Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-lnr | Structured version Visualization version GIF version |
Description: A ring is left-Noetherian iff it is Noetherian as a left module over itself. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
df-lnr | ⊢ LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clnr 40934 | . 2 class LNoeR | |
2 | va | . . . . . 6 setvar 𝑎 | |
3 | 2 | cv 1538 | . . . . 5 class 𝑎 |
4 | crglmod 20431 | . . . . 5 class ringLMod | |
5 | 3, 4 | cfv 6433 | . . . 4 class (ringLMod‘𝑎) |
6 | clnm 40900 | . . . 4 class LNoeM | |
7 | 5, 6 | wcel 2106 | . . 3 wff (ringLMod‘𝑎) ∈ LNoeM |
8 | crg 19783 | . . 3 class Ring | |
9 | 7, 2, 8 | crab 3068 | . 2 class {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} |
10 | 1, 9 | wceq 1539 | 1 wff LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} |
Colors of variables: wff setvar class |
This definition is referenced by: islnr 40936 |
Copyright terms: Public domain | W3C validator |