Detailed syntax breakdown of Definition df-lmhm
| Step | Hyp | Ref
| Expression |
| 1 | | clmhm 21018 |
. 2
class
LMHom |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | vt |
. . 3
setvar 𝑡 |
| 4 | | clmod 20858 |
. . 3
class
LMod |
| 5 | 3 | cv 1539 |
. . . . . . . 8
class 𝑡 |
| 6 | | csca 17300 |
. . . . . . . 8
class
Scalar |
| 7 | 5, 6 | cfv 6561 |
. . . . . . 7
class
(Scalar‘𝑡) |
| 8 | | vw |
. . . . . . . 8
setvar 𝑤 |
| 9 | 8 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 10 | 7, 9 | wceq 1540 |
. . . . . 6
wff
(Scalar‘𝑡) =
𝑤 |
| 11 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 12 | 11 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 13 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 14 | 13 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 15 | 2 | cv 1539 |
. . . . . . . . . . . 12
class 𝑠 |
| 16 | | cvsca 17301 |
. . . . . . . . . . . 12
class
·𝑠 |
| 17 | 15, 16 | cfv 6561 |
. . . . . . . . . . 11
class (
·𝑠 ‘𝑠) |
| 18 | 12, 14, 17 | co 7431 |
. . . . . . . . . 10
class (𝑥(
·𝑠 ‘𝑠)𝑦) |
| 19 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
| 20 | 19 | cv 1539 |
. . . . . . . . . 10
class 𝑓 |
| 21 | 18, 20 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) |
| 22 | 14, 20 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘𝑦) |
| 23 | 5, 16 | cfv 6561 |
. . . . . . . . . 10
class (
·𝑠 ‘𝑡) |
| 24 | 12, 22, 23 | co 7431 |
. . . . . . . . 9
class (𝑥(
·𝑠 ‘𝑡)(𝑓‘𝑦)) |
| 25 | 21, 24 | wceq 1540 |
. . . . . . . 8
wff (𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) |
| 26 | | cbs 17247 |
. . . . . . . . 9
class
Base |
| 27 | 15, 26 | cfv 6561 |
. . . . . . . 8
class
(Base‘𝑠) |
| 28 | 25, 13, 27 | wral 3061 |
. . . . . . 7
wff
∀𝑦 ∈
(Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) |
| 29 | 9, 26 | cfv 6561 |
. . . . . . 7
class
(Base‘𝑤) |
| 30 | 28, 11, 29 | wral 3061 |
. . . . . 6
wff
∀𝑥 ∈
(Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) |
| 31 | 10, 30 | wa 395 |
. . . . 5
wff
((Scalar‘𝑡) =
𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦))) |
| 32 | 15, 6 | cfv 6561 |
. . . . 5
class
(Scalar‘𝑠) |
| 33 | 31, 8, 32 | wsbc 3788 |
. . . 4
wff
[(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦))) |
| 34 | | cghm 19230 |
. . . . 5
class
GrpHom |
| 35 | 15, 5, 34 | co 7431 |
. . . 4
class (𝑠 GrpHom 𝑡) |
| 36 | 33, 19, 35 | crab 3436 |
. . 3
class {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))} |
| 37 | 2, 3, 4, 4, 36 | cmpo 7433 |
. 2
class (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))}) |
| 38 | 1, 37 | wceq 1540 |
1
wff LMHom =
(𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))}) |