupval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Ref | Expression |
---|---|
limsupval | ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3493 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | imaeq1 6055 | . . . . . . . . 9 ⊢ (𝑥 = 𝐹 → (𝑥 “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) | |
3 | 2 | ineq1d 4212 | . . . . . . . 8 ⊢ (𝑥 = 𝐹 → ((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
4 | 3 | supeq1d 9441 | . . . . . . 7 ⊢ (𝑥 = 𝐹 → sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
5 | 4 | mpteq2dv 5251 | . . . . . 6 ⊢ (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
6 | limsupval.1 | . . . . . 6 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
7 | 5, 6 | eqtr4di 2791 | . . . . 5 ⊢ (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺) |
8 | 7 | rneqd 5938 | . . . 4 ⊢ (𝑥 = 𝐹 → ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺) |
9 | 8 | infeq1d 9472 | . . 3 ⊢ (𝑥 = 𝐹 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran 𝐺, ℝ*, < )) |
10 | df-limsup 15415 | . . 3 ⊢ lim sup = (𝑥 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) | |
11 | xrltso 13120 | . . . 4 ⊢ < Or ℝ* | |
12 | 11 | infex 9488 | . . 3 ⊢ inf(ran 𝐺, ℝ*, < ) ∈ V |
13 | 9, 10, 12 | fvmpt 6999 | . 2 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∩ cin 3948 ↦ cmpt 5232 ran crn 5678 “ cima 5680 ‘cfv 6544 (class class class)co 7409 supcsup 9435 infcinf 9436 ℝcr 11109 +∞cpnf 11245 ℝ*cxr 11247 < clt 11248 [,)cico 13326 lim supclsp 15414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-limsup 15415 |
This theorem is referenced by: limsuple 15422 limsupval2 15424 limsupval3 44408 limsup0 44410 limsupresre 44412 limsuplesup 44415 limsuppnfdlem 44417 limsupres 44421 limsupvald 44471 limsupresxr 44482 liminfvalxr 44499 |
Copyright terms: Public domain | W3C validator |