Step | Hyp | Ref
| Expression |
1 | | clvol 38352 |
. 2
class
LVols |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vp |
. . . . . . 7
setvar π |
5 | 4 | cv 1540 |
. . . . . 6
class π |
6 | | vx |
. . . . . . 7
setvar π₯ |
7 | 6 | cv 1540 |
. . . . . 6
class π₯ |
8 | 2 | cv 1540 |
. . . . . . 7
class π |
9 | | ccvr 38120 |
. . . . . . 7
class
β |
10 | 8, 9 | cfv 6540 |
. . . . . 6
class ( β
βπ) |
11 | 5, 7, 10 | wbr 5147 |
. . . . 5
wff π( β βπ)π₯ |
12 | | clpl 38351 |
. . . . . 6
class
LPlanes |
13 | 8, 12 | cfv 6540 |
. . . . 5
class
(LPlanesβπ) |
14 | 11, 4, 13 | wrex 3070 |
. . . 4
wff
βπ β
(LPlanesβπ)π( β βπ)π₯ |
15 | | cbs 17140 |
. . . . 5
class
Base |
16 | 8, 15 | cfv 6540 |
. . . 4
class
(Baseβπ) |
17 | 14, 6, 16 | crab 3432 |
. . 3
class {π₯ β (Baseβπ) β£ βπ β (LPlanesβπ)π( β βπ)π₯} |
18 | 2, 3, 17 | cmpt 5230 |
. 2
class (π β V β¦ {π₯ β (Baseβπ) β£ βπ β (LPlanesβπ)π( β βπ)π₯}) |
19 | 1, 18 | wceq 1541 |
1
wff LVols =
(π β V β¦ {π₯ β (Baseβπ) β£ βπ β (LPlanesβπ)π( β βπ)π₯}) |