Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islnr Structured version   Visualization version   GIF version

Theorem islnr 43100
Description: Property of a left-Noetherian ring. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
islnr (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM))

Proof of Theorem islnr
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . 3 (𝑎 = 𝐴 → (ringLMod‘𝑎) = (ringLMod‘𝐴))
21eleq1d 2813 . 2 (𝑎 = 𝐴 → ((ringLMod‘𝑎) ∈ LNoeM ↔ (ringLMod‘𝐴) ∈ LNoeM))
3 df-lnr 43099 . 2 LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM}
42, 3elrab2 3662 1 (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6511  Ringcrg 20142  ringLModcrglmod 21079  LNoeMclnm 43064  LNoeRclnr 43098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-lnr 43099
This theorem is referenced by:  lnrring  43101  lnrlnm  43102  islnr2  43103
  Copyright terms: Public domain W3C validator