Detailed syntax breakdown of Definition df-lines
| Step | Hyp | Ref
| Expression |
| 1 | | clines 39496 |
. 2
class
Lines |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vq |
. . . . . . . . 9
setvar 𝑞 |
| 5 | 4 | cv 1539 |
. . . . . . . 8
class 𝑞 |
| 6 | | vr |
. . . . . . . . 9
setvar 𝑟 |
| 7 | 6 | cv 1539 |
. . . . . . . 8
class 𝑟 |
| 8 | 5, 7 | wne 2940 |
. . . . . . 7
wff 𝑞 ≠ 𝑟 |
| 9 | | vs |
. . . . . . . . 9
setvar 𝑠 |
| 10 | 9 | cv 1539 |
. . . . . . . 8
class 𝑠 |
| 11 | | vp |
. . . . . . . . . . 11
setvar 𝑝 |
| 12 | 11 | cv 1539 |
. . . . . . . . . 10
class 𝑝 |
| 13 | 2 | cv 1539 |
. . . . . . . . . . . 12
class 𝑘 |
| 14 | | cjn 18357 |
. . . . . . . . . . . 12
class
join |
| 15 | 13, 14 | cfv 6561 |
. . . . . . . . . . 11
class
(join‘𝑘) |
| 16 | 5, 7, 15 | co 7431 |
. . . . . . . . . 10
class (𝑞(join‘𝑘)𝑟) |
| 17 | | cple 17304 |
. . . . . . . . . . 11
class
le |
| 18 | 13, 17 | cfv 6561 |
. . . . . . . . . 10
class
(le‘𝑘) |
| 19 | 12, 16, 18 | wbr 5143 |
. . . . . . . . 9
wff 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟) |
| 20 | | catm 39264 |
. . . . . . . . . 10
class
Atoms |
| 21 | 13, 20 | cfv 6561 |
. . . . . . . . 9
class
(Atoms‘𝑘) |
| 22 | 19, 11, 21 | crab 3436 |
. . . . . . . 8
class {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)} |
| 23 | 10, 22 | wceq 1540 |
. . . . . . 7
wff 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)} |
| 24 | 8, 23 | wa 395 |
. . . . . 6
wff (𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) |
| 25 | 24, 6, 21 | wrex 3070 |
. . . . 5
wff
∃𝑟 ∈
(Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) |
| 26 | 25, 4, 21 | wrex 3070 |
. . . 4
wff
∃𝑞 ∈
(Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) |
| 27 | 26, 9 | cab 2714 |
. . 3
class {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})} |
| 28 | 2, 3, 27 | cmpt 5225 |
. 2
class (𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})}) |
| 29 | 1, 28 | wceq 1540 |
1
wff Lines =
(𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})}) |