| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-lmhm 21022 | . . 3
⊢  LMHom =
(𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))}) | 
| 2 | 1 | elmpocl 7675 | . 2
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ∧ 𝑇 ∈ LMod)) | 
| 3 |  | oveq12 7441 | . . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 GrpHom 𝑡) = (𝑆 GrpHom 𝑇)) | 
| 4 |  | fvexd 6920 | . . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (Scalar‘𝑠) ∈ V) | 
| 5 |  | simplr 768 | . . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑡 = 𝑇) | 
| 6 | 5 | fveq2d 6909 | . . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑡) = (Scalar‘𝑇)) | 
| 7 |  | islmhm.l | . . . . . . . . . 10
⊢ 𝐿 = (Scalar‘𝑇) | 
| 8 | 6, 7 | eqtr4di 2794 | . . . . . . . . 9
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑡) = 𝐿) | 
| 9 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = (Scalar‘𝑠)) | 
| 10 |  | simpll 766 | . . . . . . . . . . . 12
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑠 = 𝑆) | 
| 11 | 10 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑠) = (Scalar‘𝑆)) | 
| 12 | 9, 11 | eqtrd 2776 | . . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = (Scalar‘𝑆)) | 
| 13 |  | islmhm.k | . . . . . . . . . 10
⊢ 𝐾 = (Scalar‘𝑆) | 
| 14 | 12, 13 | eqtr4di 2794 | . . . . . . . . 9
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = 𝐾) | 
| 15 | 8, 14 | eqeq12d 2752 | . . . . . . . 8
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ((Scalar‘𝑡) = 𝑤 ↔ 𝐿 = 𝐾)) | 
| 16 | 14 | fveq2d 6909 | . . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑤) = (Base‘𝐾)) | 
| 17 |  | islmhm.b | . . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐾) | 
| 18 | 16, 17 | eqtr4di 2794 | . . . . . . . . 9
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑤) = 𝐵) | 
| 19 | 10 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑠) = (Base‘𝑆)) | 
| 20 |  | islmhm.e | . . . . . . . . . . 11
⊢ 𝐸 = (Base‘𝑆) | 
| 21 | 19, 20 | eqtr4di 2794 | . . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑠) = 𝐸) | 
| 22 | 10 | fveq2d 6909 | . . . . . . . . . . . . . 14
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (
·𝑠 ‘𝑠) = ( ·𝑠
‘𝑆)) | 
| 23 |  | islmhm.m | . . . . . . . . . . . . . 14
⊢  · = (
·𝑠 ‘𝑆) | 
| 24 | 22, 23 | eqtr4di 2794 | . . . . . . . . . . . . 13
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (
·𝑠 ‘𝑠) = · ) | 
| 25 | 24 | oveqd 7449 | . . . . . . . . . . . 12
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑥( ·𝑠
‘𝑠)𝑦) = (𝑥 · 𝑦)) | 
| 26 | 25 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑓‘(𝑥 · 𝑦))) | 
| 27 | 5 | fveq2d 6909 | . . . . . . . . . . . . 13
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (
·𝑠 ‘𝑡) = ( ·𝑠
‘𝑇)) | 
| 28 |  | islmhm.n | . . . . . . . . . . . . 13
⊢  × = (
·𝑠 ‘𝑇) | 
| 29 | 27, 28 | eqtr4di 2794 | . . . . . . . . . . . 12
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (
·𝑠 ‘𝑡) = × ) | 
| 30 | 29 | oveqd 7449 | . . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) = (𝑥 × (𝑓‘𝑦))) | 
| 31 | 26, 30 | eqeq12d 2752 | . . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ((𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))) | 
| 32 | 21, 31 | raleqbidv 3345 | . . . . . . . . 9
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))) | 
| 33 | 18, 32 | raleqbidv 3345 | . . . . . . . 8
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))) | 
| 34 | 15, 33 | anbi12d 632 | . . . . . . 7
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦))))) | 
| 35 | 4, 34 | sbcied 3831 | . . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ([(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦))))) | 
| 36 | 3, 35 | rabeqbidv 3454 | . . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))} = {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))}) | 
| 37 |  | ovex 7465 | . . . . . 6
⊢ (𝑆 GrpHom 𝑇) ∈ V | 
| 38 | 37 | rabex 5338 | . . . . 5
⊢ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))} ∈ V | 
| 39 | 36, 1, 38 | ovmpoa 7589 | . . . 4
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝑆 LMHom 𝑇) = {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))}) | 
| 40 | 39 | eleq2d 2826 | . . 3
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))})) | 
| 41 |  | fveq1 6904 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 · 𝑦)) = (𝐹‘(𝑥 · 𝑦))) | 
| 42 |  | fveq1 6904 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | 
| 43 | 42 | oveq2d 7448 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑥 × (𝑓‘𝑦)) = (𝑥 × (𝐹‘𝑦))) | 
| 44 | 41, 43 | eqeq12d 2752 | . . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)) ↔ (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) | 
| 45 | 44 | 2ralbidv 3220 | . . . . . 6
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) | 
| 46 | 45 | anbi2d 630 | . . . . 5
⊢ (𝑓 = 𝐹 → ((𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) | 
| 47 | 46 | elrab 3691 | . . . 4
⊢ (𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))} ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) | 
| 48 |  | 3anass 1094 | . . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) | 
| 49 | 47, 48 | bitr4i 278 | . . 3
⊢ (𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))} ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) | 
| 50 | 40, 49 | bitrdi 287 | . 2
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) | 
| 51 | 2, 50 | biadanii 821 | 1
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |