| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limsupval | Structured version Visualization version GIF version | ||
| Description: The superior limit of an infinite sequence 𝐹 of extended real numbers, which is the infimum of the set of suprema of all upper infinite subsequences of 𝐹. Definition 12-4.1 of [Gleason] p. 175. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2014.) |
| Ref | Expression |
|---|---|
| limsupval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| Ref | Expression |
|---|---|
| limsupval | ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3459 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 2 | imaeq1 6010 | . . . . . . . . 9 ⊢ (𝑥 = 𝐹 → (𝑥 “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) | |
| 3 | 2 | ineq1d 4172 | . . . . . . . 8 ⊢ (𝑥 = 𝐹 → ((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
| 4 | 3 | supeq1d 9355 | . . . . . . 7 ⊢ (𝑥 = 𝐹 → sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 5 | 4 | mpteq2dv 5189 | . . . . . 6 ⊢ (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
| 6 | limsupval.1 | . . . . . 6 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 7 | 5, 6 | eqtr4di 2782 | . . . . 5 ⊢ (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺) |
| 8 | 7 | rneqd 5884 | . . . 4 ⊢ (𝑥 = 𝐹 → ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺) |
| 9 | 8 | infeq1d 9387 | . . 3 ⊢ (𝑥 = 𝐹 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran 𝐺, ℝ*, < )) |
| 10 | df-limsup 15396 | . . 3 ⊢ lim sup = (𝑥 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) | |
| 11 | xrltso 13061 | . . . 4 ⊢ < Or ℝ* | |
| 12 | 11 | infex 9404 | . . 3 ⊢ inf(ran 𝐺, ℝ*, < ) ∈ V |
| 13 | 9, 10, 12 | fvmpt 6934 | . 2 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
| 14 | 1, 13 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 ↦ cmpt 5176 ran crn 5624 “ cima 5626 ‘cfv 6486 (class class class)co 7353 supcsup 9349 infcinf 9350 ℝcr 11027 +∞cpnf 11165 ℝ*cxr 11167 < clt 11168 [,)cico 13268 lim supclsp 15395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-limsup 15396 |
| This theorem is referenced by: limsuple 15403 limsupval2 15405 limsupval3 45674 limsup0 45676 limsupresre 45678 limsuplesup 45681 limsuppnfdlem 45683 limsupres 45687 limsupvald 45737 limsupresxr 45748 liminfvalxr 45765 |
| Copyright terms: Public domain | W3C validator |