MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhm Structured version   Visualization version   GIF version

Theorem islmhm 20782
Description: Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islmhm.k 𝐾 = (Scalarβ€˜π‘†)
islmhm.l 𝐿 = (Scalarβ€˜π‘‡)
islmhm.b 𝐡 = (Baseβ€˜πΎ)
islmhm.e 𝐸 = (Baseβ€˜π‘†)
islmhm.m Β· = ( ·𝑠 β€˜π‘†)
islmhm.n Γ— = ( ·𝑠 β€˜π‘‡)
Assertion
Ref Expression
islmhm (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦)))))
Distinct variable groups:   π‘₯,𝐡   𝑦,𝐸   π‘₯,𝑦,𝑆   π‘₯,𝐹,𝑦   π‘₯,𝑇,𝑦
Allowed substitution hints:   𝐡(𝑦)   Β· (π‘₯,𝑦)   Γ— (π‘₯,𝑦)   𝐸(π‘₯)   𝐾(π‘₯,𝑦)   𝐿(π‘₯,𝑦)

Proof of Theorem islmhm
Dummy variables 𝑓 𝑠 𝑑 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmhm 20777 . . 3 LMHom = (𝑠 ∈ LMod, 𝑑 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑑) ∣ [(Scalarβ€˜π‘ ) / 𝑀]((Scalarβ€˜π‘‘) = 𝑀 ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘ )(π‘“β€˜(π‘₯( ·𝑠 β€˜π‘ )𝑦)) = (π‘₯( ·𝑠 β€˜π‘‘)(π‘“β€˜π‘¦)))})
21elmpocl 7650 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ (𝑆 ∈ LMod ∧ 𝑇 ∈ LMod))
3 oveq12 7420 . . . . . 6 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (𝑠 GrpHom 𝑑) = (𝑆 GrpHom 𝑇))
4 fvexd 6906 . . . . . . 7 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (Scalarβ€˜π‘ ) ∈ V)
5 simplr 767 . . . . . . . . . . 11 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ 𝑑 = 𝑇)
65fveq2d 6895 . . . . . . . . . 10 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (Scalarβ€˜π‘‘) = (Scalarβ€˜π‘‡))
7 islmhm.l . . . . . . . . . 10 𝐿 = (Scalarβ€˜π‘‡)
86, 7eqtr4di 2790 . . . . . . . . 9 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (Scalarβ€˜π‘‘) = 𝐿)
9 simpr 485 . . . . . . . . . . 11 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ 𝑀 = (Scalarβ€˜π‘ ))
10 simpll 765 . . . . . . . . . . . 12 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ 𝑠 = 𝑆)
1110fveq2d 6895 . . . . . . . . . . 11 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (Scalarβ€˜π‘ ) = (Scalarβ€˜π‘†))
129, 11eqtrd 2772 . . . . . . . . . 10 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ 𝑀 = (Scalarβ€˜π‘†))
13 islmhm.k . . . . . . . . . 10 𝐾 = (Scalarβ€˜π‘†)
1412, 13eqtr4di 2790 . . . . . . . . 9 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ 𝑀 = 𝐾)
158, 14eqeq12d 2748 . . . . . . . 8 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ ((Scalarβ€˜π‘‘) = 𝑀 ↔ 𝐿 = 𝐾))
1614fveq2d 6895 . . . . . . . . . 10 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (Baseβ€˜π‘€) = (Baseβ€˜πΎ))
17 islmhm.b . . . . . . . . . 10 𝐡 = (Baseβ€˜πΎ)
1816, 17eqtr4di 2790 . . . . . . . . 9 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (Baseβ€˜π‘€) = 𝐡)
1910fveq2d 6895 . . . . . . . . . . 11 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (Baseβ€˜π‘ ) = (Baseβ€˜π‘†))
20 islmhm.e . . . . . . . . . . 11 𝐸 = (Baseβ€˜π‘†)
2119, 20eqtr4di 2790 . . . . . . . . . 10 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (Baseβ€˜π‘ ) = 𝐸)
2210fveq2d 6895 . . . . . . . . . . . . . 14 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ ( ·𝑠 β€˜π‘ ) = ( ·𝑠 β€˜π‘†))
23 islmhm.m . . . . . . . . . . . . . 14 Β· = ( ·𝑠 β€˜π‘†)
2422, 23eqtr4di 2790 . . . . . . . . . . . . 13 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ ( ·𝑠 β€˜π‘ ) = Β· )
2524oveqd 7428 . . . . . . . . . . . 12 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (π‘₯( ·𝑠 β€˜π‘ )𝑦) = (π‘₯ Β· 𝑦))
2625fveq2d 6895 . . . . . . . . . . 11 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (π‘“β€˜(π‘₯( ·𝑠 β€˜π‘ )𝑦)) = (π‘“β€˜(π‘₯ Β· 𝑦)))
275fveq2d 6895 . . . . . . . . . . . . 13 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ ( ·𝑠 β€˜π‘‘) = ( ·𝑠 β€˜π‘‡))
28 islmhm.n . . . . . . . . . . . . 13 Γ— = ( ·𝑠 β€˜π‘‡)
2927, 28eqtr4di 2790 . . . . . . . . . . . 12 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ ( ·𝑠 β€˜π‘‘) = Γ— )
3029oveqd 7428 . . . . . . . . . . 11 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (π‘₯( ·𝑠 β€˜π‘‘)(π‘“β€˜π‘¦)) = (π‘₯ Γ— (π‘“β€˜π‘¦)))
3126, 30eqeq12d 2748 . . . . . . . . . 10 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ ((π‘“β€˜(π‘₯( ·𝑠 β€˜π‘ )𝑦)) = (π‘₯( ·𝑠 β€˜π‘‘)(π‘“β€˜π‘¦)) ↔ (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦))))
3221, 31raleqbidv 3342 . . . . . . . . 9 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (βˆ€π‘¦ ∈ (Baseβ€˜π‘ )(π‘“β€˜(π‘₯( ·𝑠 β€˜π‘ )𝑦)) = (π‘₯( ·𝑠 β€˜π‘‘)(π‘“β€˜π‘¦)) ↔ βˆ€π‘¦ ∈ 𝐸 (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦))))
3318, 32raleqbidv 3342 . . . . . . . 8 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘ )(π‘“β€˜(π‘₯( ·𝑠 β€˜π‘ )𝑦)) = (π‘₯( ·𝑠 β€˜π‘‘)(π‘“β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦))))
3415, 33anbi12d 631 . . . . . . 7 (((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) ∧ 𝑀 = (Scalarβ€˜π‘ )) β†’ (((Scalarβ€˜π‘‘) = 𝑀 ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘ )(π‘“β€˜(π‘₯( ·𝑠 β€˜π‘ )𝑦)) = (π‘₯( ·𝑠 β€˜π‘‘)(π‘“β€˜π‘¦))) ↔ (𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦)))))
354, 34sbcied 3822 . . . . . 6 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ ([(Scalarβ€˜π‘ ) / 𝑀]((Scalarβ€˜π‘‘) = 𝑀 ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘ )(π‘“β€˜(π‘₯( ·𝑠 β€˜π‘ )𝑦)) = (π‘₯( ·𝑠 β€˜π‘‘)(π‘“β€˜π‘¦))) ↔ (𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦)))))
363, 35rabeqbidv 3449 . . . . 5 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ {𝑓 ∈ (𝑠 GrpHom 𝑑) ∣ [(Scalarβ€˜π‘ ) / 𝑀]((Scalarβ€˜π‘‘) = 𝑀 ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘ )(π‘“β€˜(π‘₯( ·𝑠 β€˜π‘ )𝑦)) = (π‘₯( ·𝑠 β€˜π‘‘)(π‘“β€˜π‘¦)))} = {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦)))})
37 ovex 7444 . . . . . 6 (𝑆 GrpHom 𝑇) ∈ V
3837rabex 5332 . . . . 5 {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦)))} ∈ V
3936, 1, 38ovmpoa 7565 . . . 4 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) β†’ (𝑆 LMHom 𝑇) = {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦)))})
4039eleq2d 2819 . . 3 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) β†’ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦)))}))
41 fveq1 6890 . . . . . . . 8 (𝑓 = 𝐹 β†’ (π‘“β€˜(π‘₯ Β· 𝑦)) = (πΉβ€˜(π‘₯ Β· 𝑦)))
42 fveq1 6890 . . . . . . . . 9 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘¦) = (πΉβ€˜π‘¦))
4342oveq2d 7427 . . . . . . . 8 (𝑓 = 𝐹 β†’ (π‘₯ Γ— (π‘“β€˜π‘¦)) = (π‘₯ Γ— (πΉβ€˜π‘¦)))
4441, 43eqeq12d 2748 . . . . . . 7 (𝑓 = 𝐹 β†’ ((π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦)) ↔ (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦))))
45442ralbidv 3218 . . . . . 6 (𝑓 = 𝐹 β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦))))
4645anbi2d 629 . . . . 5 (𝑓 = 𝐹 β†’ ((𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦))) ↔ (𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦)))))
4746elrab 3683 . . . 4 (𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦)))} ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦)))))
48 3anass 1095 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦))) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦)))))
4947, 48bitr4i 277 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑆 GrpHom 𝑇) ∣ (𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (π‘“β€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (π‘“β€˜π‘¦)))} ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦))))
5040, 49bitrdi 286 . 2 ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) β†’ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦)))))
512, 50biadanii 820 1 (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐸 (πΉβ€˜(π‘₯ Β· 𝑦)) = (π‘₯ Γ— (πΉβ€˜π‘¦)))))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  Vcvv 3474  [wsbc 3777  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  Scalarcsca 17204   ·𝑠 cvsca 17205   GrpHom cghm 19127  LModclmod 20614   LMHom clmhm 20774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-lmhm 20777
This theorem is referenced by:  islmhm3  20783  lmhmlem  20784  lmhmlin  20790  islmhmd  20794  reslmhm  20807  lmhmpropd  20828  evls1maplmhm  33037
  Copyright terms: Public domain W3C validator