|   | Mathbox for Stefan O'Rear | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-lnr | Structured version Visualization version GIF version | ||
| Description: A ring is left-Noetherian iff it is Noetherian as a left module over itself. (Contributed by Stefan O'Rear, 24-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| df-lnr | ⊢ LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clnr 43121 | . 2 class LNoeR | |
| 2 | va | . . . . . 6 setvar 𝑎 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑎 | 
| 4 | crglmod 21171 | . . . . 5 class ringLMod | |
| 5 | 3, 4 | cfv 6561 | . . . 4 class (ringLMod‘𝑎) | 
| 6 | clnm 43087 | . . . 4 class LNoeM | |
| 7 | 5, 6 | wcel 2108 | . . 3 wff (ringLMod‘𝑎) ∈ LNoeM | 
| 8 | crg 20230 | . . 3 class Ring | |
| 9 | 7, 2, 8 | crab 3436 | . 2 class {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} | 
| 10 | 1, 9 | wceq 1540 | 1 wff LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: islnr 43123 | 
| Copyright terms: Public domain | W3C validator |