Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lvols Structured version   Visualization version   GIF version

Definition df-lvols 38359
Description: Define the set of all 3-dimensional "lattice volumes" (lattice elements which cover a plane) in a Hilbert lattice π‘˜, in other words all elements of height 4 (or lattice dimension 4 or projective dimension 3). (Contributed by NM, 1-Jul-2012.)
Assertion
Ref Expression
df-lvols LVols = (π‘˜ ∈ V ↦ {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ βˆƒπ‘ ∈ (LPlanesβ€˜π‘˜)𝑝( β‹– β€˜π‘˜)π‘₯})
Distinct variable group:   π‘˜,𝑝,π‘₯

Detailed syntax breakdown of Definition df-lvols
StepHypRef Expression
1 clvol 38352 . 2 class LVols
2 vk . . 3 setvar π‘˜
3 cvv 3474 . . 3 class V
4 vp . . . . . . 7 setvar 𝑝
54cv 1540 . . . . . 6 class 𝑝
6 vx . . . . . . 7 setvar π‘₯
76cv 1540 . . . . . 6 class π‘₯
82cv 1540 . . . . . . 7 class π‘˜
9 ccvr 38120 . . . . . . 7 class β‹–
108, 9cfv 6540 . . . . . 6 class ( β‹– β€˜π‘˜)
115, 7, 10wbr 5147 . . . . 5 wff 𝑝( β‹– β€˜π‘˜)π‘₯
12 clpl 38351 . . . . . 6 class LPlanes
138, 12cfv 6540 . . . . 5 class (LPlanesβ€˜π‘˜)
1411, 4, 13wrex 3070 . . . 4 wff βˆƒπ‘ ∈ (LPlanesβ€˜π‘˜)𝑝( β‹– β€˜π‘˜)π‘₯
15 cbs 17140 . . . . 5 class Base
168, 15cfv 6540 . . . 4 class (Baseβ€˜π‘˜)
1714, 6, 16crab 3432 . . 3 class {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ βˆƒπ‘ ∈ (LPlanesβ€˜π‘˜)𝑝( β‹– β€˜π‘˜)π‘₯}
182, 3, 17cmpt 5230 . 2 class (π‘˜ ∈ V ↦ {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ βˆƒπ‘ ∈ (LPlanesβ€˜π‘˜)𝑝( β‹– β€˜π‘˜)π‘₯})
191, 18wceq 1541 1 wff LVols = (π‘˜ ∈ V ↦ {π‘₯ ∈ (Baseβ€˜π‘˜) ∣ βˆƒπ‘ ∈ (LPlanesβ€˜π‘˜)𝑝( β‹– β€˜π‘˜)π‘₯})
Colors of variables: wff setvar class
This definition is referenced by:  lvolset  38431
  Copyright terms: Public domain W3C validator