Step | Hyp | Ref
| Expression |
1 | | df-lmhm 20284 |
. . 3
⊢ LMHom =
(𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))}) |
2 | 1 | elmpocl 7511 |
. 2
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ∧ 𝑇 ∈ LMod)) |
3 | | oveq12 7284 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 GrpHom 𝑡) = (𝑆 GrpHom 𝑇)) |
4 | | fvexd 6789 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (Scalar‘𝑠) ∈ V) |
5 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑡 = 𝑇) |
6 | 5 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑡) = (Scalar‘𝑇)) |
7 | | islmhm.l |
. . . . . . . . . 10
⊢ 𝐿 = (Scalar‘𝑇) |
8 | 6, 7 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑡) = 𝐿) |
9 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = (Scalar‘𝑠)) |
10 | | simpll 764 |
. . . . . . . . . . . 12
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑠 = 𝑆) |
11 | 10 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑠) = (Scalar‘𝑆)) |
12 | 9, 11 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = (Scalar‘𝑆)) |
13 | | islmhm.k |
. . . . . . . . . 10
⊢ 𝐾 = (Scalar‘𝑆) |
14 | 12, 13 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = 𝐾) |
15 | 8, 14 | eqeq12d 2754 |
. . . . . . . 8
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ((Scalar‘𝑡) = 𝑤 ↔ 𝐿 = 𝐾)) |
16 | 14 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑤) = (Base‘𝐾)) |
17 | | islmhm.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐾) |
18 | 16, 17 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑤) = 𝐵) |
19 | 10 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑠) = (Base‘𝑆)) |
20 | | islmhm.e |
. . . . . . . . . . 11
⊢ 𝐸 = (Base‘𝑆) |
21 | 19, 20 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑠) = 𝐸) |
22 | 10 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (
·𝑠 ‘𝑠) = ( ·𝑠
‘𝑆)) |
23 | | islmhm.m |
. . . . . . . . . . . . . 14
⊢ · = (
·𝑠 ‘𝑆) |
24 | 22, 23 | eqtr4di 2796 |
. . . . . . . . . . . . 13
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (
·𝑠 ‘𝑠) = · ) |
25 | 24 | oveqd 7292 |
. . . . . . . . . . . 12
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑥( ·𝑠
‘𝑠)𝑦) = (𝑥 · 𝑦)) |
26 | 25 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑓‘(𝑥 · 𝑦))) |
27 | 5 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (
·𝑠 ‘𝑡) = ( ·𝑠
‘𝑇)) |
28 | | islmhm.n |
. . . . . . . . . . . . 13
⊢ × = (
·𝑠 ‘𝑇) |
29 | 27, 28 | eqtr4di 2796 |
. . . . . . . . . . . 12
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (
·𝑠 ‘𝑡) = × ) |
30 | 29 | oveqd 7292 |
. . . . . . . . . . 11
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) = (𝑥 × (𝑓‘𝑦))) |
31 | 26, 30 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ((𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))) |
32 | 21, 31 | raleqbidv 3336 |
. . . . . . . . 9
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))) |
33 | 18, 32 | raleqbidv 3336 |
. . . . . . . 8
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))) |
34 | 15, 33 | anbi12d 631 |
. . . . . . 7
⊢ (((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦))))) |
35 | 4, 34 | sbcied 3761 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ([(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦))))) |
36 | 3, 35 | rabeqbidv 3420 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))} = {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))}) |
37 | | ovex 7308 |
. . . . . 6
⊢ (𝑆 GrpHom 𝑇) ∈ V |
38 | 37 | rabex 5256 |
. . . . 5
⊢ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))} ∈ V |
39 | 36, 1, 38 | ovmpoa 7428 |
. . . 4
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝑆 LMHom 𝑇) = {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))}) |
40 | 39 | eleq2d 2824 |
. . 3
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))})) |
41 | | fveq1 6773 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 · 𝑦)) = (𝐹‘(𝑥 · 𝑦))) |
42 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) |
43 | 42 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑥 × (𝑓‘𝑦)) = (𝑥 × (𝐹‘𝑦))) |
44 | 41, 43 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)) ↔ (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
45 | 44 | 2ralbidv 3129 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
46 | 45 | anbi2d 629 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
47 | 46 | elrab 3624 |
. . . 4
⊢ (𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))} ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
48 | | 3anass 1094 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
49 | 47, 48 | bitr4i 277 |
. . 3
⊢ (𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓‘𝑦)))} ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
50 | 40, 49 | bitrdi 287 |
. 2
⊢ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
51 | 2, 50 | biadanii 819 |
1
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |