Detailed syntax breakdown of Definition df-lines
Step | Hyp | Ref
| Expression |
1 | | clines 37435 |
. 2
class
Lines |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3422 |
. . 3
class
V |
4 | | vq |
. . . . . . . . 9
setvar 𝑞 |
5 | 4 | cv 1538 |
. . . . . . . 8
class 𝑞 |
6 | | vr |
. . . . . . . . 9
setvar 𝑟 |
7 | 6 | cv 1538 |
. . . . . . . 8
class 𝑟 |
8 | 5, 7 | wne 2942 |
. . . . . . 7
wff 𝑞 ≠ 𝑟 |
9 | | vs |
. . . . . . . . 9
setvar 𝑠 |
10 | 9 | cv 1538 |
. . . . . . . 8
class 𝑠 |
11 | | vp |
. . . . . . . . . . 11
setvar 𝑝 |
12 | 11 | cv 1538 |
. . . . . . . . . 10
class 𝑝 |
13 | 2 | cv 1538 |
. . . . . . . . . . . 12
class 𝑘 |
14 | | cjn 17944 |
. . . . . . . . . . . 12
class
join |
15 | 13, 14 | cfv 6418 |
. . . . . . . . . . 11
class
(join‘𝑘) |
16 | 5, 7, 15 | co 7255 |
. . . . . . . . . 10
class (𝑞(join‘𝑘)𝑟) |
17 | | cple 16895 |
. . . . . . . . . . 11
class
le |
18 | 13, 17 | cfv 6418 |
. . . . . . . . . 10
class
(le‘𝑘) |
19 | 12, 16, 18 | wbr 5070 |
. . . . . . . . 9
wff 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟) |
20 | | catm 37204 |
. . . . . . . . . 10
class
Atoms |
21 | 13, 20 | cfv 6418 |
. . . . . . . . 9
class
(Atoms‘𝑘) |
22 | 19, 11, 21 | crab 3067 |
. . . . . . . 8
class {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)} |
23 | 10, 22 | wceq 1539 |
. . . . . . 7
wff 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)} |
24 | 8, 23 | wa 395 |
. . . . . 6
wff (𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) |
25 | 24, 6, 21 | wrex 3064 |
. . . . 5
wff
∃𝑟 ∈
(Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) |
26 | 25, 4, 21 | wrex 3064 |
. . . 4
wff
∃𝑞 ∈
(Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) |
27 | 26, 9 | cab 2715 |
. . 3
class {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})} |
28 | 2, 3, 27 | cmpt 5153 |
. 2
class (𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})}) |
29 | 1, 28 | wceq 1539 |
1
wff Lines =
(𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})}) |