Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islnr Structured version   Visualization version   GIF version

Theorem islnr 43143
Description: Property of a left-Noetherian ring. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
islnr (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM))

Proof of Theorem islnr
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . 3 (𝑎 = 𝐴 → (ringLMod‘𝑎) = (ringLMod‘𝐴))
21eleq1d 2816 . 2 (𝑎 = 𝐴 → ((ringLMod‘𝑎) ∈ LNoeM ↔ (ringLMod‘𝐴) ∈ LNoeM))
3 df-lnr 43142 . 2 LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM}
42, 3elrab2 3650 1 (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  cfv 6481  Ringcrg 20149  ringLModcrglmod 21104  LNoeMclnm 43107  LNoeRclnr 43141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-lnr 43142
This theorem is referenced by:  lnrring  43144  lnrlnm  43145  islnr2  43146
  Copyright terms: Public domain W3C validator