| Step | Hyp | Ref
| Expression |
| 1 | | df-lmhm 20985 |
. . 3
⊢ LMHom =
(𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))}) |
| 2 | 1 | elmpocl 7653 |
. 2
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ∧ 𝑇 ∈ LMod)) |
| 3 | | oveq12 7419 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 GrpHom 𝑡) = (𝑆 GrpHom 𝑇)) |
| 4 | | fvexd 6896 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (Scalar‘𝑠) ∈ V) |
| 5 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑡 = 𝑇) |
| 6 | 5 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑡) = (Scalar‘𝑇)) |
| 7 | | islmhm.l |
. . . . . . . . . 10
⊢ 𝐿 = (Scalar‘𝑇) |
| 8 | 6, 7 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑡) = 𝐿) |
| 9 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = (Scalar‘𝑠)) |
| 10 | | simpll 766 |
. . . . . . . . . . . 12
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑠 = 𝑆) |
| 11 | 10 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑠) = (Scalar‘𝑆)) |
| 12 | 9, 11 | eqtrd 2771 |
. . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = (Scalar‘𝑆)) |
| 13 | | islmhm.k |
. . . . . . . . . 10
⊢ 𝐾 = (Scalar‘𝑆) |
| 14 | 12, 13 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = 𝐾) |
| 15 | 8, 14 | eqeq12d 2752 |
. . . . . . . 8
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ((Scalar‘𝑡) = 𝑤 ↔ 𝐿 = 𝐾)) |
| 16 | 14 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑤) = (Base‘𝐾)) |
| 17 | | islmhm.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐾) |
| 18 | 16, 17 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑤) = 𝐵) |
| 19 | 10 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑠) = (Base‘𝑆)) |
| 20 | | islmhm.e |
. . . . . . . . . . 11
⊢ 𝐸 = (Base‘𝑆) |
| 21 | 19, 20 | eqtr4di 2789 |
. . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑠) = 𝐸) |
| 22 | 10 | fveq2d 6885 |
. . . . . . . . . . . . . 14
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (
·𝑠 ‘𝑠) = ( ·𝑠
‘𝑆)) |
| 23 | | islmhm.m |
. . . . . . . . . . . . . 14
⊢ · = (
·𝑠 ‘𝑆) |
| 24 | 22, 23 | eqtr4di 2789 |
. . . . . . . . . . . . 13
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (
·𝑠 ‘𝑠) = · ) |
| 25 | 24 | oveqd 7427 |
. . . . . . . . . . . 12
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑥( ·𝑠
‘𝑠)𝑦) = (𝑥 · 𝑦)) |
| 26 | 25 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑓‘(𝑥 · 𝑦))) |
| 27 | 5 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (
·𝑠 ‘𝑡) = ( ·𝑠
‘𝑇)) |
| 28 | | islmhm.n |
. . . . . . . . . . . . 13
⊢ × = (
·𝑠 ‘𝑇) |
| 29 | 27, 28 | eqtr4di 2789 |
. . . . . . . . . . . 12
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (
·𝑠 ‘𝑡) = × ) |
| 30 | 29 | oveqd 7427 |
. . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) = (𝑥 × (𝑓‘𝑦))) |
| 31 | 26, 30 | eqeq12d 2752 |
. . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ((𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))) |
| 32 | 21, 31 | raleqbidv 3329 |
. . . . . . . . 9
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))) |
| 33 | 18, 32 | raleqbidv 3329 |
. . . . . . . 8
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))) |
| 34 | 15, 33 | anbi12d 632 |
. . . . . . 7
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦))))) |
| 35 | 4, 34 | sbcied 3814 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ([(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦))))) |
| 36 | 3, 35 | rabeqbidv 3439 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))} = {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))}) |
| 37 | | ovex 7443 |
. . . . . 6
⊢ (𝑆 GrpHom 𝑇) ∈ V |
| 38 | 37 | rabex 5314 |
. . . . 5
⊢ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))} ∈ V |
| 39 | 36, 1, 38 | ovmpoa 7567 |
. . . 4
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝑆 LMHom 𝑇) = {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))}) |
| 40 | 39 | eleq2d 2821 |
. . 3
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))})) |
| 41 | | fveq1 6880 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 · 𝑦)) = (𝐹‘(𝑥 · 𝑦))) |
| 42 | | fveq1 6880 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) |
| 43 | 42 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑥 × (𝑓‘𝑦)) = (𝑥 × (𝐹‘𝑦))) |
| 44 | 41, 43 | eqeq12d 2752 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)) ↔ (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
| 45 | 44 | 2ralbidv 3209 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
| 46 | 45 | anbi2d 630 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 47 | 46 | elrab 3676 |
. . . 4
⊢ (𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))} ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 48 | | 3anass 1094 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 49 | 47, 48 | bitr4i 278 |
. . 3
⊢ (𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))} ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
| 50 | 40, 49 | bitrdi 287 |
. 2
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 51 | 2, 50 | biadanii 821 |
1
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |