| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islnr | Structured version Visualization version GIF version | ||
| Description: Property of a left-Noetherian ring. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| islnr | ⊢ (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6860 | . . 3 ⊢ (𝑎 = 𝐴 → (ringLMod‘𝑎) = (ringLMod‘𝐴)) | |
| 2 | 1 | eleq1d 2814 | . 2 ⊢ (𝑎 = 𝐴 → ((ringLMod‘𝑎) ∈ LNoeM ↔ (ringLMod‘𝐴) ∈ LNoeM)) |
| 3 | df-lnr 43092 | . 2 ⊢ LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} | |
| 4 | 2, 3 | elrab2 3664 | 1 ⊢ (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 Ringcrg 20148 ringLModcrglmod 21085 LNoeMclnm 43057 LNoeRclnr 43091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-lnr 43092 |
| This theorem is referenced by: lnrring 43094 lnrlnm 43095 islnr2 43096 |
| Copyright terms: Public domain | W3C validator |