![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islnr | Structured version Visualization version GIF version |
Description: Property of a left-Noetherian ring. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
islnr | ⊢ (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6914 | . . 3 ⊢ (𝑎 = 𝐴 → (ringLMod‘𝑎) = (ringLMod‘𝐴)) | |
2 | 1 | eleq1d 2826 | . 2 ⊢ (𝑎 = 𝐴 → ((ringLMod‘𝑎) ∈ LNoeM ↔ (ringLMod‘𝐴) ∈ LNoeM)) |
3 | df-lnr 43115 | . 2 ⊢ LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} | |
4 | 2, 3 | elrab2 3701 | 1 ⊢ (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 Ringcrg 20260 ringLModcrglmod 21198 LNoeMclnm 43080 LNoeRclnr 43114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-lnr 43115 |
This theorem is referenced by: lnrring 43117 lnrlnm 43118 islnr2 43119 |
Copyright terms: Public domain | W3C validator |