Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineset Structured version   Visualization version   GIF version

Theorem lineset 36319
Description: The set of lines in a Hilbert lattice. (Contributed by NM, 19-Sep-2011.)
Hypotheses
Ref Expression
lineset.l = (le‘𝐾)
lineset.j = (join‘𝐾)
lineset.a 𝐴 = (Atoms‘𝐾)
lineset.n 𝑁 = (Lines‘𝐾)
Assertion
Ref Expression
lineset (𝐾𝐵𝑁 = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   𝐾,𝑝,𝑞,𝑟,𝑠   ,𝑠   ,𝑠
Allowed substitution hints:   𝐵(𝑠,𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   𝑁(𝑠,𝑟,𝑞,𝑝)

Proof of Theorem lineset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3427 . 2 (𝐾𝐵𝐾 ∈ V)
2 lineset.n . . 3 𝑁 = (Lines‘𝐾)
3 fveq2 6493 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
4 lineset.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4syl6eqr 2826 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
6 fveq2 6493 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
7 lineset.l . . . . . . . . . . . . 13 = (le‘𝐾)
86, 7syl6eqr 2826 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = )
98breqd 4934 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟) ↔ 𝑝 (𝑞(join‘𝑘)𝑟)))
10 fveq2 6493 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
11 lineset.j . . . . . . . . . . . . . 14 = (join‘𝐾)
1210, 11syl6eqr 2826 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = )
1312oveqd 6987 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (𝑞(join‘𝑘)𝑟) = (𝑞 𝑟))
1413breq2d 4935 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑝 (𝑞(join‘𝑘)𝑟) ↔ 𝑝 (𝑞 𝑟)))
159, 14bitrd 271 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟) ↔ 𝑝 (𝑞 𝑟)))
165, 15rabeqbidv 3402 . . . . . . . . 9 (𝑘 = 𝐾 → {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)} = {𝑝𝐴𝑝 (𝑞 𝑟)})
1716eqeq2d 2782 . . . . . . . 8 (𝑘 = 𝐾 → (𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)} ↔ 𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}))
1817anbi2d 619 . . . . . . 7 (𝑘 = 𝐾 → ((𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) ↔ (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
195, 18rexeqbidv 3336 . . . . . 6 (𝑘 = 𝐾 → (∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) ↔ ∃𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
205, 19rexeqbidv 3336 . . . . 5 (𝑘 = 𝐾 → (∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)}) ↔ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})))
2120abbidv 2837 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})} = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
22 df-lines 36082 . . . 4 Lines = (𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})})
234fvexi 6507 . . . . 5 𝐴 ∈ V
24 df-sn 4436 . . . . . . 7 {{𝑝𝐴𝑝 (𝑞 𝑟)}} = {𝑠𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}}
25 snex 5182 . . . . . . 7 {{𝑝𝐴𝑝 (𝑞 𝑟)}} ∈ V
2624, 25eqeltrri 2857 . . . . . 6 {𝑠𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}} ∈ V
27 simpr 477 . . . . . . 7 ((𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}) → 𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})
2827ss2abi 3927 . . . . . 6 {𝑠 ∣ (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})} ⊆ {𝑠𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)}}
2926, 28ssexi 5076 . . . . 5 {𝑠 ∣ (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})} ∈ V
3023, 23, 29ab2rexex2 7487 . . . 4 {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})} ∈ V
3121, 22, 30fvmpt 6589 . . 3 (𝐾 ∈ V → (Lines‘𝐾) = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
322, 31syl5eq 2820 . 2 (𝐾 ∈ V → 𝑁 = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
331, 32syl 17 1 (𝐾𝐵𝑁 = {𝑠 ∣ ∃𝑞𝐴𝑟𝐴 (𝑞𝑟𝑠 = {𝑝𝐴𝑝 (𝑞 𝑟)})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  {cab 2752  wne 2961  wrex 3083  {crab 3086  Vcvv 3409  {csn 4435   class class class wbr 4923  cfv 6182  (class class class)co 6970  lecple 16422  joincjn 17406  Atomscatm 35844  Linesclines 36075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-lines 36082
This theorem is referenced by:  isline  36320
  Copyright terms: Public domain W3C validator