Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islnr Structured version   Visualization version   GIF version

Theorem islnr 40852
Description: Property of a left-Noetherian ring. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
islnr (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM))

Proof of Theorem islnr
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑎 = 𝐴 → (ringLMod‘𝑎) = (ringLMod‘𝐴))
21eleq1d 2823 . 2 (𝑎 = 𝐴 → ((ringLMod‘𝑎) ∈ LNoeM ↔ (ringLMod‘𝐴) ∈ LNoeM))
3 df-lnr 40851 . 2 LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM}
42, 3elrab2 3620 1 (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  Ringcrg 19698  ringLModcrglmod 20346  LNoeMclnm 40816  LNoeRclnr 40850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-lnr 40851
This theorem is referenced by:  lnrring  40853  lnrlnm  40854  islnr2  40855
  Copyright terms: Public domain W3C validator