MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lno Structured version   Visualization version   GIF version

Definition df-lno 29985
Description: Define the class of linear operators between two normed complex vector spaces. In the literature, an operator may be a partial function, i.e., the domain of an operator is not necessarily the entire vector space. However, since the domain of a linear operator is a vector subspace, we define it with a complete function for convenience and will use subset relations to specify the partial function case. (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-lno LnOp = (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ {𝑑 ∈ ((BaseSetβ€˜π‘€) ↑m (BaseSetβ€˜π‘’)) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘’)βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))})
Distinct variable group:   𝑒,𝑑,𝑀,π‘₯,𝑦,𝑧

Detailed syntax breakdown of Definition df-lno
StepHypRef Expression
1 clno 29981 . 2 class LnOp
2 vu . . 3 setvar 𝑒
3 vw . . 3 setvar 𝑀
4 cnv 29825 . . 3 class NrmCVec
5 vx . . . . . . . . . . . 12 setvar π‘₯
65cv 1541 . . . . . . . . . . 11 class π‘₯
7 vy . . . . . . . . . . . 12 setvar 𝑦
87cv 1541 . . . . . . . . . . 11 class 𝑦
92cv 1541 . . . . . . . . . . . 12 class 𝑒
10 cns 29828 . . . . . . . . . . . 12 class ·𝑠OLD
119, 10cfv 6541 . . . . . . . . . . 11 class ( ·𝑠OLD β€˜π‘’)
126, 8, 11co 7406 . . . . . . . . . 10 class (π‘₯( ·𝑠OLD β€˜π‘’)𝑦)
13 vz . . . . . . . . . . 11 setvar 𝑧
1413cv 1541 . . . . . . . . . 10 class 𝑧
15 cpv 29826 . . . . . . . . . . 11 class +𝑣
169, 15cfv 6541 . . . . . . . . . 10 class ( +𝑣 β€˜π‘’)
1712, 14, 16co 7406 . . . . . . . . 9 class ((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)
18 vt . . . . . . . . . 10 setvar 𝑑
1918cv 1541 . . . . . . . . 9 class 𝑑
2017, 19cfv 6541 . . . . . . . 8 class (π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧))
218, 19cfv 6541 . . . . . . . . . 10 class (π‘‘β€˜π‘¦)
223cv 1541 . . . . . . . . . . 11 class 𝑀
2322, 10cfv 6541 . . . . . . . . . 10 class ( ·𝑠OLD β€˜π‘€)
246, 21, 23co 7406 . . . . . . . . 9 class (π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))
2514, 19cfv 6541 . . . . . . . . 9 class (π‘‘β€˜π‘§)
2622, 15cfv 6541 . . . . . . . . 9 class ( +𝑣 β€˜π‘€)
2724, 25, 26co 7406 . . . . . . . 8 class ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))
2820, 27wceq 1542 . . . . . . 7 wff (π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))
29 cba 29827 . . . . . . . 8 class BaseSet
309, 29cfv 6541 . . . . . . 7 class (BaseSetβ€˜π‘’)
3128, 13, 30wral 3062 . . . . . 6 wff βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))
3231, 7, 30wral 3062 . . . . 5 wff βˆ€π‘¦ ∈ (BaseSetβ€˜π‘’)βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))
33 cc 11105 . . . . 5 class β„‚
3432, 5, 33wral 3062 . . . 4 wff βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘’)βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))
3522, 29cfv 6541 . . . . 5 class (BaseSetβ€˜π‘€)
36 cmap 8817 . . . . 5 class ↑m
3735, 30, 36co 7406 . . . 4 class ((BaseSetβ€˜π‘€) ↑m (BaseSetβ€˜π‘’))
3834, 18, 37crab 3433 . . 3 class {𝑑 ∈ ((BaseSetβ€˜π‘€) ↑m (BaseSetβ€˜π‘’)) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘’)βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))}
392, 3, 4, 4, 38cmpo 7408 . 2 class (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ {𝑑 ∈ ((BaseSetβ€˜π‘€) ↑m (BaseSetβ€˜π‘’)) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘’)βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))})
401, 39wceq 1542 1 wff LnOp = (𝑒 ∈ NrmCVec, 𝑀 ∈ NrmCVec ↦ {𝑑 ∈ ((BaseSetβ€˜π‘€) ↑m (BaseSetβ€˜π‘’)) ∣ βˆ€π‘₯ ∈ β„‚ βˆ€π‘¦ ∈ (BaseSetβ€˜π‘’)βˆ€π‘§ ∈ (BaseSetβ€˜π‘’)(π‘‘β€˜((π‘₯( ·𝑠OLD β€˜π‘’)𝑦)( +𝑣 β€˜π‘’)𝑧)) = ((π‘₯( ·𝑠OLD β€˜π‘€)(π‘‘β€˜π‘¦))( +𝑣 β€˜π‘€)(π‘‘β€˜π‘§))})
Colors of variables: wff setvar class
This definition is referenced by:  lnoval  29993
  Copyright terms: Public domain W3C validator