Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islnr | Structured version Visualization version GIF version |
Description: Property of a left-Noetherian ring. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
islnr | ⊢ (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . 3 ⊢ (𝑎 = 𝐴 → (ringLMod‘𝑎) = (ringLMod‘𝐴)) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝑎 = 𝐴 → ((ringLMod‘𝑎) ∈ LNoeM ↔ (ringLMod‘𝐴) ∈ LNoeM)) |
3 | df-lnr 40851 | . 2 ⊢ LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} | |
4 | 2, 3 | elrab2 3620 | 1 ⊢ (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Ringcrg 19698 ringLModcrglmod 20346 LNoeMclnm 40816 LNoeRclnr 40850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-lnr 40851 |
This theorem is referenced by: lnrring 40853 lnrlnm 40854 islnr2 40855 |
Copyright terms: Public domain | W3C validator |