Detailed syntax breakdown of Definition df-lno
| Step | Hyp | Ref
| Expression |
| 1 | | clno 30726 |
. 2
class
LnOp |
| 2 | | vu |
. . 3
setvar 𝑢 |
| 3 | | vw |
. . 3
setvar 𝑤 |
| 4 | | cnv 30570 |
. . 3
class
NrmCVec |
| 5 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 6 | 5 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 7 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 8 | 7 | cv 1539 |
. . . . . . . . . . 11
class 𝑦 |
| 9 | 2 | cv 1539 |
. . . . . . . . . . . 12
class 𝑢 |
| 10 | | cns 30573 |
. . . . . . . . . . . 12
class
·𝑠OLD |
| 11 | 9, 10 | cfv 6536 |
. . . . . . . . . . 11
class (
·𝑠OLD ‘𝑢) |
| 12 | 6, 8, 11 | co 7410 |
. . . . . . . . . 10
class (𝑥(
·𝑠OLD ‘𝑢)𝑦) |
| 13 | | vz |
. . . . . . . . . . 11
setvar 𝑧 |
| 14 | 13 | cv 1539 |
. . . . . . . . . 10
class 𝑧 |
| 15 | | cpv 30571 |
. . . . . . . . . . 11
class
+𝑣 |
| 16 | 9, 15 | cfv 6536 |
. . . . . . . . . 10
class (
+𝑣 ‘𝑢) |
| 17 | 12, 14, 16 | co 7410 |
. . . . . . . . 9
class ((𝑥(
·𝑠OLD ‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧) |
| 18 | | vt |
. . . . . . . . . 10
setvar 𝑡 |
| 19 | 18 | cv 1539 |
. . . . . . . . 9
class 𝑡 |
| 20 | 17, 19 | cfv 6536 |
. . . . . . . 8
class (𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) |
| 21 | 8, 19 | cfv 6536 |
. . . . . . . . . 10
class (𝑡‘𝑦) |
| 22 | 3 | cv 1539 |
. . . . . . . . . . 11
class 𝑤 |
| 23 | 22, 10 | cfv 6536 |
. . . . . . . . . 10
class (
·𝑠OLD ‘𝑤) |
| 24 | 6, 21, 23 | co 7410 |
. . . . . . . . 9
class (𝑥(
·𝑠OLD ‘𝑤)(𝑡‘𝑦)) |
| 25 | 14, 19 | cfv 6536 |
. . . . . . . . 9
class (𝑡‘𝑧) |
| 26 | 22, 15 | cfv 6536 |
. . . . . . . . 9
class (
+𝑣 ‘𝑤) |
| 27 | 24, 25, 26 | co 7410 |
. . . . . . . 8
class ((𝑥(
·𝑠OLD ‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧)) |
| 28 | 20, 27 | wceq 1540 |
. . . . . . 7
wff (𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧)) |
| 29 | | cba 30572 |
. . . . . . . 8
class
BaseSet |
| 30 | 9, 29 | cfv 6536 |
. . . . . . 7
class
(BaseSet‘𝑢) |
| 31 | 28, 13, 30 | wral 3052 |
. . . . . 6
wff
∀𝑧 ∈
(BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧)) |
| 32 | 31, 7, 30 | wral 3052 |
. . . . 5
wff
∀𝑦 ∈
(BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧)) |
| 33 | | cc 11132 |
. . . . 5
class
ℂ |
| 34 | 32, 5, 33 | wral 3052 |
. . . 4
wff
∀𝑥 ∈
ℂ ∀𝑦 ∈
(BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧)) |
| 35 | 22, 29 | cfv 6536 |
. . . . 5
class
(BaseSet‘𝑤) |
| 36 | | cmap 8845 |
. . . . 5
class
↑m |
| 37 | 35, 30, 36 | co 7410 |
. . . 4
class
((BaseSet‘𝑤)
↑m (BaseSet‘𝑢)) |
| 38 | 34, 18, 37 | crab 3420 |
. . 3
class {𝑡 ∈ ((BaseSet‘𝑤) ↑m
(BaseSet‘𝑢)) ∣
∀𝑥 ∈ ℂ
∀𝑦 ∈
(BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧))} |
| 39 | 2, 3, 4, 4, 38 | cmpo 7412 |
. 2
class (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ ((BaseSet‘𝑤) ↑m
(BaseSet‘𝑢)) ∣
∀𝑥 ∈ ℂ
∀𝑦 ∈
(BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧))}) |
| 40 | 1, 39 | wceq 1540 |
1
wff LnOp =
(𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ ((BaseSet‘𝑤) ↑m
(BaseSet‘𝑢)) ∣
∀𝑥 ∈ ℂ
∀𝑦 ∈
(BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧))}) |