Detailed syntax breakdown of Definition df-lno
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | clno 30760 | . 2
class 
LnOp | 
| 2 |  | vu | . . 3
setvar 𝑢 | 
| 3 |  | vw | . . 3
setvar 𝑤 | 
| 4 |  | cnv 30604 | . . 3
class
NrmCVec | 
| 5 |  | vx | . . . . . . . . . . . 12
setvar 𝑥 | 
| 6 | 5 | cv 1538 | . . . . . . . . . . 11
class 𝑥 | 
| 7 |  | vy | . . . . . . . . . . . 12
setvar 𝑦 | 
| 8 | 7 | cv 1538 | . . . . . . . . . . 11
class 𝑦 | 
| 9 | 2 | cv 1538 | . . . . . . . . . . . 12
class 𝑢 | 
| 10 |  | cns 30607 | . . . . . . . . . . . 12
class 
·𝑠OLD | 
| 11 | 9, 10 | cfv 6560 | . . . . . . . . . . 11
class (
·𝑠OLD ‘𝑢) | 
| 12 | 6, 8, 11 | co 7432 | . . . . . . . . . 10
class (𝑥(
·𝑠OLD ‘𝑢)𝑦) | 
| 13 |  | vz | . . . . . . . . . . 11
setvar 𝑧 | 
| 14 | 13 | cv 1538 | . . . . . . . . . 10
class 𝑧 | 
| 15 |  | cpv 30605 | . . . . . . . . . . 11
class 
+𝑣 | 
| 16 | 9, 15 | cfv 6560 | . . . . . . . . . 10
class (
+𝑣 ‘𝑢) | 
| 17 | 12, 14, 16 | co 7432 | . . . . . . . . 9
class ((𝑥(
·𝑠OLD ‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧) | 
| 18 |  | vt | . . . . . . . . . 10
setvar 𝑡 | 
| 19 | 18 | cv 1538 | . . . . . . . . 9
class 𝑡 | 
| 20 | 17, 19 | cfv 6560 | . . . . . . . 8
class (𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) | 
| 21 | 8, 19 | cfv 6560 | . . . . . . . . . 10
class (𝑡‘𝑦) | 
| 22 | 3 | cv 1538 | . . . . . . . . . . 11
class 𝑤 | 
| 23 | 22, 10 | cfv 6560 | . . . . . . . . . 10
class (
·𝑠OLD ‘𝑤) | 
| 24 | 6, 21, 23 | co 7432 | . . . . . . . . 9
class (𝑥(
·𝑠OLD ‘𝑤)(𝑡‘𝑦)) | 
| 25 | 14, 19 | cfv 6560 | . . . . . . . . 9
class (𝑡‘𝑧) | 
| 26 | 22, 15 | cfv 6560 | . . . . . . . . 9
class (
+𝑣 ‘𝑤) | 
| 27 | 24, 25, 26 | co 7432 | . . . . . . . 8
class ((𝑥(
·𝑠OLD ‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧)) | 
| 28 | 20, 27 | wceq 1539 | . . . . . . 7
wff (𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧)) | 
| 29 |  | cba 30606 | . . . . . . . 8
class
BaseSet | 
| 30 | 9, 29 | cfv 6560 | . . . . . . 7
class
(BaseSet‘𝑢) | 
| 31 | 28, 13, 30 | wral 3060 | . . . . . 6
wff
∀𝑧 ∈
(BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧)) | 
| 32 | 31, 7, 30 | wral 3060 | . . . . 5
wff
∀𝑦 ∈
(BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧)) | 
| 33 |  | cc 11154 | . . . . 5
class
ℂ | 
| 34 | 32, 5, 33 | wral 3060 | . . . 4
wff
∀𝑥 ∈
ℂ ∀𝑦 ∈
(BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧)) | 
| 35 | 22, 29 | cfv 6560 | . . . . 5
class
(BaseSet‘𝑤) | 
| 36 |  | cmap 8867 | . . . . 5
class 
↑m | 
| 37 | 35, 30, 36 | co 7432 | . . . 4
class
((BaseSet‘𝑤)
↑m (BaseSet‘𝑢)) | 
| 38 | 34, 18, 37 | crab 3435 | . . 3
class {𝑡 ∈ ((BaseSet‘𝑤) ↑m
(BaseSet‘𝑢)) ∣
∀𝑥 ∈ ℂ
∀𝑦 ∈
(BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧))} | 
| 39 | 2, 3, 4, 4, 38 | cmpo 7434 | . 2
class (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ ((BaseSet‘𝑤) ↑m
(BaseSet‘𝑢)) ∣
∀𝑥 ∈ ℂ
∀𝑦 ∈
(BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧))}) | 
| 40 | 1, 39 | wceq 1539 | 1
wff  LnOp =
(𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ ((BaseSet‘𝑤) ↑m
(BaseSet‘𝑢)) ∣
∀𝑥 ∈ ℂ
∀𝑦 ∈
(BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧))}) |