Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islnr Structured version   Visualization version   GIF version

Theorem islnr 41467
Description: Property of a left-Noetherian ring. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
islnr (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM))

Proof of Theorem islnr
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6847 . . 3 (𝑎 = 𝐴 → (ringLMod‘𝑎) = (ringLMod‘𝐴))
21eleq1d 2823 . 2 (𝑎 = 𝐴 → ((ringLMod‘𝑎) ∈ LNoeM ↔ (ringLMod‘𝐴) ∈ LNoeM))
3 df-lnr 41466 . 2 LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM}
42, 3elrab2 3653 1 (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  cfv 6501  Ringcrg 19971  ringLModcrglmod 20646  LNoeMclnm 41431  LNoeRclnr 41465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-iota 6453  df-fv 6509  df-lnr 41466
This theorem is referenced by:  lnrring  41468  lnrlnm  41469  islnr2  41470
  Copyright terms: Public domain W3C validator