Detailed syntax breakdown of Definition df-lmhm
Step | Hyp | Ref
| Expression |
1 | | clmhm 20330 |
. 2
class
LMHom |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | vt |
. . 3
setvar 𝑡 |
4 | | clmod 20172 |
. . 3
class
LMod |
5 | 3 | cv 1538 |
. . . . . . . 8
class 𝑡 |
6 | | csca 17014 |
. . . . . . . 8
class
Scalar |
7 | 5, 6 | cfv 6458 |
. . . . . . 7
class
(Scalar‘𝑡) |
8 | | vw |
. . . . . . . 8
setvar 𝑤 |
9 | 8 | cv 1538 |
. . . . . . 7
class 𝑤 |
10 | 7, 9 | wceq 1539 |
. . . . . 6
wff
(Scalar‘𝑡) =
𝑤 |
11 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
12 | 11 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
13 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
14 | 13 | cv 1538 |
. . . . . . . . . . 11
class 𝑦 |
15 | 2 | cv 1538 |
. . . . . . . . . . . 12
class 𝑠 |
16 | | cvsca 17015 |
. . . . . . . . . . . 12
class
·𝑠 |
17 | 15, 16 | cfv 6458 |
. . . . . . . . . . 11
class (
·𝑠 ‘𝑠) |
18 | 12, 14, 17 | co 7307 |
. . . . . . . . . 10
class (𝑥(
·𝑠 ‘𝑠)𝑦) |
19 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
20 | 19 | cv 1538 |
. . . . . . . . . 10
class 𝑓 |
21 | 18, 20 | cfv 6458 |
. . . . . . . . 9
class (𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) |
22 | 14, 20 | cfv 6458 |
. . . . . . . . . 10
class (𝑓‘𝑦) |
23 | 5, 16 | cfv 6458 |
. . . . . . . . . 10
class (
·𝑠 ‘𝑡) |
24 | 12, 22, 23 | co 7307 |
. . . . . . . . 9
class (𝑥(
·𝑠 ‘𝑡)(𝑓‘𝑦)) |
25 | 21, 24 | wceq 1539 |
. . . . . . . 8
wff (𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) |
26 | | cbs 16961 |
. . . . . . . . 9
class
Base |
27 | 15, 26 | cfv 6458 |
. . . . . . . 8
class
(Base‘𝑠) |
28 | 25, 13, 27 | wral 3062 |
. . . . . . 7
wff
∀𝑦 ∈
(Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) |
29 | 9, 26 | cfv 6458 |
. . . . . . 7
class
(Base‘𝑤) |
30 | 28, 11, 29 | wral 3062 |
. . . . . 6
wff
∀𝑥 ∈
(Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) |
31 | 10, 30 | wa 397 |
. . . . 5
wff
((Scalar‘𝑡) =
𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦))) |
32 | 15, 6 | cfv 6458 |
. . . . 5
class
(Scalar‘𝑠) |
33 | 31, 8, 32 | wsbc 3721 |
. . . 4
wff
[(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦))) |
34 | | cghm 18880 |
. . . . 5
class
GrpHom |
35 | 15, 5, 34 | co 7307 |
. . . 4
class (𝑠 GrpHom 𝑡) |
36 | 33, 19, 35 | crab 3303 |
. . 3
class {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))} |
37 | 2, 3, 4, 4, 36 | cmpo 7309 |
. 2
class (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))}) |
38 | 1, 37 | wceq 1539 |
1
wff LMHom =
(𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))}) |