Step | Hyp | Ref
| Expression |
1 | | clno 29981 |
. 2
class
LnOp |
2 | | vu |
. . 3
setvar π’ |
3 | | vw |
. . 3
setvar π€ |
4 | | cnv 29825 |
. . 3
class
NrmCVec |
5 | | vx |
. . . . . . . . . . . 12
setvar π₯ |
6 | 5 | cv 1541 |
. . . . . . . . . . 11
class π₯ |
7 | | vy |
. . . . . . . . . . . 12
setvar π¦ |
8 | 7 | cv 1541 |
. . . . . . . . . . 11
class π¦ |
9 | 2 | cv 1541 |
. . . . . . . . . . . 12
class π’ |
10 | | cns 29828 |
. . . . . . . . . . . 12
class
Β·π OLD |
11 | 9, 10 | cfv 6541 |
. . . . . . . . . . 11
class (
Β·π OLD βπ’) |
12 | 6, 8, 11 | co 7406 |
. . . . . . . . . 10
class (π₯(
Β·π OLD βπ’)π¦) |
13 | | vz |
. . . . . . . . . . 11
setvar π§ |
14 | 13 | cv 1541 |
. . . . . . . . . 10
class π§ |
15 | | cpv 29826 |
. . . . . . . . . . 11
class
+π£ |
16 | 9, 15 | cfv 6541 |
. . . . . . . . . 10
class (
+π£ βπ’) |
17 | 12, 14, 16 | co 7406 |
. . . . . . . . 9
class ((π₯(
Β·π OLD βπ’)π¦)( +π£ βπ’)π§) |
18 | | vt |
. . . . . . . . . 10
setvar π‘ |
19 | 18 | cv 1541 |
. . . . . . . . 9
class π‘ |
20 | 17, 19 | cfv 6541 |
. . . . . . . 8
class (π‘β((π₯( Β·π OLD
βπ’)π¦)( +π£ βπ’)π§)) |
21 | 8, 19 | cfv 6541 |
. . . . . . . . . 10
class (π‘βπ¦) |
22 | 3 | cv 1541 |
. . . . . . . . . . 11
class π€ |
23 | 22, 10 | cfv 6541 |
. . . . . . . . . 10
class (
Β·π OLD βπ€) |
24 | 6, 21, 23 | co 7406 |
. . . . . . . . 9
class (π₯(
Β·π OLD βπ€)(π‘βπ¦)) |
25 | 14, 19 | cfv 6541 |
. . . . . . . . 9
class (π‘βπ§) |
26 | 22, 15 | cfv 6541 |
. . . . . . . . 9
class (
+π£ βπ€) |
27 | 24, 25, 26 | co 7406 |
. . . . . . . 8
class ((π₯(
Β·π OLD βπ€)(π‘βπ¦))( +π£ βπ€)(π‘βπ§)) |
28 | 20, 27 | wceq 1542 |
. . . . . . 7
wff (π‘β((π₯( Β·π OLD
βπ’)π¦)( +π£ βπ’)π§)) = ((π₯( Β·π OLD
βπ€)(π‘βπ¦))( +π£ βπ€)(π‘βπ§)) |
29 | | cba 29827 |
. . . . . . . 8
class
BaseSet |
30 | 9, 29 | cfv 6541 |
. . . . . . 7
class
(BaseSetβπ’) |
31 | 28, 13, 30 | wral 3062 |
. . . . . 6
wff
βπ§ β
(BaseSetβπ’)(π‘β((π₯( Β·π OLD
βπ’)π¦)( +π£ βπ’)π§)) = ((π₯( Β·π OLD
βπ€)(π‘βπ¦))( +π£ βπ€)(π‘βπ§)) |
32 | 31, 7, 30 | wral 3062 |
. . . . 5
wff
βπ¦ β
(BaseSetβπ’)βπ§ β (BaseSetβπ’)(π‘β((π₯( Β·π OLD
βπ’)π¦)( +π£ βπ’)π§)) = ((π₯( Β·π OLD
βπ€)(π‘βπ¦))( +π£ βπ€)(π‘βπ§)) |
33 | | cc 11105 |
. . . . 5
class
β |
34 | 32, 5, 33 | wral 3062 |
. . . 4
wff
βπ₯ β
β βπ¦ β
(BaseSetβπ’)βπ§ β (BaseSetβπ’)(π‘β((π₯( Β·π OLD
βπ’)π¦)( +π£ βπ’)π§)) = ((π₯( Β·π OLD
βπ€)(π‘βπ¦))( +π£ βπ€)(π‘βπ§)) |
35 | 22, 29 | cfv 6541 |
. . . . 5
class
(BaseSetβπ€) |
36 | | cmap 8817 |
. . . . 5
class
βm |
37 | 35, 30, 36 | co 7406 |
. . . 4
class
((BaseSetβπ€)
βm (BaseSetβπ’)) |
38 | 34, 18, 37 | crab 3433 |
. . 3
class {π‘ β ((BaseSetβπ€) βm
(BaseSetβπ’)) β£
βπ₯ β β
βπ¦ β
(BaseSetβπ’)βπ§ β (BaseSetβπ’)(π‘β((π₯( Β·π OLD
βπ’)π¦)( +π£ βπ’)π§)) = ((π₯( Β·π OLD
βπ€)(π‘βπ¦))( +π£ βπ€)(π‘βπ§))} |
39 | 2, 3, 4, 4, 38 | cmpo 7408 |
. 2
class (π’ β NrmCVec, π€ β NrmCVec β¦ {π‘ β ((BaseSetβπ€) βm
(BaseSetβπ’)) β£
βπ₯ β β
βπ¦ β
(BaseSetβπ’)βπ§ β (BaseSetβπ’)(π‘β((π₯( Β·π OLD
βπ’)π¦)( +π£ βπ’)π§)) = ((π₯( Β·π OLD
βπ€)(π‘βπ¦))( +π£ βπ€)(π‘βπ§))}) |
40 | 1, 39 | wceq 1542 |
1
wff LnOp =
(π’ β NrmCVec, π€ β NrmCVec β¦ {π‘ β ((BaseSetβπ€) βm
(BaseSetβπ’)) β£
βπ₯ β β
βπ¦ β
(BaseSetβπ’)βπ§ β (BaseSetβπ’)(π‘β((π₯( Β·π OLD
βπ’)π¦)( +π£ βπ’)π§)) = ((π₯( Β·π OLD
βπ€)(π‘βπ¦))( +π£ βπ€)(π‘βπ§))}) |