MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhm Structured version   Visualization version   GIF version

Theorem islmhm 19792
Description: Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islmhm.k 𝐾 = (Scalar‘𝑆)
islmhm.l 𝐿 = (Scalar‘𝑇)
islmhm.b 𝐵 = (Base‘𝐾)
islmhm.e 𝐸 = (Base‘𝑆)
islmhm.m · = ( ·𝑠𝑆)
islmhm.n × = ( ·𝑠𝑇)
Assertion
Ref Expression
islmhm (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝐵   𝑦,𝐸   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦   𝑥,𝑇,𝑦
Allowed substitution hints:   𝐵(𝑦)   · (𝑥,𝑦)   × (𝑥,𝑦)   𝐸(𝑥)   𝐾(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem islmhm
Dummy variables 𝑓 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmhm 19787 . . 3 LMHom = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)))})
21elmpocl 7367 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ∧ 𝑇 ∈ LMod))
3 oveq12 7144 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 GrpHom 𝑡) = (𝑆 GrpHom 𝑇))
4 fvexd 6660 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (Scalar‘𝑠) ∈ V)
5 simplr 768 . . . . . . . . . . 11 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑡 = 𝑇)
65fveq2d 6649 . . . . . . . . . 10 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑡) = (Scalar‘𝑇))
7 islmhm.l . . . . . . . . . 10 𝐿 = (Scalar‘𝑇)
86, 7eqtr4di 2851 . . . . . . . . 9 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑡) = 𝐿)
9 simpr 488 . . . . . . . . . . 11 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = (Scalar‘𝑠))
10 simpll 766 . . . . . . . . . . . 12 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑠 = 𝑆)
1110fveq2d 6649 . . . . . . . . . . 11 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Scalar‘𝑠) = (Scalar‘𝑆))
129, 11eqtrd 2833 . . . . . . . . . 10 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = (Scalar‘𝑆))
13 islmhm.k . . . . . . . . . 10 𝐾 = (Scalar‘𝑆)
1412, 13eqtr4di 2851 . . . . . . . . 9 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → 𝑤 = 𝐾)
158, 14eqeq12d 2814 . . . . . . . 8 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ((Scalar‘𝑡) = 𝑤𝐿 = 𝐾))
1614fveq2d 6649 . . . . . . . . . 10 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑤) = (Base‘𝐾))
17 islmhm.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
1816, 17eqtr4di 2851 . . . . . . . . 9 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑤) = 𝐵)
1910fveq2d 6649 . . . . . . . . . . 11 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑠) = (Base‘𝑆))
20 islmhm.e . . . . . . . . . . 11 𝐸 = (Base‘𝑆)
2119, 20eqtr4di 2851 . . . . . . . . . 10 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (Base‘𝑠) = 𝐸)
2210fveq2d 6649 . . . . . . . . . . . . . 14 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ( ·𝑠𝑠) = ( ·𝑠𝑆))
23 islmhm.m . . . . . . . . . . . . . 14 · = ( ·𝑠𝑆)
2422, 23eqtr4di 2851 . . . . . . . . . . . . 13 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ( ·𝑠𝑠) = · )
2524oveqd 7152 . . . . . . . . . . . 12 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑥( ·𝑠𝑠)𝑦) = (𝑥 · 𝑦))
2625fveq2d 6649 . . . . . . . . . . 11 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑓‘(𝑥 · 𝑦)))
275fveq2d 6649 . . . . . . . . . . . . 13 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ( ·𝑠𝑡) = ( ·𝑠𝑇))
28 islmhm.n . . . . . . . . . . . . 13 × = ( ·𝑠𝑇)
2927, 28eqtr4di 2851 . . . . . . . . . . . 12 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ( ·𝑠𝑡) = × )
3029oveqd 7152 . . . . . . . . . . 11 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (𝑥( ·𝑠𝑡)(𝑓𝑦)) = (𝑥 × (𝑓𝑦)))
3126, 30eqeq12d 2814 . . . . . . . . . 10 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → ((𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)) ↔ (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦))))
3221, 31raleqbidv 3354 . . . . . . . . 9 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)) ↔ ∀𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦))))
3318, 32raleqbidv 3354 . . . . . . . 8 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦))))
3415, 33anbi12d 633 . . . . . . 7 (((𝑠 = 𝑆𝑡 = 𝑇) ∧ 𝑤 = (Scalar‘𝑠)) → (((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))))
354, 34sbcied 3762 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → ([(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))))
363, 35rabeqbidv 3433 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)))} = {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))})
37 ovex 7168 . . . . . 6 (𝑆 GrpHom 𝑇) ∈ V
3837rabex 5199 . . . . 5 {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))} ∈ V
3936, 1, 38ovmpoa 7284 . . . 4 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝑆 LMHom 𝑇) = {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))})
4039eleq2d 2875 . . 3 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))}))
41 fveq1 6644 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥 · 𝑦)) = (𝐹‘(𝑥 · 𝑦)))
42 fveq1 6644 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
4342oveq2d 7151 . . . . . . . 8 (𝑓 = 𝐹 → (𝑥 × (𝑓𝑦)) = (𝑥 × (𝐹𝑦)))
4441, 43eqeq12d 2814 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)) ↔ (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
45442ralbidv 3164 . . . . . 6 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
4645anbi2d 631 . . . . 5 (𝑓 = 𝐹 → ((𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦))) ↔ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
4746elrab 3628 . . . 4 (𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))} ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
48 3anass 1092 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
4947, 48bitr4i 281 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝑓‘(𝑥 · 𝑦)) = (𝑥 × (𝑓𝑦)))} ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
5040, 49syl6bb 290 . 2 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
512, 50biadanii 821 1 (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑥𝐵𝑦𝐸 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  [wsbc 3720  cfv 6324  (class class class)co 7135  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561   GrpHom cghm 18347  LModclmod 19627   LMHom clmhm 19784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-lmhm 19787
This theorem is referenced by:  islmhm3  19793  lmhmlem  19794  lmhmlin  19800  islmhmd  19804  reslmhm  19817  lmhmpropd  19838
  Copyright terms: Public domain W3C validator