MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgord Structured version   Visualization version   GIF version

Theorem limsupgord 15109
Description: Ordering property of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
Assertion
Ref Expression
limsupgord ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))

Proof of Theorem limsupgord
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexr 10952 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
213ad2ant1 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
3 simp3 1136 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
4 df-ico 13014 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
5 xrletr 12821 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐵𝐵𝑤) → 𝐴𝑤))
64, 4, 5ixxss1 13026 . . . . 5 ((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞))
72, 3, 6syl2anc 583 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞))
8 imass2 5999 . . . 4 ((𝐵[,)+∞) ⊆ (𝐴[,)+∞) → (𝐹 “ (𝐵[,)+∞)) ⊆ (𝐹 “ (𝐴[,)+∞)))
9 ssrin 4164 . . . 4 ((𝐹 “ (𝐵[,)+∞)) ⊆ (𝐹 “ (𝐴[,)+∞)) → ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*))
107, 8, 93syl 18 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*))
11 inss2 4160 . . . . . 6 ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ*
12 supxrcl 12978 . . . . . 6 (((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1311, 12ax-mp 5 . . . . 5 sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
14 xrleid 12814 . . . . 5 (sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ* → sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
1513, 14ax-mp 5 . . . 4 sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )
16 supxrleub 12989 . . . . 5 ((((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ* ∧ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )))
1711, 13, 16mp2an 688 . . . 4 (sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
1815, 17mpbi 229 . . 3 𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )
19 ssralv 3983 . . 3 (((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) → ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )))
2010, 18, 19mpisyl 21 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
21 inss2 4160 . . 3 ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ℝ*
22 supxrleub 12989 . . 3 ((((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ℝ* ∧ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )))
2321, 13, 22mp2an 688 . 2 (sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
2420, 23sylibr 233 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085  wcel 2108  wral 3063  cin 3882  wss 3883   class class class wbr 5070  cima 5583  (class class class)co 7255  supcsup 9129  cr 10801  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  [,)cico 13010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-ico 13014
This theorem is referenced by:  limsupval2  15117
  Copyright terms: Public domain W3C validator