MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgord Structured version   Visualization version   GIF version

Theorem limsupgord 15181
Description: Ordering property of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
Assertion
Ref Expression
limsupgord ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))

Proof of Theorem limsupgord
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexr 11021 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
213ad2ant1 1132 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ*)
3 simp3 1137 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
4 df-ico 13085 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
5 xrletr 12892 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐵𝐵𝑤) → 𝐴𝑤))
64, 4, 5ixxss1 13097 . . . . 5 ((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞))
72, 3, 6syl2anc 584 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞))
8 imass2 6010 . . . 4 ((𝐵[,)+∞) ⊆ (𝐴[,)+∞) → (𝐹 “ (𝐵[,)+∞)) ⊆ (𝐹 “ (𝐴[,)+∞)))
9 ssrin 4167 . . . 4 ((𝐹 “ (𝐵[,)+∞)) ⊆ (𝐹 “ (𝐴[,)+∞)) → ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*))
107, 8, 93syl 18 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*))
11 inss2 4163 . . . . . 6 ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ*
12 supxrcl 13049 . . . . . 6 (((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ* → sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
1311, 12ax-mp 5 . . . . 5 sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
14 xrleid 12885 . . . . 5 (sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ* → sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
1513, 14ax-mp 5 . . . 4 sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )
16 supxrleub 13060 . . . . 5 ((((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) ⊆ ℝ* ∧ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )))
1711, 13, 16mp2an 689 . . . 4 (sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
1815, 17mpbi 229 . . 3 𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )
19 ssralv 3987 . . 3 (((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) → ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )))
2010, 18, 19mpisyl 21 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
21 inss2 4163 . . 3 ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ℝ*
22 supxrleub 13060 . . 3 ((((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*) ⊆ ℝ* ∧ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*) → (sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < )))
2321, 13, 22mp2an 689 . 2 (sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ↔ ∀𝑥 ∈ ((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*)𝑥 ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
2420, 23sylibr 233 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → sup(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ sup(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086  wcel 2106  wral 3064  cin 3886  wss 3887   class class class wbr 5074  cima 5592  (class class class)co 7275  supcsup 9199  cr 10870  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  [,)cico 13081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-ico 13085
This theorem is referenced by:  limsupval2  15189
  Copyright terms: Public domain W3C validator