![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limsupval | Structured version Visualization version GIF version |
Description: The superior limit of an infinite sequence 𝐹 of extended real numbers, which is the infimum of the set of suprema of all upper infinite subsequences of 𝐹. Definition 12-4.1 of [Gleason] p. 175. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2014.) |
Ref | Expression |
---|---|
limsupval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Ref | Expression |
---|---|
limsupval | ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3400 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | imaeq1 5678 | . . . . . . . . 9 ⊢ (𝑥 = 𝐹 → (𝑥 “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) | |
3 | 2 | ineq1d 4011 | . . . . . . . 8 ⊢ (𝑥 = 𝐹 → ((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
4 | 3 | supeq1d 8594 | . . . . . . 7 ⊢ (𝑥 = 𝐹 → sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
5 | 4 | mpteq2dv 4938 | . . . . . 6 ⊢ (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
6 | limsupval.1 | . . . . . 6 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
7 | 5, 6 | syl6eqr 2851 | . . . . 5 ⊢ (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺) |
8 | 7 | rneqd 5556 | . . . 4 ⊢ (𝑥 = 𝐹 → ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺) |
9 | 8 | infeq1d 8625 | . . 3 ⊢ (𝑥 = 𝐹 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran 𝐺, ℝ*, < )) |
10 | df-limsup 14543 | . . 3 ⊢ lim sup = (𝑥 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) | |
11 | xrltso 12221 | . . . 4 ⊢ < Or ℝ* | |
12 | 11 | infex 8641 | . . 3 ⊢ inf(ran 𝐺, ℝ*, < ) ∈ V |
13 | 9, 10, 12 | fvmpt 6507 | . 2 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∩ cin 3768 ↦ cmpt 4922 ran crn 5313 “ cima 5315 ‘cfv 6101 (class class class)co 6878 supcsup 8588 infcinf 8589 ℝcr 10223 +∞cpnf 10360 ℝ*cxr 10362 < clt 10363 [,)cico 12426 lim supclsp 14542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-pre-lttri 10298 ax-pre-lttrn 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-sup 8590 df-inf 8591 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-limsup 14543 |
This theorem is referenced by: limsuple 14550 limsupval2 14552 limsupval3 40668 limsup0 40670 limsupresre 40672 limsuplesup 40675 limsuppnfdlem 40677 limsupres 40681 limsupvald 40731 limsupresxr 40742 liminfvalxr 40759 |
Copyright terms: Public domain | W3C validator |