Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineset Structured version   Visualization version   GIF version

Theorem lineset 39858
Description: The set of lines in a Hilbert lattice. (Contributed by NM, 19-Sep-2011.)
Hypotheses
Ref Expression
lineset.l = (le‘𝐾)
lineset.j = (join‘𝐾)
lineset.a 𝐴 = (Atoms‘𝐾)
lineset.n 𝑁 = (Lines‘𝐾)
Assertion
Ref Expression
lineset (𝐾𝐵𝑁 = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   𝐾,𝑝,𝑞,𝑟,𝑠   ,𝑠   ,𝑠
Allowed substitution hints:   𝐵(𝑠,𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   𝑁(𝑠,𝑟,𝑞,𝑝)

Proof of Theorem lineset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝐾𝐵𝐾 ∈ V)
2 lineset.n . . 3 𝑁 = (Lines‘𝐾)
3 fveq2 6828 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 lineset.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2786 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
6 fveq2 6828 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
7 lineset.l . . . . . . . . . . . . 13 = (le‘𝐾)
86, 7eqtr4di 2786 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = )
98breqd 5104 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟) ↔ 𝑝 (𝑞(join‘𝑘)𝑟)))
10 fveq2 6828 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
11 lineset.j . . . . . . . . . . . . . 14 = (join‘𝐾)
1210, 11eqtr4di 2786 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = )
1312oveqd 7369 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (𝑞(join‘𝑘)𝑟) = (𝑞 𝑟))
1413breq2d 5105 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑝 (𝑞(join‘𝑘)𝑟) ↔ 𝑝 (𝑞 𝑟)))
159, 14bitrd 279 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟) ↔ 𝑝 (𝑞 𝑟)))
165, 15rabeqbidv 3414 . . . . . . . . 9 (𝑘 = 𝐾 → {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)} = {𝑝𝐴𝑝 (𝑞 𝑟)})
1716eqeq2d 2744 . . . . . . . 8 (𝑘 = 𝐾 → (𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)} ↔ 𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}))
1817anbi2d 630 . . . . . . 7 (𝑘 = 𝐾 → ((𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) ↔ (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
195, 18rexeqbidv 3314 . . . . . 6 (𝑘 = 𝐾 → (∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) ↔ ∃𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
205, 19rexeqbidv 3314 . . . . 5 (𝑘 = 𝐾 → (∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
2120abbidv 2799 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})} = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
22 df-lines 39621 . . . 4 Lines = (𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})})
234fvexi 6842 . . . . 5 𝐴 ∈ V
24 df-sn 4576 . . . . . . 7 {{𝑝𝐴𝑝 (𝑞 𝑟)}} = {𝑠𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}}
25 snex 5376 . . . . . . 7 {{𝑝𝐴𝑝 (𝑞 𝑟)}} ∈ V
2624, 25eqeltrri 2830 . . . . . 6 {𝑠𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}} ∈ V
27 simpr 484 . . . . . . 7 ((𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}) → 𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})
2827ss2abi 4015 . . . . . 6 {𝑠 ∣ (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})} ⊆ {𝑠𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}}
2926, 28ssexi 5262 . . . . 5 {𝑠 ∣ (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})} ∈ V
3023, 23, 29ab2rexex2 7918 . . . 4 {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})} ∈ V
3121, 22, 30fvmpt 6935 . . 3 (𝐾 ∈ V → (Lines‘𝐾) = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
322, 31eqtrid 2780 . 2 (𝐾 ∈ V → 𝑁 = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
331, 32syl 17 1 (𝐾𝐵𝑁 = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wrex 3057  {crab 3396  Vcvv 3437  {csn 4575   class class class wbr 5093  cfv 6486  (class class class)co 7352  lecple 17170  joincjn 18219  Atomscatm 39383  Linesclines 39614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-lines 39621
This theorem is referenced by:  isline  39859
  Copyright terms: Public domain W3C validator