| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-pointsN | Structured version Visualization version GIF version | ||
| Description: Define set of all projective points in a Hilbert lattice (actually in any set at all, for simplicity). A projective point is the singleton of a lattice atom. Definition 15.1 of [MaedaMaeda] p. 61. Note that item 1 in [Holland95] p. 222 defines a point as the atom itself, but this leads to a complicated subspace ordering that may be either membership or inclusion based on its arguments. (Contributed by NM, 2-Oct-2011.) |
| Ref | Expression |
|---|---|
| df-pointsN | ⊢ Points = (𝑘 ∈ V ↦ {𝑞 ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑞 = {𝑝}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpointsN 39514 | . 2 class Points | |
| 2 | vk | . . 3 setvar 𝑘 | |
| 3 | cvv 3459 | . . 3 class V | |
| 4 | vq | . . . . . . 7 setvar 𝑞 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑞 |
| 6 | vp | . . . . . . . 8 setvar 𝑝 | |
| 7 | 6 | cv 1539 | . . . . . . 7 class 𝑝 |
| 8 | 7 | csn 4601 | . . . . . 6 class {𝑝} |
| 9 | 5, 8 | wceq 1540 | . . . . 5 wff 𝑞 = {𝑝} |
| 10 | 2 | cv 1539 | . . . . . 6 class 𝑘 |
| 11 | catm 39281 | . . . . . 6 class Atoms | |
| 12 | 10, 11 | cfv 6531 | . . . . 5 class (Atoms‘𝑘) |
| 13 | 9, 6, 12 | wrex 3060 | . . . 4 wff ∃𝑝 ∈ (Atoms‘𝑘)𝑞 = {𝑝} |
| 14 | 13, 4 | cab 2713 | . . 3 class {𝑞 ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑞 = {𝑝}} |
| 15 | 2, 3, 14 | cmpt 5201 | . 2 class (𝑘 ∈ V ↦ {𝑞 ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑞 = {𝑝}}) |
| 16 | 1, 15 | wceq 1540 | 1 wff Points = (𝑘 ∈ V ↦ {𝑞 ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑞 = {𝑝}}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: pointsetN 39760 |
| Copyright terms: Public domain | W3C validator |