![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limsupval | Structured version Visualization version GIF version |
Description: The superior limit of an infinite sequence 𝐹 of extended real numbers, which is the infimum of the set of suprema of all upper infinite subsequences of 𝐹. Definition 12-4.1 of [Gleason] p. 175. (Contributed by NM, 26-Oct-2005.) (Revised by AV, 12-Sep-2014.) |
Ref | Expression |
---|---|
limsupval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Ref | Expression |
---|---|
limsupval | ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3462 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | imaeq1 6009 | . . . . . . . . 9 ⊢ (𝑥 = 𝐹 → (𝑥 “ (𝑘[,)+∞)) = (𝐹 “ (𝑘[,)+∞))) | |
3 | 2 | ineq1d 4172 | . . . . . . . 8 ⊢ (𝑥 = 𝐹 → ((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) |
4 | 3 | supeq1d 9387 | . . . . . . 7 ⊢ (𝑥 = 𝐹 → sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
5 | 4 | mpteq2dv 5208 | . . . . . 6 ⊢ (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) |
6 | limsupval.1 | . . . . . 6 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
7 | 5, 6 | eqtr4di 2791 | . . . . 5 ⊢ (𝑥 = 𝐹 → (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = 𝐺) |
8 | 7 | rneqd 5894 | . . . 4 ⊢ (𝑥 = 𝐹 → ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran 𝐺) |
9 | 8 | infeq1d 9418 | . . 3 ⊢ (𝑥 = 𝐹 → inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran 𝐺, ℝ*, < )) |
10 | df-limsup 15359 | . . 3 ⊢ lim sup = (𝑥 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) | |
11 | xrltso 13066 | . . . 4 ⊢ < Or ℝ* | |
12 | 11 | infex 9434 | . . 3 ⊢ inf(ran 𝐺, ℝ*, < ) ∈ V |
13 | 9, 10, 12 | fvmpt 6949 | . 2 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3444 ∩ cin 3910 ↦ cmpt 5189 ran crn 5635 “ cima 5637 ‘cfv 6497 (class class class)co 7358 supcsup 9381 infcinf 9382 ℝcr 11055 +∞cpnf 11191 ℝ*cxr 11193 < clt 11194 [,)cico 13272 lim supclsp 15358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-pre-lttri 11130 ax-pre-lttrn 11131 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-sup 9383 df-inf 9384 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-limsup 15359 |
This theorem is referenced by: limsuple 15366 limsupval2 15368 limsupval3 44019 limsup0 44021 limsupresre 44023 limsuplesup 44026 limsuppnfdlem 44028 limsupres 44032 limsupvald 44082 limsupresxr 44093 liminfvalxr 44110 |
Copyright terms: Public domain | W3C validator |