| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-lnr | Structured version Visualization version GIF version | ||
| Description: A ring is left-Noetherian iff it is Noetherian as a left module over itself. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-lnr | ⊢ LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnr 43100 | . 2 class LNoeR | |
| 2 | va | . . . . . 6 setvar 𝑎 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑎 |
| 4 | crglmod 21135 | . . . . 5 class ringLMod | |
| 5 | 3, 4 | cfv 6536 | . . . 4 class (ringLMod‘𝑎) |
| 6 | clnm 43066 | . . . 4 class LNoeM | |
| 7 | 5, 6 | wcel 2109 | . . 3 wff (ringLMod‘𝑎) ∈ LNoeM |
| 8 | crg 20198 | . . 3 class Ring | |
| 9 | 7, 2, 8 | crab 3420 | . 2 class {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} |
| 10 | 1, 9 | wceq 1540 | 1 wff LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} |
| Colors of variables: wff setvar class |
| This definition is referenced by: islnr 43102 |
| Copyright terms: Public domain | W3C validator |